Ariav, Y.; Ch’ng, J.H.; Christofk, H.R.; Ron-Harel, N.; Erez, A. Targeting nucleotide metabolism as the nexus of viral infections, cancer, and the immune response. Sci. Adv., 2021, 7(21), eabg6165. [http://dx.doi.org/10.1126/sciadv.abg6165]
[2]
Kepp, O.; Loos, F.; Liu, P.; Kroemer, G. Extracellular nucleosides and nucleotides as immunomodulators. Immunol. Rev., 2017, 280(1), 83-92. [http://dx.doi.org/10.1111/imr.12571]
[3]
Yegutkin, G.G. Nucleotide- and nucleoside-converting ectoenzymes: Important modulators of purinergic signalling cascade. Biochim. Biophys. Acta, 2008, 1783, 673-694.
[4]
Pawlowska, R.; Korczynski, D.; Nawrot, B.; Stec, W.J.; Chworos, A. The α-thio and/or β-γ-hypophosphate analogs of ATP as cofactors of T4 DNA ligase. Bioorg. Chem., 2016, 67, 110-115. [http://dx.doi.org/10.1016/j.bioorg.2016.06.003]
Jordheim, L.P.; Durantel, D.; Zoulim, F.; Dumontet, C. Advances in the development of nucleoside and nucleotide analogues for cancer and viral diseases. Nat. Rev. Drug Discov., 2013, 12(6), 447-464. [http://dx.doi.org/10.1038/nrd4010]
[7]
Franczak, M.; Toenshoff, I.; Jansen, G.; Smolenski, R.T.; Giovannetti, E.; Peters, G.J. The influence of mitochondrial energy and 1C metabolism on the efficacy of anticancer drugs - exploring potential mechanisms of resistance. Curr. Med. Chem., 2023, 30(11), 1209-1231. [http://dx.doi.org/10.2174/0929867329666220401110418]
[8]
Suwara, J.; Radzikowska-Cieciura, E.; Chworos, A.; Pawlowska, R. The ATP-dependent pathways and human diseases. Curr. Med. Chem., 2023, 30(11), 1232-1255. [http://dx.doi.org/10.2174/0929867329666220322104552]
[9]
Roy, B.; Navarro, V.; Peyrottes, S. Prodrugs of nucleoside 5′-monophosphate analogues: Overview of the recent literature concerning their synthesis and applications. Curr. Med. Chem., 2023, 30(11), 1256-1303. [http://dx.doi.org/10.2174/0929867329666220909122820]