The Role of Total White Blood Cell Count in Antipsychotic Treatment for Patients with Schizophrenia

Page: [159 - 167] Pages: 9

  • * (Excluding Mailing and Handling)

Abstract

Background: Total white blood cell count (TWBCc), an index of chronic and low-grade inflammation, is associated with clinical symptoms and metabolic alterations in patients with schizophrenia. The effect of antipsychotics on TWBCc, predictive values of TWBCc for drug response, and role of metabolic alterations require further study.

Methods: Patients with schizophrenia were randomized to monotherapy with risperidone, olanzapine, quetiapine, aripiprazole, ziprasidone, perphenazine or haloperidol in a 6-week pharmacological trial. We repeatedly measured clinical symptoms, TWBCc, and metabolic measures (body mass index, blood pressure, waist circumference, fasting blood lipids and glucose). We used mixed-effect linear regression models to test whether TWBCc can predict drug response. Mediation analysis to investigate metabolic alteration effects on drug response.

Results: At baseline, TWBCc was higher among patients previously medicated. After treatment with risperidone, olanzapine, quetiapine, perphenazine, and haloperidol, TWBCc decreased significantly (p < 0.05). Lower baseline TWBCc predicted greater reductions in Positive and Negative Syndrome Scale (PANSS) total and negative scores over time (p < 0.05). We found significant mediation of TWBCc for effects of waist circumference, fasting low-density lipoprotein cholesterol, and glucose on reductions in PANSS total scores and PANSS negative subscale scores (p < 0.05).

Conclusion: TWBCc is affected by certain antipsychotics among patients with schizophrenia, with decreases observed following short-term, but increases following long-term treatment. TWBCc is predictive of drug response, with lower TWBCc predicting better responses to antipsychotics. It also mediates the effects of certain metabolic measures on improvement of negative symptoms. This indicates that the metabolic state may affect clinical manifestations through inflammation.

Graphical Abstract

[1]
McGrath, J.; Saha, S.; Chant, D.; Welham, J. Schizophrenia: a concise overview of incidence, prevalence, and mortality. Epidemiol. Rev., 2008, 30(1), 67-76.
[http://dx.doi.org/10.1093/epirev/mxn001] [PMID: 18480098]
[2]
Muller, N. Inflammation in schizophrenia: pathogenetic aspects and therapeutic considerations. Schizophr. Bull., 2018, 44(5), 973-982.
[http://dx.doi.org/10.1093/schbul/sby024]
[3]
Kroken, R.A.; Sommer, I.E.; Steen, V.M.; Dieset, I.; Johnsen, E. Constructing the immune signature of schizophrenia for clinical use and research; An integrative review translating descriptives into diagnostics. Front. Psychiatry, 2019, 9, 753.
[http://dx.doi.org/10.3389/fpsyt.2018.00753] [PMID: 30766494]
[4]
Jackson, A.J.; Miller, B.J. Meta-analysis of total and differential white blood cell counts in schizophrenia. Acta Psychiatr. Scand., 2020, 142(1), 18-26.
[http://dx.doi.org/10.1111/acps.13140]
[5]
Moody, G.; Miller, B.J. Total and differential white blood cell counts and hemodynamic parameters in first-episode psychosis. Psychiatry Res., 2018, 260, 307-312.
[http://dx.doi.org/10.1016/j.psychres.2017.11.086] [PMID: 29223800]
[6]
Fan, X.; Liu, E.Y.; Freudenreich, O. Higher white blood cell counts are associated with an increased risk for metabolic syndrome and more severe psychopathology in non-diabetic patients with schizophrenia. Schizophr. Res., 2010, 118(1-3), 211-217.
[http://dx.doi.org/10.1016/j.schres.2010.02.1028]
[7]
Liemburg, E.J.; Nolte, I.M.; Klein, H.C.; Knegtering, H. Relation of inflammatory markers with symptoms of psychotic disorders: a large cohort study. Prog. Neuropsychopharmacol. Biol. Psychiatry, 2018, 86, 89-94.
[http://dx.doi.org/10.1016/j.pnpbp.2018.04.006] [PMID: 29778547]
[8]
Myles, N.; Myles, H.; Xia, S. A meta-analysis of controlled studies comparing the association between clozapine and other antipsychotic medications and the development of neutropenia. Aust. N. Z. J. Psychiatry, 2019, 53(5), 403-412.
[http://dx.doi.org/10.1177/0004867419833166]
[9]
Mauri, M.C.; Volonteri, L.S.; Dell’Osso, B. Predictors of clinical outcome in schizophrenic patients responding to clozapine. J. Clin. Psychopharmacol., 2003, 23(6), 660-664.
[10]
Oda, E.; Kawai, R. The prevalence of metabolic syndrome and diabetes increases through the quartiles of white blood cell count in japanese men and women. Intern. Med., 2009, 48(13), 1127-1134.
[http://dx.doi.org/10.2169/internalmedicine.48.2138]
[11]
Nilsson, G.; Hedberg, P.; Jonason, T. White blood cell counts associate more strongly to the metabolic syndrome in 75-year-old women than in men: A population based study. Metab. Syndr. Relat. Disord., 2007, 5(4), 359-364.
[12]
Prestwood, T.R.; Asgariroozbehani, R.; Wu, S.; Agarwal, S.M.; Logan, R.W.; Ballon, J.S.; Hahn, M.K.; Freyberg, Z. Roles of inflammation in intrinsic pathophysiology and antipsychotic drug-induced metabolic disturbances of schizophrenia. Behav. Brain Res., 2021, 402, 113101.
[http://dx.doi.org/10.1016/j.bbr.2020.113101] [PMID: 33453341]
[13]
Andersen, C.J.; Murphy, K.E.; Fernandez, M.L. Impact of obesity and metabolic syndrome on immunity. Adv. Nutr., 2016, 7(1), 66-75.
[http://dx.doi.org/10.3945/an.115.010207]
[14]
Pavlović M.; Babić D.; Rastović P.; Babić R.; Vasilj, M. Metabolic syndrome, total and differential white blood cell counts in patients with schizophrenia. Psychiatr. Danub., 2016, 28(Suppl. 2), 216-222.
[PMID: 28035126]
[15]
Kelly, C.W.; McEvoy, J.P.; Miller, B.J. Total and differential white blood cell counts, inflammatory markers, adipokines, and incident metabolic syndrome in phase 1 of the clinical antipsychotic trials of intervention effectiveness study. Schizophr. Res., 2019, 209, 193-197.
[http://dx.doi.org/10.1016/j.schres.2019.04.021] [PMID: 31118157]
[16]
Honig, G.J. Schizophrenia and antipsychotics: Metabolic alterations and therapeutic effectivity. Vertex, 2018, 29(138), 139-147.
[17]
Pillinger, T.; McCutcheon, R.A.; Vano, L.; Mizuno, Y.; Arumuham, A.; Hindley, G.; Beck, K.; Natesan, S.; Efthimiou, O.; Cipriani, A.; Howes, O.D. Comparative effects of 18 antipsychotics on metabolic function in patients with schizophrenia, predictors of metabolic dysregulation, and association with psychopathology: A systematic review and network meta-analysis. Lancet Psychiatry, 2020, 7(1), 64-77.
[http://dx.doi.org/10.1016/S2215-0366(19)30416-X] [PMID: 31860457]
[18]
Detry, M.A.; Ma, Y. Analyzing repeated measurements using mixed models. JAMA, 2016, 315(4), 407-408.
[http://dx.doi.org/10.1001/jama.2015.19394]
[19]
Fennig, S.; Craig, T.; Lavelle, J.; Kovasznay, B.; Bromet, E.J. Best-estimate versus structured interview-based diagnosis in first-admission psychosis. Compr. Psychiatry, 1994, 35(5), 341-348.
[http://dx.doi.org/10.1016/0010-440X(94)90273-9]
[20]
Wang, Q.; Man, W.H.; Yue, W. Effect of damaging rare mutations in synapse-related gene sets on response to short-term antipsychotic medication in chinese patients with schizophrenia: A randomized clinical trial. Jama Psychiatry, 2018, 75(12), 1261-1269.
[http://dx.doi.org/10.1001/jamapsychiatry.2018.3039]
[21]
Kay, S.R.; Fiszbein, A.; Opler, L.A. The positive and negative syndrome scale (panss) for schizophrenia. Schizophr. Bull., 1987, 13(2), 261-276.
[22]
Nitta, M.; Kishimoto, T.; Muller, N. Adjunctive use of nonsteroidal anti-inflammatory drugs for schizophrenia: A meta-analytic investigation of randomized controlled trials. Schizophr. Bull., 2013, 39(6), 1230-1241.
[http://dx.doi.org/10.1093/schbul/sbt070]
[23]
Cho, M.; Lee, T.Y.; Kwak, Y.B.; Yoon, Y.B.; Kim, M.; Kwon, J.S. Adjunctive use of anti-inflammatory drugs for schizophrenia: A meta-analytic investigation of randomized controlled trials. Aust. N. Z. J. Psychiatry, 2019, 53(8), 742-759.
[http://dx.doi.org/10.1177/0004867419835028] [PMID: 30864461]
[24]
Zheng, L.T.; Hwang, J.; Ock, J. The antipsychotic spiperone attenuates inflammatory response in cultured microglia via the reduction of proinflammatory cytokine expression and nitric oxide production. J. Neurochem., 2008, 107(5), 1225-1235.
[25]
Kato, T.; Monji, A.; Hashioka, S.; Kanba, S. Risperidone significantly inhibits interferon-gamma-induced microglial activation in vitro. Schizophr. Res., 2007, 92(1-3), 108-115.
[26]
Chen, M.L.; Tsai, T.C.; Wang, L.K. Clozapine inhibits th1 cell differentiation and causes the suppression of ifn-gamma production in peripheral blood mononuclear cells. Immunopharmacol. Immunotoxicol., 2012, 34(4), 686-694.
[27]
Stapel, B.; Sieve, I.; Falk, C.S.; Bleich, S.; Hilfiker-Kleiner, D.; Kahl, K.G. Second generation atypical antipsychotics olanzapine and aripiprazole reduce expression and secretion of inflammatory cytokines in human immune cells. J. Psychiatr. Res., 2018, 105, 95-102.
[http://dx.doi.org/10.1016/j.jpsychires.2018.08.017] [PMID: 30216787]
[28]
Uranova, N.A.; Bonartsev, P.D.; Androsova, L.V.; Rakhmanova, V.I.; Kaleda, V.G. Impaired monocyte activation in schizophrenia: ultrastructural abnormalities and increased IL-1beta production. Eur. Arch. Psychiatry Clin. Neurosci., 2017, 267(5), 417-426.
[http://dx.doi.org/10.1007/s00406-017-0782-1]
[29]
Capannolo, M.; Fasciani, I.; Romeo, S. The atypical antipsychotic clozapine selectively inhibits interleukin 8 (IL-8)-induced neutrophil chemotaxis. Eur. Neuropsychopharmacol., 2015, 25(3), 413-424.
[30]
Comer, A.L.; Carrier, M.; Tremblay, M.È.; Cruz-Martín, A. The inflamed brain in schizophrenia: the convergence of genetic and environmental risk factors that lead to uncontrolled neuroinflammation. Front. Cell. Neurosci., 2020, 14, 274.
[http://dx.doi.org/10.3389/fncel.2020.00274] [PMID: 33061891]
[31]
Wicinski, M.; Weclewicz, M.M. Clozapine-induced agranulocytosis/granulocytopenia: mechanisms and monitoring. Curr. Opin. Hematol., 2018, 25(1), 22-28.
[32]
Momtazmanesh, S.; Zare-Shahabadi, A.; Rezaei, N. Cytokine alterations in Schizophrenia: An updated review. Front. Psychiatry, 2019, 10, 892.
[http://dx.doi.org/10.3389/fpsyt.2019.00892] [PMID: 31908647]
[33]
Zhang, Y.; Ren, H.; Wang, Q.; Deng, W.; Yue, W.; Yan, H.; Tan, L.; Chen, Q.; Yang, G.; Lu, T.; Wang, L.; Zhang, F.; Yang, J.; Li, K.; Lv, L.; Tan, Q.; Zhang, H.; Ma, X.; Yang, F.; Li, L.; Wang, C.; Zhang, D.; Zhao, L.; Wang, H.; Li, X.; Guo, W.; Hu, X.; Tian, Y.; Ma, X.; Li, T. Testing the role of genetic variation of the mc4r gene in chinese population in antipsychotic-induced metabolic disturbance. Sci. China Life Sci., 2019, 62(4), 535-543.
[http://dx.doi.org/10.1007/s11427-018-9489-x] [PMID: 30929193]
[34]
Mondelli, V.; Ciufolini, S.; Belvederi, M.M. Cortisol and inflammatory biomarkers predict poor treatment response in first episode psychosis. Schizophr. Bull., 2015, 41(5), 1162-1170.
[http://dx.doi.org/10.1093/schbul/sbv028]
[35]
Chen, Y.Q.; Li, X.R.; Zhang, L.; Zhu, W.B.; Wu, Y.Q.; Guan, X.N.; Xiu, M.H.; Zhang, X.Y. Therapeutic response is associated with antipsychotic-induced weight gain in drug-naive first-episode patients with schizophrenia: an 8-week prospective study. J. Clin. Psychiatry, 2021, 82(3), 20m13469.
[http://dx.doi.org/10.4088/JCP.20m13469] [PMID: 34004092]
[36]
Kim, D.D.; Barr, A.M.; Fredrikson, D.H.; Honer, W.G.; Procyshyn, R.M. Association between serum lipids and antipsychotic response in schizophrenia. Curr. Neuropharmacol., 2019, 17(9), 852-860.
[http://dx.doi.org/10.2174/1570159X17666190228113348]
[37]
Zhang, Y.; Wang, Q.; Reynolds, G.P.; Yue, W.; Deng, W.; Yan, H.; Tan, L.; Wang, C.; Yang, G.; Lu, T.; Wang, L.; Zhang, F.; Yang, J.; Li, K.; Lv, L.; Tan, Q.; Li, Y.; Yu, H.; Zhang, H.; Ma, X.; Yang, F.; Li, L.; Chen, Q.; Wei, W.; Zhao, L.; Wang, H.; Li, X.; Guo, W.; Hu, X.; Tian, Y.; Ren, H.; Ma, X.; Coid, J.; Zhang, D.; Li, T. Metabolic effects of 7 antipsychotics on patients with schizophrenia: A short-term, randomized, open-label, multicenter, pharmacologic trial. J. Clin. Psychiatry, 2020, 81(3), 19m12785.
[http://dx.doi.org/10.4088/JCP.19m12785] [PMID: 32237292]
[38]
Dunleavy, C.; Elsworthy, R.J.; Upthegrove, R.; Wood, S.J.; Aldred, S. Inflammation in first-episode psychosis: the contribution of inflammatory biomarkers to the emergence of negative symptoms, a systematic review and meta-analysis. Acta Psychiatr. Scand., 2022, 146(1), 6-20.
[http://dx.doi.org/10.1111/acps.13416] [PMID: 35202480]
[39]
Jeppesen, R.; Christensen, R.H.B.; Pedersen, E.M.J.; Nordentoft, M.; Hjorthøj, C.; Köhler-Forsberg, O.; Benros, M.E. Efficacy and safety of anti-inflammatory agents in treatment of psychotic disorders - A comprehensive systematic review and meta-analysis. Brain Behav. Immun., 2020, 90, 364-380.
[http://dx.doi.org/10.1016/j.bbi.2020.08.028] [PMID: 32890697]
[40]
Zunszain, P.A.; Anacker, C.; Cattaneo, A. Interleukin-1beta: A new regulator of the kynurenine pathway affecting human hippocampal neurogenesis. Neuropsychopharmacol., 2012, 37(4), 939-949.
[41]
Cakici, N.; van Beveren, N.; Judge-Hundal, G.; Koola, M.M.; Sommer, I. An update on the efficacy of anti-inflammatory agents for patients with schizophrenia: A meta-analysis. Psychol. Med., 2019, 49(14), 2307-2319.
[42]
Pollak, T.A.; Drndarski, S.; Stone, J.M. The blood-brain barrier in psychosis. Lancet Psychiatry, 2018, 5(1), 79-92.
[http://dx.doi.org/10.1016/S2215-0366(17)30293-6]
[43]
Carvalheira, J.B.; Qiu, Y.; Chawla, A. Blood spotlight on leukocytes and obesity. Blood, 2013, 122(19), 3263-3267.
[http://dx.doi.org/10.1182/blood-2013-04-459446]
[44]
Talukdar, S.; Oh, D.Y.; Bandyopadhyay, G. Neutrophils mediate insulin resistance in mice fed a high-fat diet through secreted elastase. Nat. Med., 2012, 18(9), 1407-1412.
[http://dx.doi.org/10.1038/nm.2885]
[45]
Cipolletta, D.; Feuerer, M.; Li, A. Ppar-gamma is a major driver of the accumulation and phenotype of adipose tissue treg cells. Nature, 2012, 486(7404), 549-553.
[46]
Weinstock, A.; Moura, S.H.; Moore, K.J.; Schmidt, A.M.; Fisher, E.A. Leukocyte heterogeneity in adipose tissue, including in obesity. Circ. Res., 2020, 126(11), 1590-1612.
[http://dx.doi.org/10.1161/CIRCRESAHA.120.316203]
[47]
Heald, A.; Montejo, A.L.; Millar, H.; De Hert, M.; McCrae, J.; Correll, C.U. Management of physical health in patients with schizophrenia: Practical recommendations. Eur. Psychiatry, 2010, 25(S2)(Suppl. 2), S41-S45.
[http://dx.doi.org/10.1016/S0924-9338(10)71706-5] [PMID: 20620887]
[48]
Mazza, M.G.; Capellazzi, M.; Lucchi, S. Monocyte count in schizophrenia and related disorders: A systematic review and meta-analysis. Acta Neuropsychiatr., 2020, 32(5), 229-236.
[http://dx.doi.org/10.1017/neu.2020.12]