Study on Molecular Anti-tumor Mechanism of 2-Thiohydantoin Derivative based on Molecular Docking and Bioinformatic Analyses

Page: [440 - 452] Pages: 13

  • * (Excluding Mailing and Handling)

Abstract

Objective: Several methods for synthesizing 2-thiohydantoin derivatives have been devised and exploited, and they have found widespread application as antioxidants, antimicrobials, antivirals, and anticancer agents. As a result, we tried to understand the underlying processes of the 2- thiohydantoin derivative's anti-LIHC activity.

Methods: We predicted the anticancer mechanism of N-(4-oxo-5-(2-oxo-2-(p-tolylamino)ethyl)-3- phenyl-2-thioxoimidazolidin-1-yl)benzamide as a derivative of 2-thiohydantoin by utilizing molecular docking and molecular dynamic simulation. Furthermore, based on the results of molecular dynamic modelling, we employed bioinformatics to anticipate the immunotherapy of this molecule in the tumor microenvironment (TME) of Liver Hepatocellular Carcinoma (LIHC) patients. Next, we examined how this derivative affected proliferation, cell cycle progression, reactive oxygen species production, and apoptosis in HepG2 cancer cells.

Results: Substantially, our investigation revealed that the IC50 value was 2.448 μM and that it arrested the cell cycle of HepG2 in the S phase. Furthermore, molecular docking and dynamics studies revealed a worthy interaction of this compound with AKT1 and CDK2 proteins. Considerably, AKT1 and CDK2 have negative affinity energies of -10.4 kcal/mol and -9.6 kcal/mol, respectively. Several bioinformatic tools were used in this investigation to provide insight into the future clinical application of this derivative as a novel candidate to target immune cells such as macrophages, neutrophils, eosinophils, and CD8+ T cells.

Conclusion: The relevance of this 2-thiohydantoin derivative was demonstrated by our experimental tests, docking studies, and bioinformatics analysis, and it may be investigated as a lead molecule for anticancer medicines, notably as AKT1 and CKD2 inhibitors.

Graphical Abstract

[1]
McGlynn, K.A.; Petrick, J.L.; El-Serag, H.B. Epidemiology of hepatocellular carcinoma. Hepatology, 2021, S1, 4-13.
[http://dx.doi.org/10.1002/hep.31288]
[2]
Satyanarayana, A.; Kaldis, P. A dual role of CDK2 in DNA damage response. Cell Div., 2009, 4(1), 9.
[http://dx.doi.org/10.1186/1747-1028-4-9] [PMID: 19445729]
[3]
Nitulescu, G.; Van De Venter, M.; Nitulescu, G.; Ungurianu, A.; Juzenas, P.; Peng, Q.; Olaru, O.; Grădinaru, D.; Tsatsakis, A.; Tsoukalas, D.; Spandidos, D.; Margina, D. The Akt pathway in oncology therapy and beyond. Int. J. Oncol., 2018, 53(6), 2319-2331.
[http://dx.doi.org/10.3892/ijo.2018.4597] [PMID: 30334567]
[4]
Cho, S.; Kim, S.H.; Shin, D. Recent applications of hydantoin and thiohydantoin in medicinal chemistry. Eur. J. Med. Chem., 2019, 164, 517-545.
[http://dx.doi.org/10.1016/j.ejmech.2018.12.066] [PMID: 30622025]
[5]
Li, K.K.W.; Ng, I.O.L.; Fan, S.T.; Albrecht, J.H.; Yamashita, K.; Poon, R.Y.C. Activation of cyclin-dependent kinases CDC2 and CDK2 in hepatocellular carcinoma. Liver, 2002, 22(3), 259-268.
[http://dx.doi.org/10.1046/j.0106-9543.2002.01629.x] [PMID: 12100577]
[6]
Yu, M.; Zeng, M.; Pan, Z.; Wu, F.; Guo, L.; He, G. Discovery of novel akt1 inhibitor induces autophagy associated death in hepatocellular carcinoma cells. Eur. J. Med. Chem., 2020, 189, 112076.
[http://dx.doi.org/10.1016/j.ejmech.2020.112076] [PMID: 32007668]
[7]
Sever, R.; Brugge, J.S. Signal transduction in cancer. Cold Spring Harb. Perspect. Med., 2015, 5(4), a006098.
[http://dx.doi.org/10.1101/cshperspect.a006098] [PMID: 25833940]
[8]
El-Arabey, A.A.; Denizli, M.; Kanlikilicer, P.; Bayraktar, R.; Ivan, C.; Rashed, M.; Kabil, N.; Ozpolat, B.; Calin, G.A.; Salama, S.A.; Abd-Allah, A.R.; Sood, A.K.; Lopez-Berestein, G. GATA3 as a master regulator for interactions of tumor-associated macrophages with high-grade serous ovarian carcinoma. Cell. Signal., 2020, 68, 109539.
[http://dx.doi.org/10.1016/j.cellsig.2020.109539] [PMID: 31935430]
[9]
Elhady, H.A.; Al-Shareef, H.F. Synthesis, characterization, anti-proliferative evaluation, and DNA flow cytometry analysis of some 2-thiohydantoin derivatives. Mini Rev. Med. Chem., 2020, 20(18), 1929-1941.
[http://dx.doi.org/10.2174/1389557520666200611093510] [PMID: 32525773]
[10]
AbdulJabar, L.A.; Al-Shawi, A.A.A.; Mutlaq, D.Z. Anti-liver and anti-breast cancer activities of 2-thioxo-4-imidazolidinone derivatives. Med. Chem. Res., 2021, 30(10), 1943-1953.
[http://dx.doi.org/10.1007/s00044-021-02769-8]
[11]
Elhady, H.A.; El-Sayed, R.; Al-nathali, H.S. Design, synthesis and evaluation of anticancer activity of novel 2-thioxoimidazolidin-4-one derivatives bearing pyrazole, triazole and benzoxazole moieties. Chem. Cent. J., 2018, 12(1), 51.
[http://dx.doi.org/10.1186/s13065-018-0418-1] [PMID: 29740713]
[12]
Finko, A.V.; Skvortsov, D.A.; Laikov, D.N.; Averochkin, G.M.; Dlin, E.A.; Kalinina, M.A.; Aladinskiy, V.A.; Vorobyeva, N.S.; Mironov, A.V.; Beloglazkina, E.K.; Zyk, N.V.; Ivanenkov, Y.A.; Majouga, A.G. Synthesis and biological activity of 5-aryliden-2-thiohydantoin S-aryl derivatives. Bioorg. Chem., 2020, 100, 103900.
[http://dx.doi.org/10.1016/j.bioorg.2020.103900] [PMID: 32428745]
[13]
Mutlaq, D.Z.; Al-Shawi, A.A.A. Egypt. J. Chem., 2021, 64(3), 1315-1321.
[14]
Abdalla, M.; Eltayb, W.A.; El-Arabey, A.A.; Singh, K.; Jiang, X. Molecular dynamic study of SARS-CoV-2 with various S protein mutations and their effect on thermodynamic properties. Comput. Biol. Med., 2022, 141, 105025.
[http://dx.doi.org/10.1016/j.compbiomed.2021.105025] [PMID: 34772510]
[15]
Abdalla, M.; Mohapatra, R.K.; Sarangi, A.K.; Mohapatra, P.K.; Eltayb, W.A.; Alam, M.; El-Arabey, A.A.; Azam, M.; Al-Resayes, S.I.; Seidel, V.; Dhama, K. In silico studies on phytochemicals to combat the emerging COVID-19 infection. J. Saudi Chem. Soc., 2021, 25(12), 101367.
[http://dx.doi.org/10.1016/j.jscs.2021.101367]
[16]
Khalid, A.; Abdalla, M.; Saeed, M.; Ghayur, M.N.; Kalauni, S.K.; Albratty, M.; Alhazmi, H.A.; Mesaik, M.A.; Gilani, A.H.; Ul-Haq, Z. Sarcorucinine-D inhibits cholinesterases and calcium channels: Molecular dynamics simulation and in vitro mechanistic investigations. Molecules, 2022, 27(11), 3361.
[http://dx.doi.org/10.3390/molecules27113361] [PMID: 35684298]
[17]
Boufissiou, A.; Abdalla, M.; Sharaf, M.; Al-Resayes, S.I.; Imededdine, K.; Alam, M.; Yagi, S.; Azam, M.; Yousfi, M. In silico investigation of phenolic compounds from leaves of Phillyrea angustifolia L. as a potential inhibitor against the SARS-CoV-2 main protease (Mpro PDB ID:5R83) using a virtual screening method. J. Saudi Chem. Soc., 2022, 26(3), 101473.
[http://dx.doi.org/10.1016/j.jscs.2022.101473]
[18]
Haddad, B.; Al-Shawi, A. Cytotoxicity of new selenoimine, selenonitrone and nitrone derivatives against human breast cancer MDA-MB231 Cells. Egypt. J. Chem., 2020.
[http://dx.doi.org/10.21608/ejchem.2020.31747.2675]
[19]
El-Arabey, A.A.; Abdalla, M.; Abd-Allah, A.R. SnapShot: TP53 status and macrophages infiltration in TCGA-analyzed tumors. Int. Immunopharmacol., 2020, 86, 106758.
[http://dx.doi.org/10.1016/j.intimp.2020.106758] [PMID: 32663767]
[20]
Thawini, H.K. Nanomed. Res. J., 2021, 6(3), 237-247.
[21]
Salmaso, V.; Moro, S. Bridging molecular docking to molecular dynamics in exploring ligand-protein recognition process: An overview. Front. Pharmacol., 2018, 9, 923.
[http://dx.doi.org/10.3389/fphar.2018.00923] [PMID: 30186166]
[22]
Chandrashekar, D.S.; Bashel, B.; Balasubramanya, S.A.H.; Creighton, C.J.; Ponce-Rodriguez, I.; Chakravarthi, B.V.S.K.; Varambally, S. UALCAN: A portal for facilitating tumor subgroup gene expression and survival analyses. Neoplasia, 2017, 19(8), 649-658.
[http://dx.doi.org/10.1016/j.neo.2017.05.002] [PMID: 28732212]
[23]
Li, T.; Fu, J.; Zeng, Z.; Cohen, D.; Li, J.; Chen, Q.; Li, B.; Liu, X.S. TIMER2.0 for analysis of tumor-infiltrating immune cells. Nucleic Acids Res., 2020, 48(W1), W509-W514.
[http://dx.doi.org/10.1093/nar/gkaa407] [PMID: 32442275]
[24]
Nagy, Á.; Munkácsy, G.; Győrffy, B. Pancancer survival analysis of cancer hallmark genes. Sci. Rep., 2021, 11(1), 6047.
[http://dx.doi.org/10.1038/s41598-021-84787-5] [PMID: 33723286]
[25]
Santos, A.; Wernersson, R.; Jensen, L.J. Cyclebase 3.0: A multi-organism database on cell-cycle regulation and phenotypes. Nucleic Acids Res., 2015, 43(D1), D1140-D1144.
[http://dx.doi.org/10.1093/nar/gku1092] [PMID: 25378319]
[26]
Llovet, J.M.; Kelley, R.K.; Villanueva, A.; Singal, A.G.; Pikarsky, E.; Roayaie, S.; Lencioni, R.; Koike, K.; Zucman-Rossi, J.; Finn, R.S. Hepatocellular carcinoma. Nat. Rev. Dis. Primers, 2021, 7(1), 6.
[http://dx.doi.org/10.1038/s41572-020-00240-3] [PMID: 33479224]
[27]
Lee, T.S.; Chen, L.C.; Liu, Y.; Wu, J.; Liang, Y.C.; Lee, W.S. 5,5-Diphenyl-2-thiohydantoin-N10 (DPTH-N10) suppresses proliferation of cultured colon cancer cell line COLO-205 by inhibiting DNA synthesis and activating apoptosis. Naunyn Schmiedebergs Arch. Pharmacol., 2010, 382(1), 43-50.
[http://dx.doi.org/10.1007/s00210-010-0519-4] [PMID: 20449574]
[28]
Liu, Y.; Wu, J.; Ho, P.Y.; Chen, L.C.; Chen, C.T.; Liang, Y.C.; Cheng, C.K.; Lee, W.S. Anti-angiogenic action of 5,5-diphenyl-2-thiohydantoin-N10 (DPTH-N10). Cancer Lett., 2008, 271(2), 294-305.
[http://dx.doi.org/10.1016/j.canlet.2008.06.016] [PMID: 18649995]
[29]
Wu, F.; Jiang, H.; Zheng, B.; Kogiso, M.; Yao, Y.; Zhou, C.; Li, X.N.; Song, Y. Inhibition of cancer-associated mutant isocitrate dehydrogenases by 2-thiohydantoin compounds. J. Med. Chem., 2015, 58(17), 6899-6908.
[http://dx.doi.org/10.1021/acs.jmedchem.5b00684] [PMID: 26280302]
[30]
De Vivo, M.; Masetti, M.; Bottegoni, G.; Cavalli, A. Role of molecular dynamics and related methods in drug discovery. J. Med. Chem., 2016, 59(9), 4035-4061.
[http://dx.doi.org/10.1021/acs.jmedchem.5b01684] [PMID: 26807648]
[31]
Kadhem, B.J. Novel schiff bases ligands and their complexes: Thermal analysis, antibacterial activity, and molecular docking. Egypt. J. Chem., 2022, 65(7), 107-119.
[32]
Chen, J.; Liang, J.; Liu, S.; Song, S.; Guo, W.; Shen, F. Differential regulation of AKT1 contributes to survival and proliferation in hepatocellular carcinoma cells by mediating Notch1 expression. Oncol. Lett., 2018, 15(5), 6857-6864.
[http://dx.doi.org/10.3892/ol.2018.8193] [PMID: 29725418]
[33]
Xia, Z.K.; Wang, W.; Qiu, J.G.; Shi, X.N.; Li, H.J.; Chen, R.; Ke, K.B.; Dong, C.; Zhu, Y.; Wu, S.G.; Zhang, R.P.; Meng, Z.R.; Zhao, H.; Gu, P.; Leung, K.S.; Wong, M.H.; Liu, X.D.; Zhou, F.M.; Zhang, J.Y.; Yao, Y.T.; Wang, S.J.; Zhang, C.Y.; Qin, Y.R.; Lin, M.C.; Jiang, B.H. Discovery of a new CDK4/6 and PI3K/AKT multiple kinase inhibitor aminoquinol for the treatment of hepatocellular carcinoma. Front. Pharmacol., 2021, 12, 691769.
[http://dx.doi.org/10.3389/fphar.2021.691769] [PMID: 34335258]
[34]
Takaki, A.; Yamamoto, K. Control of oxidative stress in hepatocellular carcinoma: Helpful or harmful? World J. Hepatol., 2015, 7(7), 968-979.
[http://dx.doi.org/10.4254/wjh.v7.i7.968] [PMID: 25954479]
[35]
Hung, K.C.; Lin, M.L.; Hsu, S.W.; Lee, C.C.; Huang, R.Y.; Wu, T.S.; Chen, S.S. Suppression of Akt-mediated HDAC3 expression and CDK2 T39 phosphorylation by a bichalcone analog contributes to S phase retardation of cancer cells. Eur. J. Pharmacol., 2018, 829, 141-150.
[http://dx.doi.org/10.1016/j.ejphar.2018.04.017] [PMID: 29665367]
[36]
Maddika, S.; Ande, S.R.; Wiechec, E.; Hansen, L.L.; Wesselborg, S.; Los, M. Akt-mediated phosphorylation of CDK2 regulates its dual role in cell cycle progression and apoptosis. J. Cell Sci., 2008, 121(7), 979-988.
[http://dx.doi.org/10.1242/jcs.009530] [PMID: 18354084]