Electrospun Polymer Nanofibers for Technology Applications: A Short Review

Page: [376 - 399] Pages: 24

  • * (Excluding Mailing and Handling)

Abstract

Nanofibers are a type of nanomaterial with a diameter ranging from ten to a few hundred nanometers with a high surface-to-volume ratio and porosity. They can build a network of high-porosity material with excellent connectivity within the pores, making them a preferred option for numerous applications. This review explores nanofibers from the synthesis techniques to fabricate nanofibers, with an emphasis on the technological applications of nanofibers like water and air filtration, photovoltaics, batteries and fuel cells, gas sensing, photocatalysis, and biomedical applications like wound dressing and drug delivery. The nanofiber production market has an expected compound annual growth rate (CAGR) of 6% and should reach around 26 million US $ in 2026. The limitations and potential opportunities for large-scale applications of nano-fibrous membranes are also discussed. We expect this review could provide enriched information to better understand Electrospun Polymer Nanofiber Technology and recent advances in this field.

Graphical Abstract

[1]
Vollrath F, Knight DP. Liquid crystalline spinning of spider silk. Nature 2001; 410(6828): 541-8.
[http://dx.doi.org/10.1038/35069000] [PMID: 11279484]
[2]
Heim M, Keerl D, Scheibel T. Spider silk: From soluble protein to extraordinary fiber. Angew Chem Int Ed 2009; 48(20): 3584-96.
[http://dx.doi.org/10.1002/anie.200803341] [PMID: 19212993]
[3]
Andersson M, Jia Q, Abella A, et al. Biomimetic spinning of artificial spider silk from a chimeric minispidroin. Nat Chem Biol 2017; 13(3): 262-4.
[http://dx.doi.org/10.1038/nchembio.2269] [PMID: 28068309]
[4]
Woodings C. Regenerated cellulose fibres. Elsevier 2001.
[http://dx.doi.org/10.1533/9781855737587]
[5]
Carothers WH. Alkylene ester of polybasic acids. US1993552A, 1935.
[6]
Carothers WH. Linear condensation polymers. US2071250A, 1937.
[7]
McIntyre JE. Synthetic fibres: nylon, polyester, acrylic, polyolefin. Taylor & Francis US 2005.
[http://dx.doi.org/10.1533/9781845690427]
[8]
Islam MS, Ang BC, Andriyana A, Afifi AM. A review on fabrication of nanofibers via electrospinning and their applications. SN Appl Sci 2019; 1(10): 1248.
[http://dx.doi.org/10.1007/s42452-019-1288-4]
[9]
Huang ZM, Zhang YZ, Kotaki M, Ramakrishna S. Preparation and characterization of hydroxyapatite/poly(Ethylene Oxide) nanocom-posite nanofibers. Compos Sci Technol 2003; 15(63): 223-2253.
[10]
Feng L, Li S, Li H, et al. Super-hydrophobic surface of aligned polyacrylonitrile nanofibers. Angew Chem Int Ed 2002; 41(7): 1221-3.
[http://dx.doi.org/10.1002/1521-3773(20020402)41:7<1221:AID-ANIE1221>3.0.CO;2-G] [PMID: 12491265]
[11]
Martin CR. Membrane-based synthesis of nanomaterials. Chem Mater 1996; 8(8): 1739-46.
[http://dx.doi.org/10.1021/cm960166s]
[12]
Ma PX, Zhang R. Synthetic nano-scale fibrous extracellular matrix. J Biomed Mater Res 1999; 46(1): 60-72.
[http://dx.doi.org/10.1002/(SICI)1097-4636(199907)46:1<60:AID-JBM7>3.0.CO;2-H] [PMID: 10357136]
[13]
Liu G, Ding J, Qiao L, et al. Polystyrene-block-poly (2-cinnamoylethyl methacrylate)nanofibers-Preparation, characterization, and liquid crystalline properties. Chem Europ J 1999; 5(9): 2740-9.
[http://dx.doi.org/10.1002/(SICI)1521-3765(19990903)5:9<2740:AID-CHEM2740>3.0.CO;2-V]
[14]
Whitesides GM, Grzybowski B. Self-assembly at all scales. Science 2002; 295(5564): 2418-21.
[http://dx.doi.org/10.1126/science.1070821] [PMID: 11923529]
[15]
Deitzel JM. controlled deposition of electrospun poly(ethylene oxide) fibers. polymer 2001; 42: 8163-70.
[16]
Fong H. Electrospinning and formation of nanofibers. In: Salem DR, Ed. Structure formation in polymeric fibers. Munich: Hanser 2001.
[17]
Gupta V, Kothari V. Manufactured fibre technology. Springer Science & Business Media 1997.
[http://dx.doi.org/10.1007/978-94-011-5854-1]
[18]
Luo CJ, Stoyanov SD, Stride E, Pelan E, Edirisinghe M. Electrospinning versus fibre production methods: From specifics to techno-logical convergence. Chem Soc Rev 2012; 41(13): 4708-35.
[http://dx.doi.org/10.1039/c2cs35083a] [PMID: 22618026]
[19]
Gilbert W. Of the magnet, and of magnetic bodies, and of the great magnet of the earth Peter Short died. 1956.
[20]
Gray S II. A letter concerning the electricity of water, from Mr. Stephen Gray to Cromwell Mortimer. M D Secr R S Philos Trans R Soc Lond 1731; 37(422): 227-60.
[http://dx.doi.org/10.1098/rstl.1731.0040]
[21]
Nollet JA X. Part of a letter from Abbè Nollet, of the Royal Academy of Science at Paris, and F. R. S. to Martin Folkes Esq; President of the same, concerning electricity. Philos Trans R Soc Lond 1748; 45(486): 187-94.
[http://dx.doi.org/10.1098/rstl.1748.0018]
[22]
Rayleigh L XX. On the equilibrium of liquid conducting masses charged with electricity. Lond Edinb Dublin Philos Mag J Sci 1882; 14(87): 184-6.
[http://dx.doi.org/10.1080/14786448208628425]
[23]
Bailey AG. Electrostatic spraying of liquids. Phys Bull 1984; 35(4): 146-8.
[http://dx.doi.org/10.1088/0031-9112/35/4/018]
[24]
Process and apparatus for preparing artificial threads. US patent 1,975,504, 1934.
[25]
Method and apparatus for spinning. US patent 2,160,962, 1939.
[26]
Artificial thread and method of producing same. US patent 2,187,306, 1940.
[27]
Production of artificial fibers from fiber forming liquids. US patent 2,323,025, 1943.
[28]
Method and apparatus for spinning. US patent 2,349,950, 1944.
[29]
Process and apparatus for producing patterned non-woven fabrics. US patent 3,280,229, 1966.
[30]
Baumgarten PK. Electrostatic spinning of acrylic microfibers. J Colloid Interface Sci 1971; 36(1): 71-9.
[http://dx.doi.org/10.1016/0021-9797(71)90241-4]
[31]
Li D, Wang Y, Xia Y. Electrospinning of polymeric and ceramic nanofibers as uniaxially aligned arrays. Nano Lett 2003; 3(8): 1167-71.
[http://dx.doi.org/10.1021/nl0344256]
[32]
Theron A, Zussman E, Yarin AL. Electrostatic field-assisted alignment of electrospun nanofibres. Nanotechnology 2001; 12(3): 384-90.
[http://dx.doi.org/10.1088/0957-4484/12/3/329]
[33]
Dersch R, Liu T, Schaper AK, Greiner A, Wendorff JH. Electrospun nanofibers: Internal structure and intrinsic orientation. J Polym Sci A Polym Chem 2003; 41(4): 545-53.
[http://dx.doi.org/10.1002/pola.10609]
[34]
Sun Z, Zussman E, Yarin AL, Wendorff JH, Greiner A. Compound core-shell polymer nanofibers by co‐electrospinning. Adv Mater 2003; 15(22): 1929-32.
[http://dx.doi.org/10.1002/adma.200305136]
[35]
Smit E, Bűttner U, Sanderson RD. Continuous yarns from electrospun fibers. Polymer (Guildf) 2005; 46(8): 2419-23.
[http://dx.doi.org/10.1016/j.polymer.2005.02.002]
[36]
He C-H, Gong J. The preparation of PVA-Pt/TiO2 composite nanofiber aggregate and the photocatalytic degradation of solid-phase polyvinyl alcohol. Polym Degrad Stabil 2003; 81(1): 117-24.
[http://dx.doi.org/10.1016/S0141-3910(03)00080-6]
[37]
Fang X, Reneker DH. DNA fibers by electrospinning. J Macromol Sci Part B Phys 1997; 36(2): 169-73.
[http://dx.doi.org/10.1080/00222349708220422]
[38]
Electrically driven jets. Proc R Soc Ser A LONDON 1969.
[39]
Couillard RAA. Spinning fine fibers from solutions and the melt using electrostatic fields
[40]
Zong X, Kim K, Fang D, Ran S, Hsiao BS, Chu B. Structure and process relationship of electrospun bioabsorbable nanofiber mem-branes. Polymer (Guildf) 2002; 43(16): 4403-12.
[http://dx.doi.org/10.1016/S0032-3861(02)00275-6]
[41]
Hajra MG, Mehta K, Chase GG. Effects of humidity, temperature, and nanofibers on drop coalescence in glass fiber media. Separ Purif Tech 2003; 30(1): 79-88.
[http://dx.doi.org/10.1016/S1383-5866(02)00134-X]
[42]
Bognitzki M, Czado W, Frese T, et al. Nanostructured fibers via electrospinning. Adv Mater 2001; 13(1): 70-2.
[http://dx.doi.org/10.1002/1521-4095(200101)13:1<70:AID-ADMA70>3.0.CO;2-H]
[43]
Matthews JA, Wnek GE, Simpson DG, Bowlin GL. Electrospinning of collagen nanofibers. Biomacromolecules 2002; 3(2): 232-8.
[http://dx.doi.org/10.1021/bm015533u] [PMID: 11888306]
[44]
Huang L, Nagapudi K, Apkarian RP, Chaikof EL. Engineered collagen-PEO nanofibers and fabrics. J Biomater Sci Polym Ed 2001; 12(9): 979-93.
[http://dx.doi.org/10.1163/156856201753252516] [PMID: 11787524]
[45]
Schreuder-Gibson HL. Protective textile materials based on electrospun nanofibers. J Adv Mater 2002; 34(3): 44-55.
[46]
Ultrafine fibers of polystyrene dissolved in tetrahydrofuran prepared using the electrospinning method. In: Proceeding of The National Conference on Undergraduate Research. 2001; pp. 1-5.
[47]
Reneker DH. Electrospinning and nanofibers, Book of abstracts. New Frontiers in Fiber Science, Spring Meeting. 2001.
[48]
Larrondo MR. Electrostatic fiber spinning fromCpolymer melts, I. and Experimental observations on fiber formation and properties. J Polymer Science: Polymer Physics 1981; 19: 909-20.
[49]
Zhang J, Chen G, Bhat GS, Azari H, Pen H. Electret characteristics of melt‐blown polylactic acid fabrics for air filtration application. J Appl Polym Sci 2020; 137(4): 48309.
[http://dx.doi.org/10.1002/app.48309]
[50]
Ning T, Zhou Y, Xu H, Guo S, Wang K, Yu DG. Orodispersible membranes from a modified coaxial electrospinning for fast dissolu-tion of diclofenac sodium. Membranes (Basel) 2021; 11(11): 802.
[http://dx.doi.org/10.3390/membranes11110802] [PMID: 34832031]
[51]
He H, Wu M, Zhu J, Yang Y, Ge R, Yu D-G. Engineered spindles of little molecules around electrospun nanofibers for biphasic drug release. Adv Fiber Mater 2022; 4(2): 305-17.
[http://dx.doi.org/10.1007/s42765-021-00112-9]
[52]
Mingjun C, Youchen Z, Haoyi L, et al. An example of industrialization of melt electrospinning: Polymer melt differential electrospin-ning. Adv Industr Eng Polym Res 2019; 2(3): 110-5.
[http://dx.doi.org/10.1016/j.aiepr.2019.06.002]
[53]
Wang M, Wu Y, Qiu M, et al. Research progress in electrospinning engineering for all-solid-state electrolytes of lithium metal batteries. J Energy Chem 2021; 61: 253-68.
[http://dx.doi.org/10.1016/j.jechem.2021.02.023]
[54]
Doshi J, Reneker DH. Electrospinning process and applications of electrospun fibers. J Electrost 1995; 35(2-3): 151-60.
[http://dx.doi.org/10.1016/0304-3886(95)00041-8]
[55]
Bergshoef MM, Vancso GJ. Transparent nanocomposites with ultrathin, electrospun Nylon-4,6 fiber reinforcement. Adv Mater 1999; 11(16): 1362-5.
[http://dx.doi.org/10.1002/(SICI)1521-4095(199911)11:16<1362:AID-ADMA1362>3.0.CO;2-X]
[56]
Deitzel JM, Kleinmeyer J, Harris D, Beck Tan NC. The effect of processing variables on the morphology of electrospun nanofibers and textiles. Polymer (Guildf) 2001; 42(1): 261-72.
[http://dx.doi.org/10.1016/S0032-3861(00)00250-0]
[57]
Koombhongse SLW, Reneker DH. Flat polymer ribbons and other shapes by electrospinning. J Polymer Sci 2001; 39: 2598-606.
[58]
Reneker DH, Yarin AL, Fong H, Koombhongse S. Bending instability of electrically charged liquid jets of polymer solutions in elec-trospinning. J Appl Phys 2000; 87(9): 4531-47.
[http://dx.doi.org/10.1063/1.373532]
[59]
Yarin AL, Koombhongse S, Reneker DH. Bending instability in electrospinning of nanofibers. J Appl Phys 2001; 89(5): 3018-26.
[http://dx.doi.org/10.1063/1.1333035]
[60]
Yarin AL, Koombhongse S, Reneker DH. Taylor cone and jetting from liquid droplets in electrospinning of nanofibers. J Appl Phys 2001; 90(9): 4836-46.
[http://dx.doi.org/10.1063/1.1408260]
[61]
Shin YM, Hohman MM, Brenner MP, Rutledge GC. Electrospinning: A whipping fluid jet generates submicron polymer fibers. Appl Phys Lett 2001; 78(8): 1149-51.
[http://dx.doi.org/10.1063/1.1345798]
[62]
Hohman MM, Rutledge G, Brenner MP. Electrospining and electrically forced jets. I. Stability theory. Phys Fluids 2001; 13: 2201-20.
[http://dx.doi.org/10.1063/1.1383791]
[63]
Hohman MM SM, Rutledge G, Brenner MP. Electrospining and electrically forced jets. II. Applications. Phys Fluids 2001; 13: 221-36.
[http://dx.doi.org/10.1063/1.1384013]
[64]
Fong H, Chun I, Reneker DH. Beaded nanofibers formed during electrospinning. Polymer (Guildf) 1999; 40(16): 4585-92.
[http://dx.doi.org/10.1016/S0032-3861(99)00068-3]
[65]
Lexington, Kentucky (USA). 2001; Proceeding of The National Conference on Undergraduate Research (NCUR). pp. 15-7.
[66]
Fong H, Reneker DH. Elastomeric nanofibers of styrene-butadiene-styrene triblock copolymer. J Polym Sci, B, Polym Phys 1999; 37(24): 3488-93.
[http://dx.doi.org/10.1002/(SICI)1099-0488(19991215)37:24<3488:AID-POLB9>3.0.CO;2-M]
[67]
Zussman E, Yarin A, Weihs D. A micro-aerodynamic decelerator based on permeable surfaces of nanofiber mats. Exp Fluids 2002; 33(2): 315-20.
[http://dx.doi.org/10.1007/s00348-002-0435-6]
[68]
Kumar PS, Sundaramurthy J, Sundarrajan S, et al. Hierarchical electrospun nanofibers for energy harvesting, production and environ-mental remediation. Energy Environ Sci 2014; 7(10): 3192-222.
[http://dx.doi.org/10.1039/C4EE00612G]
[69]
Ghorani B, Tucker N. Fundamentals of electrospinning as a novel delivery vehicle for bioactive compounds in food nanotechnology. Food Hydrocoll 2015; 51: 227-40.
[http://dx.doi.org/10.1016/j.foodhyd.2015.05.024]
[70]
Luraghi A, Peri F, Moroni L. Electrospinning for drug delivery applications: A review. J Control Rel 2021; 334: 463-84.
[71]
Haider A, Haider S, Kang IK. A comprehensive review summarizing the effect of electrospinning parameters and potential applications of nanofibers in biomedical and biotechnology. Arab J Chem 2018; 11(8): 1165-88.
[http://dx.doi.org/10.1016/j.arabjc.2015.11.015]
[72]
Topuz F, Satilmis B, Uyar T. Electrospinning of uniform nanofibers of Polymers of Intrinsic Microporosity (PIM-1): The influence of solution conductivity and relative humidity. Polymer (Guildf) 2019; 178: 121610.
[http://dx.doi.org/10.1016/j.polymer.2019.121610]
[73]
Wen Y, Kok MDR, Tafoya JPV, et al. Electrospinning as a route to advanced carbon fibre materials for selected low-temperature elec-trochemical devices: A review. J Energy Chem 2021; 59: 492-529.
[http://dx.doi.org/10.1016/j.jechem.2020.11.014]
[74]
Kim K, Kim J, Shim H. Fiber formation model for PVP (polyvinyl pyrrolidone) electrospinning. I. Critical voltage. Fibers Polym 2017; 18(3): 493-501.
[http://dx.doi.org/10.1007/s12221-017-5617-1]
[75]
Najafi SJ, Nosraty H, Shokrieh MM, Gharehaghaji AA, Bahrami SH. The effect of electrospinning parameters on the morphology of glass nanofibers. J Textil Inst 2020; 111(7): 941-9.
[http://dx.doi.org/10.1080/00405000.2020.1711993]
[76]
He H, Kara Y, Molnar K. Effect of needle characteristic on fibrous PEO produced by electrospinning. Resolut Discov 2019; 4(1): 7-11.
[http://dx.doi.org/10.1556/2051.2018.00063]
[77]
Cui QN, Li Y, Liu FJ. Effect of temperature on the morphology of bubble-electrospun nanofibers. Therm Sci 2014; 18(5): 1707-9.
[http://dx.doi.org/10.2298/TSCI1405707C]
[78]
Huang F, et al. Effect of temperature on structure, morphology and crystallinity of PVDF nanofibers via electrospinning. e-Polymers 2008; 8(1)
[http://dx.doi.org/10.1515/epoly.2008.8.1.1758]
[79]
Chen J, Cheng Z, Yuan Y, Zhang J, Cao J. Shape-controllable nanofibrous membranes with well-aligned fibers and robust mechanical properties for PM2.5 capture. RSC Advances 2019; 9(30): 17473-8.
[http://dx.doi.org/10.1039/C9RA02341K] [PMID: 35519872]
[80]
Xing G, Shao L, Du Y, Tao H, Qi C. Citric acid crosslinked chitosan/poly(ethylene oxide) composite nanofibers fabricated by electro-spinning and thermal treatment for controlled drug release. Cellulose 2021; 28(2): 961-71.
[http://dx.doi.org/10.1007/s10570-020-03562-3]
[81]
Zhang Q, Li Q, Zhang L, et al. Preparation of electrospun nanofibrous poly(vinyl alcohol)/cellulose nanocrystals air filter for efficient particulate matter removal with repetitive usage capability via facile heat treatment. Chem Eng J 2020; 399: 125768.
[http://dx.doi.org/10.1016/j.cej.2020.125768]
[82]
Zhang H, Xie Y, Song Y, Qin X. Preparation of high-temperature resistant poly (m-phenylene isophthalamide)/polyacrylonitrile com-posite nanofibers membrane for air filtration. Colloids Surf A Physicochem Eng Asp 2021; 624: 126831.
[http://dx.doi.org/10.1016/j.colsurfa.2021.126831]
[83]
Yassi A, Kjellström T, De Kok T, Guidotti TL. Basic environmental health. USA: Oxford University Press 2001.
[http://dx.doi.org/10.1093/acprof:oso/9780195135589.001.0001]
[84]
El Saliby IJ, Shon H, Kandasamy J, Vigneswaran S. Nanotechnology for wastewater treatment: in brief. In: Encyclopedia of life support system (EOLSS). 2008; p. 7.
[85]
Organization WH. Health Effects of Particulate Matter: Policy implications for countries in eastern Europe, Caucasus and central. Asia 2013.
[86]
Ankush Sharma DP. Electrospun PVP/TiO2 nanofibers for filtration and possible protection from various viruses like COVID-19. MDPI-Technologies 2021; 9(4): 89.
[87]
Xiao J, Liang J, Zhang C, Tao Y, Ling GW, Yang QH. Advanced materials for capturing particulate matter: progress and perspectives. Small Methods 2018; 2(7): 1800012.
[http://dx.doi.org/10.1002/smtd.201800012]
[88]
Kadam VV, Wang L, Padhye R. Electrospun nanofibre materials to filter air pollutants – A review. J Ind Text 2018; 47(8): 2253-80.
[http://dx.doi.org/10.1177/1528083716676812]
[89]
Reaven GM. Pathophysiology of insulin resistance in human disease. Physiol Rev 1995; 75(3): 473-86.
[http://dx.doi.org/10.1152/physrev.1995.75.3.473] [PMID: 7624391]
[90]
Wu H, Fan J, Chu CC, Wu J. Electrospinning of small diameter 3-D nanofibrous tubular scaffolds with controllable nanofiber orienta-tions for vascular grafts. J Mater Sci Mater Med 2010; 21(12): 3207-15.
[http://dx.doi.org/10.1007/s10856-010-4164-8] [PMID: 20890639]
[91]
Shi YY, Li M, Liu Q, et al. Electrophoretic deposition of graphene oxide reinforced chitosan–hydroxyapatite nanocomposite coatings on Ti substrate. J Mater Sci Mater Med 2016; 27(3): 48.
[http://dx.doi.org/10.1007/s10856-015-5634-9] [PMID: 26758895]
[92]
Bonfim DPF, Cruz FGS, Bretas RES, Guerra VG, Aguiar ML. A sustainable recycling alternative: Electrospun PET-membranes for air nanofiltration. Polymers (Basel) 2021; 13(7): 1166.
[http://dx.doi.org/10.3390/polym13071166] [PMID: 33916472]
[93]
Al-Attabi R, Morsi Y, Schütz JA, Cornu D, Maghe M, Dumée LF. Flexible and reusable carbon nano-fibre membranes for airborne contaminants capture. Sci Total Environ 2021; 754: 142231.
[http://dx.doi.org/10.1016/j.scitotenv.2020.142231] [PMID: 33254856]
[94]
Gao H, He W, Zhao Y-B, Opris DM, Xu G, Wang J. Electret mechanisms and kinetics of electrospun nanofiber membranes and life-time in filtration applications in comparison with corona-charged membranes. J Membr Sci 2020; 600: 117879.
[http://dx.doi.org/10.1016/j.memsci.2020.117879]
[95]
Gao X, Wen S, Yang B, Xue J, Wang H. Enhanced air filtration performance under high-humidity condition through electrospun membranes with optimized structure. Chin J Chem Eng 2020; 28(7): 1788-95.
[http://dx.doi.org/10.1016/j.cjche.2020.02.025]
[96]
Wang LY, Yong WF, Yu LE, Chung T-S. Design of high efficiency PVDF-PEG hollow fibers for air filtration of ultrafine particles. J Membr Sci 2017; 535: 342-9.
[http://dx.doi.org/10.1016/j.memsci.2017.04.053]
[97]
Lakshmanan A, Gavali DS, Thapa R, Sarkar D. Synthesis of CTAB-functionalized large-scale nanofibers air filter media for efficient PM2. 5 capture capacity with low airflow resistance. ACS Appl Polym Mater 2021; 3(2): 937-48.
[http://dx.doi.org/10.1021/acsapm.0c01203]
[98]
Wang C, Yan K, Wang J, Chen S, Cui J, Zhang R. Electrospun polyacrylonitrile/polyvinyl pyrrolidone composite nanofibrous mem-branes with high-efficiency PM 2.5 filter. J Polymer Eng 2020; 40(6): 487-93.
[http://dx.doi.org/10.1515/polyeng-2019-0318]
[99]
Ju Y, Han T, Yin J, et al. Bumpy structured nanofibrous membrane as a highly efficient air filter with antibacterial and antiviral proper-ty. Sci Total Environ 2021; 777: 145768.
[http://dx.doi.org/10.1016/j.scitotenv.2021.145768] [PMID: 33684755]
[100]
Victor FS, Kugarajah V, Bangaru M, Ranjan S, Dharmalingam S. Electrospun nanofibers of polyvinylidene fluoride incorporated with titanium nanotubes for purifying air with bacterial contamination. Environ Sci Pollut Res Int 2021; 28(28): 37520-33.
[http://dx.doi.org/10.1007/s11356-021-13202-3] [PMID: 33713262]
[101]
Cui J, Lu T, Li F, et al. Flexible and transparent composite nanofibre membrane that was fabricated via a “green” electrospinning method for efficient particulate matter 2.5 capture. J Colloid Interface Sci 2021; 582(Pt B): 506-14.
[http://dx.doi.org/10.1016/j.jcis.2020.08.075] [PMID: 32911399]
[102]
Wu F, Zhao S, Yu B, et al. A new coronavirus associated with human respiratory disease in China. Nature 2020; 579(7798): 265-9.
[http://dx.doi.org/10.1038/s41586-020-2008-3] [PMID: 32015508]
[103]
J A, Girigoswami A, Girigoswami K. Versatile applications of nanosponges in biomedical field: A glimpse on SARS-CoV-2 man-agement. Bionanoscience 2022; 12(3): 1018-31.
[http://dx.doi.org/10.1007/s12668-022-01000-1] [PMID: 35755139]
[104]
Singh KP, Mohan D, Tandon GS, Gupta GSD. Vapor-phase adsorption of hexane and benzene on activated carbon fabric cloth: Equi-libria and rate studies. Ind Eng Chem Res 2002; 41(10): 2480-6.
[http://dx.doi.org/10.1021/ie0105674]
[105]
Karmacharya M, Kumar S, Gulenko O, Cho YK. Advances in facemasks during the COVID-19 pandemic era. ACS Appl Bio Mater 2021; 4(5): 3891-908.
[http://dx.doi.org/10.1021/acsabm.0c01329] [PMID: 35006814]
[106]
Chua MH, et al. Face masks in the new COVID-19 normal: Materials, testing, and perspectives. Research (Wash D C) 2020; 2020: 7286735.
[107]
McCulloch JG. The history of the development of melt blowing technology. Int Nonwovens J 1999; (1): 1558925099OS.
[http://dx.doi.org/10.1177/1558925099OS-800123]
[108]
Panda P, Sahoo B. Synthesis and applications of electrospun nanofibers-A review. Nanotechnology 2013; 1: 399-416.
[109]
Zhang Z, Ji D, He H, Ramakrishna S. Electrospun ultrafine fibers for advanced face masks. Mater Sci Eng Rep 2021; 143: 100594.
[http://dx.doi.org/10.1016/j.mser.2020.100594] [PMID: 33519094]
[110]
Fu K, Lu Y, Dirican M, et al. Chamber-confined silicon–carbon nanofiber composites for prolonged cycling life of Li-ion batteries. Nanoscale 2014; 6(13): 7489-95.
[http://dx.doi.org/10.1039/C4NR00518J] [PMID: 24882561]
[111]
Yang X, Zou W, Su Y, et al. Activated nitrogen-doped carbon nanofibers with hierarchical pore as efficient oxygen reduction reaction catalyst for microbial fuel cells. J Power Sources 2014; 266: 36-42.
[http://dx.doi.org/10.1016/j.jpowsour.2014.04.126]
[112]
O’regan B. A low-cost, high-efficiency solar cell based on dye-sensitized colloidal TiO2 films. Nature 1991; 353(6346): 737-40.
[113]
Hieu NT, Baik SJ, Chung OH, Park JS. Fabrication and characterization of electrospun carbon nanotubes/titanium dioxide nanofibers used in anodes of dye-sensitized solar cells. Synth Met 2014; 193: 125-31.
[http://dx.doi.org/10.1016/j.synthmet.2014.04.010]
[114]
Gao K, Shao Z, Li J, et al. Cellulose nanofiber–graphene all solid-state flexible supercapacitors. J Mater Chem A Mater Energy Sustain 2013; 1(1): 63-7.
[http://dx.doi.org/10.1039/C2TA00386D]
[115]
Niu Q, Gao K, Shao Z. Cellulose nanofiber/single-walled carbon nanotube hybrid non-woven macrofiber mats as novel wearable su-percapacitors with excellent stability, tailorability and reliability. Nanoscale 2014; 6(8): 4083-8.
[http://dx.doi.org/10.1039/c3nr05929d] [PMID: 24619337]
[116]
Dai S, Liu Z, Zhao B, et al. A high-performance supercapacitor electrode based on N-doped porous graphene. J Power Sources 2018; 387: 43-8.
[http://dx.doi.org/10.1016/j.jpowsour.2018.03.055]
[117]
Gwon H, Kim H-S, Lee KU, et al. Flexible energy storage devices based on graphene paper. Energy Environ Sci 2011; 4(4): 1277-83.
[http://dx.doi.org/10.1039/c0ee00640h]
[118]
Shi S, Zhuang X, Cheng B, Wang X. Solution blowing of ZnO nanoflake-encapsulated carbon nanofibers as electrodes for superca-pacitors. J Mater Chem A Mater Energy Sustain 2013; 1(44): 13779-88.
[http://dx.doi.org/10.1039/c3ta13247a]
[119]
Wei W, Chen W, Ding L, Cui S, Mi L. Construction of hierarchical three-dimensional interspersed flower-like nickel hydroxide for asymmetric supercapacitors. Nano Res 2017; 10(11): 3726-42.
[http://dx.doi.org/10.1007/s12274-017-1586-3]
[120]
Guo Y, Shi Z, Chen M, Wang C. Hierarchical porous carbon derived from sulfonated pitch for electrical double layer capacitors. J Power Sources 2014; 252: 235-43.
[http://dx.doi.org/10.1016/j.jpowsour.2013.11.114]
[121]
He B, Lu A-H, Cheng F, Yu X-F, Yan D, Li W-C. Fabrication of high-energy hybrid capacitors by using carbon-sulfur composite as promising cathodes. J Power Sources 2018; 396: 102-8.
[http://dx.doi.org/10.1016/j.jpowsour.2018.06.003]
[122]
Sun H, Fu X, Xie S, et al. A novel slicing method for thin supercapacitors. Adv Mater 2016; 28(30): 6429-35.
[http://dx.doi.org/10.1002/adma.201600506] [PMID: 27183868]
[123]
Kim DH, Lee HS, Shin H-J, et al. Graphene surface induced specific self-assembly of poly(3-hexylthiophene) for nanohybrid optoe-lectronics: From first-principles calculation to experimental characterizations. Soft Matter 2013; 9(22): 5355-60.
[http://dx.doi.org/10.1039/c3sm27767d]
[124]
Chen L, Zhai W, Chen L, et al. Nanostructured LiMn2O4 composite as high-rate cathode for high performance aqueous Li-ion hybrid supercapacitors. J Power Sources 2018; 392: 116-22.
[http://dx.doi.org/10.1016/j.jpowsour.2018.04.103]
[125]
Hsieh CT, Chen Y-C, Chen Y-F, Huq MM, Chen P-Y, Jang B-S. Microwave synthesis of titania-coated carbon nanotube composites for electrochemical capacitors. J Power Sources 2014; 269: 526-33.
[http://dx.doi.org/10.1016/j.jpowsour.2014.07.037]
[126]
Shao L, Wang Q, Ma Z, et al. A high-capacitance flexible solid-state supercapacitor based on polyaniline and Metal-Organic Frame-work (UiO-66) composites. J Power Sources 2018; 379: 350-61.
[http://dx.doi.org/10.1016/j.jpowsour.2018.01.028]
[127]
Toupin M, Brousse T, Bélanger D. Charge storage mechanism of MnO2 electrode used in aqueous electrochemical capacitor. Chem Mater 2004; 16(16): 3184-90.
[http://dx.doi.org/10.1021/cm049649j]
[128]
Poonguzhali R, Shanmugam N, Gobi R, Senthilkumar A, Viruthagiri G, Kannadasan N. Effect of Fe doping on the electrochemical capacitor behavior of MnO2 nanocrystals. J Power Sources 2015; 293: 790-8.
[http://dx.doi.org/10.1016/j.jpowsour.2015.06.021]
[129]
Snook GA, Kao P, Best AS. Conducting-polymer-based supercapacitor devices and electrodes. J Power Sources 2011; 196(1): 1-12.
[http://dx.doi.org/10.1016/j.jpowsour.2010.06.084]
[130]
Wang K, Wu H, Meng Y, Wei Z. Conducting polymer nanowire arrays for high performance supercapacitors. Small 2014; 10(1): 14-31.
[http://dx.doi.org/10.1002/smll.201301991] [PMID: 23959804]
[131]
Liu L, Yu Y, Yan C, Li K, Zheng Z. Wearable energy-dense and power-dense supercapacitor yarns enabled by scalable graphene–metallic textile composite electrodes. Nat Commun 2015; 6(1): 7260.
[http://dx.doi.org/10.1038/ncomms8260] [PMID: 26068809]
[132]
Cherusseri J, Kar KK. Ultra-flexible fibrous supercapacitors with carbon nanotube/polypyrrole brush-like electrodes. J Mater Chem A Mater Energy Sustain 2016; 4(25): 9910-22.
[http://dx.doi.org/10.1039/C6TA02690G]
[133]
Pu X, Li L, Liu M, et al. Wearable self‐charging power textile based on flexible yarn supercapacitors and fabric nanogenerators. Adv Mater 2016; 28(1): 98-105.
[http://dx.doi.org/10.1002/adma.201504403] [PMID: 26540288]
[134]
Kolmakov A, Moskovits M. Chemical sensing and catalysis by one-dimensional metal-oxide nanostructures. Annu Rev Mater Res 2004; 34(1): 151-80.
[http://dx.doi.org/10.1146/annurev.matsci.34.040203.112141]
[135]
Po-Chiang Chen , Guozhen Shen , Chongwu Zhou . Chemical sensors and electronic noses based on 1-D metal oxide nanostructures. IEEE Trans Nanotechnol 2008; 7(6): 668-82.
[http://dx.doi.org/10.1109/TNANO.2008.2006273]
[136]
Morante JR. Chemical to electrical transduction mechanisms from single metal oxide nanowire measurements: response time constant analysis. Nanotechnology 2013; 24(44): 444004.
[http://dx.doi.org/10.1088/0957-4484/24/44/444004] [PMID: 24113865]
[137]
Chen X, Wong CKY, Yuan CA, Zhang G. Nanowire-based gas sensors. Sens Actuators B Chem 2013; 177: 178-95.
[http://dx.doi.org/10.1016/j.snb.2012.10.134]
[138]
Comini E. Metal oxide nanowire chemical sensors: Innovation and quality of life. Mater Today 2016; 19(10): 559-67.
[http://dx.doi.org/10.1016/j.mattod.2016.05.016]
[139]
Wang Y, Duan L, Deng Z, Liao J. Electrically transduced gas sensors based on semiconducting metal oxide nanowires. Sensors (Basel) 2020; 20(23): 6781.
[http://dx.doi.org/10.3390/s20236781] [PMID: 33260973]
[140]
Korotcenkov G. Current trends in nanomaterials for metal oxide-based conductometric gas sensors: Advantages and limitations. part 1: 1D and 2D nanostructures. Nanomaterials (Basel) 2020; 10(7): 1392.
[http://dx.doi.org/10.3390/nano10071392] [PMID: 32708967]
[141]
Patil JV, Mali SS, Kamble AS, Hong CK, Kim JH, Patil PS. Electrospinning: A versatile technique for making of 1D growth of nanostructured nanofibers and its applications: An experimental approach. Appl Surf Sci 2017; 423: 641-74.
[http://dx.doi.org/10.1016/j.apsusc.2017.06.116]
[142]
Thenmozhi S, Dharmaraj N, Kadirvelu K, Kim HY. Electrospun nanofibers: New generation materials for advanced applications. Mater Sci Eng B 2017; 217: 36-48.
[http://dx.doi.org/10.1016/j.mseb.2017.01.001]
[143]
Xue J, Wu T, Dai Y, Xia Y. Electrospinning and electrospun nanofibers: Methods, materials, and applications. Chem Rev 2019; 119(8): 5298-415.
[http://dx.doi.org/10.1021/acs.chemrev.8b00593] [PMID: 30916938]
[144]
Yousefzadeh M, Ramakrishna S. Modeling performance of electrospun nanofibers and nanofibrous assemblies Electrospun nano-fibers. Elsevier 2017; pp. 303-37.
[http://dx.doi.org/10.1016/B978-0-08-100907-9.00013-1]
[145]
Wendorff JH, Agarwal S, Greiner A. Electrospinning: materials, processing, and applications. John Wiley & Sons 2012.
[http://dx.doi.org/10.1002/9783527647705]
[146]
Ramakrishna S, Fujihara K, Teo W-E, Yong T, Ma Z, Ramaseshan R. Electrospun nanofibers: Solving global issues. Mater Today 2006; 9(3): 40-50.
[http://dx.doi.org/10.1016/S1369-7021(06)71389-X]
[147]
Imran M, Motta N, Shafiei M. Electrospun one-dimensional nanostructures: A new horizon for gas sensing materials. Beilstein J Nanotechnol 2018; 9(1): 2128-70.
[http://dx.doi.org/10.3762/bjnano.9.202] [PMID: 30202686]
[148]
Nasiri N, Clarke C. Nanostructured chemiresistive gas sensors for medical applications. Sensors (Basel) 2019; 19(3): 462.
[http://dx.doi.org/10.3390/s19030462] [PMID: 30678070]
[149]
Ding B, Wang M, Wang X, Yu J, Sun G. Electrospun nanomaterials for ultrasensitive sensors. Mater Today 2010; 13(11): 16-27.
[http://dx.doi.org/10.1016/S1369-7021(10)70200-5] [PMID: 32362770]
[150]
Choi SJ, Persano L, Camposeo A, et al. Electrospun nanostructures for high performance chemiresistive and optical sensors. Macromol Mater Eng 2017; 302(8): 1600569.
[http://dx.doi.org/10.1002/mame.201600569]
[151]
He Y, Zhang T, Zheng W, et al. Humidity sensing properties of BaTiO3 nanofiber prepared via electrospinning. Sens Actuators B Chem 2010; 146(1): 98-102.
[http://dx.doi.org/10.1016/j.snb.2010.02.030]
[152]
Ding B, Wang M, Yu J, Sun G. Gas sensors based on electrospun nanofibers. Sensors (Basel) 2009; 9(3): 1609-24.
[http://dx.doi.org/10.3390/s90301609] [PMID: 22573976]
[153]
Abideen ZU, Kim J-H, Lee J-H, et al. Electrospun metal oxide composite nanofibers gas sensors: A review. J Korean Ceramic Soc 2017; 54(5): 366-79.
[http://dx.doi.org/10.4191/kcers.2017.54.5.12]
[154]
Korotcenkov G. Nanofiber-based humidity sensors and features of their fabrication Handbook of Humidity Measurement. CRC Press 2020; pp. 373-88.
[http://dx.doi.org/10.1201/9781351056502-24]
[155]
Wu H, Pan W, Lin D, Li H. Electrospinning of ceramic nanofibers: Fabrication, assembly and applications. J Adv Ceram 2012; 1(1): 2-23.
[http://dx.doi.org/10.1007/s40145-012-0002-4]
[156]
Wang SX, Yap CC, He J, Chen C, Wong SY, Li X. Electrospinning: a facile technique for fabricating functional nanofibers for envi-ronmental applications. Nanotechnol Rev 2016; 5(1): 51-73.
[http://dx.doi.org/10.1515/ntrev-2015-0065]
[157]
Landau O, Rothschild A, Zussman E. Processing-microstructure-properties correlation of ultrasensitive gas sensors produced by elec-trospinning. Chem Mater 2009; 21(1): 9-11.
[http://dx.doi.org/10.1021/cm802498c]
[158]
Zhang Y, He X, Li J, Miao Z, Huang F. Fabrication and ethanol-sensing properties of micro gas sensor based on electrospun SnO2 nanofibers. Sens Actuators B Chem 2008; 132(1): 67-73.
[http://dx.doi.org/10.1016/j.snb.2008.01.006]
[159]
Yang A, Tao X, Wang R, Lee S, Surya C. Room temperature gas sensing properties of SnO2/multiwall-carbon-nanotube composite nanofibers. Appl Phys Lett 2007; 91(13): 133110.
[http://dx.doi.org/10.1063/1.2783479]
[160]
Wang Y, Ramos I, Santiago-Aviles JJ. Detection of moisture and methanol gas using a single electrospun tin oxide nanofiber. IEEE Sens J 2007; 7(9): 1347-8.
[http://dx.doi.org/10.1109/JSEN.2007.905045]
[161]
Blachowicz T, Ehrmann A. Recent developments in electrospun ZnO nanofibers: A short review. J Eng Fibers Fabrics 2020; 15.
[http://dx.doi.org/10.1177/1558925019899682]
[162]
Yang M, Xie T, Peng L, Zhao Y, Wang D. Fabrication and photoelectric oxygen sensing characteristics of electrospun Co doped ZnO nanofibres. Appl Phys, A Mater Sci Process 2007; 89(2): 427-30.
[http://dx.doi.org/10.1007/s00339-007-4204-5]
[163]
Fujishima A. Electrochemical photolysis of water at a semiconductor electrode. nature 1972; 238(5358): 37-8.
[164]
Keerthana VAG, Harini A, Koyeli G. Waste water remediation using nanotechnology-a review. Biointerface Res Appl Chem 2022; 12(4): 4476-95.
[165]
Baniasadi M, Xu Z, Hong S, Naraghi M, Minary-Jolandan M. Thermo-electromechanical behavior of piezoelectric nanofibers. ACS Appl Mater Interfaces 2016; 8(4): 2540-51.
[http://dx.doi.org/10.1021/acsami.5b10073] [PMID: 26795238]
[166]
Kataria K, Gupta A, Rath G, Mathur RB, Dhakate SR. In vivo wound healing performance of drug loaded electrospun composite nano-fibers transdermal patch. Int J Pharm 2014; 469(1): 102-10.
[http://dx.doi.org/10.1016/j.ijpharm.2014.04.047] [PMID: 24751731]
[167]
Ren X, Han Y, Wang J, et al. An aligned porous electrospun fibrous membrane with controlled drug delivery – An efficient strategy to accelerate diabetic wound healing with improved angiogenesis. Acta Biomater 2018; 70: 140-53.
[http://dx.doi.org/10.1016/j.actbio.2018.02.010] [PMID: 29454159]
[168]
Kabay G, Meydan AE, Kaleli Can G, Demirci C, Mutlu M. Controlled release of a hydrophilic drug from electrospun amyloid-like protein blend nanofibers. Mater Sci Eng C 2017; 81: 271-9.
[http://dx.doi.org/10.1016/j.msec.2017.08.003] [PMID: 28887973]
[169]
Prasad A, Kandasubramanian B. Fused deposition processing polycaprolactone of composites for biomedical applications. Polymer-Plastics Technology and Materials 2019; 58(13): 1365-98.
[http://dx.doi.org/10.1080/25740881.2018.1563117]
[170]
Aytimur A, Koçyiğit S, Uslu İ, Gökmeşe F. Preparation and characterization of polyvinyl alcohol based copolymers as wound dressing fibers. Int J Polym Mater 2015; 64(3): 111-6.
[http://dx.doi.org/10.1080/00914037.2014.891118]
[171]
Liu SJ, Kau Y-C, Chou C-Y, Chen J-K, Wu R-C, Yeh W-L. Electrospun PLGA/collagen nanofibrous membrane as early-stage wound dressing. J Membr Sci 2010; 355(1-2): 53-9.
[http://dx.doi.org/10.1016/j.memsci.2010.03.012]
[172]
Cai Z, Mo X, Zhang K, et al. Fabrication of chitosan/silk fibroin composite nanofibers for wound-dressing applications. Int J Mol Sci 2010; 11(9): 3529-39.
[http://dx.doi.org/10.3390/ijms11093529] [PMID: 20957110]
[173]
Abdolhi N, Soltani A, Fadafan HK, Erfani-Moghadam V, Khalaji AD, Balakheyli H. Preparation, characterization and toxicity evalua-tion of Co3 O4 and NiO-filled multi-walled carbon nanotubes loaded to chitosan. Nano-Struct Nano Obj 2017; 12: 182-7.
[http://dx.doi.org/10.1016/j.nanoso.2017.09.008]
[174]
Naseri N, Algan C, Jacobs V, John M, Oksman K, Mathew AP. Electrospun chitosan-based nanocomposite mats reinforced with chi-tin nanocrystals for wound dressing. Carbohydr Polym 2014; 109: 7-15.
[http://dx.doi.org/10.1016/j.carbpol.2014.03.031] [PMID: 24815394]
[175]
Bacakova L, Pajorova J, Bacakova M, et al. Versatile Application of nanocellulose: From industry to skin tissue engineering and wound healing. Nanomaterials (Basel) 2019; 9(2): 164.
[http://dx.doi.org/10.3390/nano9020164] [PMID: 30699947]
[176]
Ghosal K, Agatemor C, Špitálsky Z, Thomas S, Kny E. Electrospinning tissue engineering and wound dressing scaffolds from poly-mer-titanium dioxide nanocomposites. Chem Eng J 2019; 358: 1262-78.
[http://dx.doi.org/10.1016/j.cej.2018.10.117]
[177]
Lakshmi SD, Avti PK, Hegde G. Activated carbon nanoparticles from biowaste as new generation antimicrobial agents: A review. Nano-Structures Nano-Objects 2018; 16: 306-21.
[http://dx.doi.org/10.1016/j.nanoso.2018.08.001]
[178]
Hudlikar M, Balasubramanian K, Kodam K. Towards the enhancement of antimicrobial efficacy and hydrophobization of chitosan. J Chitin Chitosan Sci 2014; 2(4): 273-9.
[http://dx.doi.org/10.1166/jcc.2014.1080]