Background: Status epilepticus is associated with substantial morbidity and neuronal necrosis, and the duration of the seizure would affect its following complications. Eliminating the duration would have valuable outcomes; however, the presence of BBB is an obstacle. The purpose of the current study was to achieve a nose-to-brain magnetic drug delivery system to accelerate the onset of action, and to reduce the mucociliary clearance via implementing the magnetic field.
Materials and Methods: The drug-entrapped magnetic nanoaggregates were prepared via a 2-step method, synthesis of the magnetic nanoparticles and drug loading. Optimization of the variables, including ammonium hydroxide:water ratio, beta-cyclodextrin%, duration of the mixing time, amount of Pluronic, and drug:magnetic nanoaggregates mass ratio was performed according to particle size, PDI, zeta potential, release profile and entrapment efficiency. The efficacy of optimized formulation was assessed in the animal model.
Results: According to the analysis performed by the software, drug-to-nanoparticle ratio and the duration of mixing time were found to be significantly effective (p < 0.05) for entrapment efficiency and particle size distribution, respectively. The optimum formulation with an approximate average size of 581 nm and 61% entrapment efficiency was obtained, which released about 80% of its drug content within the first 20 minutes. The in vivo efficacy was significantly improved (p < 0.05) by administration of magnetic nanoaggregates in the presence of a simple external magnet placed on the glabellar region of the animals, compared to the control groups.
Conclusion: This drug delivery system could be suggested as a fast-acting alternative for seizure cessation in status epilepticus emergencies.