Сhronically Administered BDNF Dipeptide Mimetic GSB-106 Prevents the Depressive-like Behavior and Memory Impairments after Transient Middle Cerebral Artery Occlusion in Rats

Page: [126 - 132] Pages: 7

  • * (Excluding Mailing and Handling)

Abstract

Background: A dipeptide mimetic of the BDNF loop 4, bis (N-monosuccinyl-L-seryl-L-lysine) hexamethylenediamide, GSB-106, was designed and synthesized by V.V. Zakusov Research Institute of Pharmacology. The compound activated in vitro TrkB, MAPK/ERK, PI3K/AKT, and PLCγ, like full-length BDNF. In vivo, GSB-106 exhibited antidepressant-like, neuroprotective and neuroregenerative properties. The aim of this work was to study the effects of GSB-106 on depressive-like behavior, cognitive impairments, as well as on hippocampal neuroplasticity in an experimental model of ischemic stroke.

Methods: Male Wistar rats were subjected to 60 minutes of transient middle cerebral artery occlusion (MCAO). Dipeptide GSB-106 was administered intraperitoneally at a dose of 0.1 mg/kg/day for 21 days after surgery. 30-40 days after MCAO, the depressive-like state in the forced swimming test and memory impairment in the novel object recognition test were assessed. Then, the content of CREB, as a neuroplasticity marker, was assessed in the ipsilateral hippocampus.

Results: Rats in MCAO group showed depression-like behavior (increase in immobility time in the forced swimming test by 22% compared to sham group), impairments in short-term and long-term memory (decrease in the discrimination index in the novel object recognition test by 70% and 50%, respectively), and a decrease in immunoreactivity to CREB (cAMP response element-binding protein) in the hippocampus by 36% as compared with the sham group. GSB-106 completely prevented the behavior impairments and counteracted the reduction of immunoreactivity to CREB in the hippocampus.

Conclusion: The BDNF dipeptide mimetic GSB-106 is promising for further development as a drug for the treatment of poststroke neuropsychiatric disorders.

[1]
Dafer RM, Rao M, Shareef A, Sharma A. Poststroke depression. Top Stroke Rehabil 2008; 15(1): 13-21.
[http://dx.doi.org/10.1310/tsr1501-13] [PMID: 18250069]
[2]
Hénon H, Pasquier F, Leys D. Poststroke Dementia. Cerebrovasc Dis 2006; 22(1): 61-70.
[http://dx.doi.org/10.1159/000092923] [PMID: 16645268]
[3]
Gulyaeva NV, Onufriev MV, Moiseeva YV. Ischemic stroke, glucocorticoids, and remote hippocampal damage: A translational outlook and implications for modeling. Front Neurosci 2021; 15: 781964.
[http://dx.doi.org/10.3389/fnins.2021.781964] [PMID: 34955730]
[4]
Miranda M, Morici JF, Zanoni MB, Bekinschtein P. Brain-derived neurotrophic factor: A key molecule for memory in the healthy and the pathological brain. Front Cell Neurosci 2019; 13: 363.
[http://dx.doi.org/10.3389/fncel.2019.00363] [PMID: 31440144]
[5]
Yang T, Nie Z, Shu H, et al. The role of BDNF on neural plasticity in depression. Front Cell Neurosci 2020; 14: 82.
[http://dx.doi.org/10.3389/fncel.2020.00082] [PMID: 32351365]
[6]
Kowiański P, Lietzau G, Czuba E, Waśkow M, Steliga A, Moryś J. BDNF: A key factor with multipotent impact on brain signaling and synaptic plasticity. Cell Mol Neurobiol 2018; 38(3): 579-93.
[http://dx.doi.org/10.1007/s10571-017-0510-4] [PMID: 28623429]
[7]
Zhang E, Liao P. Brain-derived neurotrophic factor and post-stroke depression. J Neurosci Res 2020; 98(3): 537-48.
[http://dx.doi.org/10.1002/jnr.24510] [PMID: 31385340]
[8]
Polyakova M, Stuke K, Schuemberg K, Mueller K, Schoenknecht P, Schroeter ML. BDNF as a biomarker for successful treatment of mood disorders: A systematic & quantitative meta-analysis. J Affect Disord 2015; 174: 432-40.
[http://dx.doi.org/10.1016/j.jad.2014.11.044] [PMID: 25553404]
[9]
Pandey GN, Ren X, Rizavi HS, Conley RR, Roberts RC, Dwivedi Y. Brain-derived neurotrophic factor and tyrosine kinase B receptor signalling in post-mortem brain of teenage suicide victims. Int J Neuropsychopharmacol 2008; 11(8): 1047-61.
[http://dx.doi.org/10.1017/S1461145708009000] [PMID: 18611289]
[10]
Fu X, Chen H, Zhang N, et al. Overexpression of brain-derived neurotrophic factor in the hippocampus protects against post-stroke depression. Neural Regen Res 2015; 10(9): 1427-32.
[http://dx.doi.org/10.4103/1673-5374.165510] [PMID: 26604903]
[11]
Luo L, Li C, Du X, et al. Effect of aerobic exercise on BDNF/proBDNF expression in the ischemic hippocampus and depression recovery of rats after stroke. Behav Brain Res 2019; 362: 323-31.
[http://dx.doi.org/10.1016/j.bbr.2018.11.037] [PMID: 30500428]
[12]
Hong M, Kim M, Kim TW, et al. Treadmill exercise improves motor function and short-term memory by enhancing synaptic plasticity and neurogenesis in photothrombotic stroke mice. Int Neurourol J 2020; 24 (Suppl. 1): S28-38.
[http://dx.doi.org/10.5213/inj.2040158.079] [PMID: 32482055]
[13]
Poduslo JF, Curran GL. Permeability at the blood-brain and blood-nerve barriers of the neurotrophic factors: NGF, CNTF, NT-3, BDNF. Brain Res Mol Brain Res 1996; 36(2): 280-6.
[http://dx.doi.org/10.1016/0169-328X(95)00250-V] [PMID: 8965648]
[14]
Gudasheva TA, Tarasiuk AV, Pomogaĭbo SV, et al. Design and synthesis of dipeptide mimetics of brain-derived neurotrophic factor. Bioorg Khim 2012; 38(3): 280-90.
[PMID: 22997699]
[15]
Gudasheva TA, Povarnina P, Tarasiuk AV, Seredenin SB. The low molecular weight brain-derived neurotrophic factor mimetics with antidepressant-like activity. Curr Pharm Des 2019; 25(6): 729-37.
[http://dx.doi.org/10.2174/1381612825666190329122852] [PMID: 30931847]
[16]
Logvinov IO, Antipova TA, Gudasheva TA, Tarasiuk AV, Antipov PI, Seredenin SB. Neuroprotective effects of dipeptide analogue of brain-derived neurotrophic factor GSB-106 in in vitro experiments. Bull Exp Biol Med 2013; 155(3): 343-5.
[http://dx.doi.org/10.1007/s10517-013-2149-6] [PMID: 24137599]
[17]
Zainullina LF, Vakhitova YV, Lusta AY, Gudasheva TA, Seredenin SB. Dimeric mimetic of BDNF loop 4 promotes survival of serum-deprived cell through TrkB-dependent apoptosis suppression. Sci Rep 2021; 11(1): 7781.
[http://dx.doi.org/10.1038/s41598-021-87435-0] [PMID: 33833366]
[18]
Gudasheva TA, Povarnina P, Logvinov IO, Antipova TA, Seredenin SB. Mimetics of brain-derived neurotrophic factor loops 1 and 4 are active in a model of ischemic stroke in rats. Drug Des Devel Ther 2016; 10: 3545-53.
[http://dx.doi.org/10.2147/DDDT.S118768] [PMID: 27843294]
[19]
Gudasheva TA, Logvinov IO, Nikolaev SV, Antipova TA, Povarnina PY, Seredenin SB. Dipeptide mimetics of different NGF and BDNF loops activate PLC-γ1. Dokl Biochem Biophys 2020; 494(1): 244-7.
[http://dx.doi.org/10.1134/S1607672920050075] [PMID: 33119826]
[20]
Seredenin SB, Voronina TA, Gudasheva TA, et al. Antidepressant effect of dimeric dipeptide GSB-106, an original low-molecular-weight mimetic of BDNF. Acta Nat 2013; 5(4): 105-9.
[http://dx.doi.org/10.32607/20758251-2013-5-4-105-109] [PMID: 24455189]
[21]
Povarnina PY, Garibova TL, Gudasheva TA, Seredenin SB. Antidepressant effect of an orally administered dipeptide mimetic of the brain-derived neurotrophic factor. Acta Nat 2018; 10(3): 81-3.
[http://dx.doi.org/10.32607/20758251-2018-10-3-81-83] [PMID: 30397531]
[22]
Gudasheva TA, Tallerova AV, Mezhlumyan AG, et al. Low- molecular weight BDNF mimetic, dimeric dipeptide GSB-106, reverses depressive symptoms in mouse chronic social defeat stress. Biomolecules 2021; 11(2): 252.
[http://dx.doi.org/10.3390/biom11020252] [PMID: 33578683]
[23]
Povarnina PY, Tallerova AV, Mezhlumian AG, et al. Dimeric dipeptide BDNF mimetic GSB-106 exhibits antidepressant-like activity upon single oral administration in mice under social stress model conditions. Eksp Klin Farmakol 2020; 83: 3-7.
[24]
Vakhitova YV, Kalinina TS, Zainullina LF, et al. Analysis of antidepressant-like effects and action mechanisms of GSB-106, a small molecule, affecting the TrkB signaling. Int J Mol Sci 2021; 22(24): 13381.
[http://dx.doi.org/10.3390/ijms222413381] [PMID: 34948177]
[25]
Mezhlumyan AG, Tallerova AV, Povarnina PY, et al. Antidepressant-like effects of BDNF and NGF individual loop dipeptide mimetics depend on the signal transmission patterns associated with trk. Pharmaceuticals 2022; 15(3): 284.
[http://dx.doi.org/10.3390/ph15030284] [PMID: 35337082]
[26]
Povarnina PYu. Neuroprotective activity of dipeptide BDNF mimetics, which differently activate TRKB-related signaling pathways under conditions of experimental ischemic stroke. Eksp Klin Farmakol 2020; 83(12): 8-12.
[27]
Gudasheva TA, Povarnina PY, Seredenin SB. Dipeptide mimetic of the brain-derived neurotrophic factor prevents impairments of neurogenesis in stressed mice. Bull Exp Biol Med 2017; 162(4): 454-7.
[http://dx.doi.org/10.1007/s10517-017-3638-9] [PMID: 28243910]
[28]
Gudasheva TA, Povarnina PY, Antipova TA, et al. Neuroregenerative activity of the dipeptide mimetic of brain-derived neurotrophic factor GSB-106 under experimental ischemic stroke. CNS Neurol Disord Drug Targets 2021; 20(10): 954-62.
[http://dx.doi.org/10.2174/1871527320666210525090904] [PMID: 34036924]
[29]
Li W, Huang R, Shetty RA, et al. Transient focal cerebral ischemia induces long-term cognitive function deficit in an experimental ischemic stroke model. Neurobiol Dis 2013; 59: 18-25.
[http://dx.doi.org/10.1016/j.nbd.2013.06.014] [PMID: 23845275]
[30]
Kuts R, Melamed I, Shiyntum HN, Frank D, Grinshpun J, Zlotnik A, et al. A middle cerebral artery occlusion technique for inducing post-stroke depression in rats. J Vis Exp 2019; (147):
[31]
Ifergane G, Boyko M, Frank D, et al. Biological and behavioral patterns of post-stroke depression in rats. Can J Neurol Sci 2018; 45(4): 451-61.
[http://dx.doi.org/10.1017/cjn.2017.302] [PMID: 29880078]
[32]
Uluç K, Miranpuri A, Kujoth GC, Aktüre E, Başkaya MK. Focal cerebral ischemia model by endovascular suture occlusion of the middle cerebral artery in the rat. J Vis Exp 2011; (48): 1978.
[PMID: 21339721]
[33]
Ennaceur A, Delacour J. A new one-trial test for neurobiological studies of memory in rats. 1: Behavioral data. Behav Brain Res 1988; 31(1): 47-59.
[http://dx.doi.org/10.1016/0166-4328(88)90157-X] [PMID: 3228475]
[34]
Antunes M, Biala G. The novel object recognition memory: Neurobiology, test procedure, and its modifications. Cogn Process 2012; 13(2): 93-110.
[http://dx.doi.org/10.1007/s10339-011-0430-z] [PMID: 22160349]
[35]
Beldjoud H, Barsegyan A, Roozendaal B. Noradrenergic activation of the basolateral amygdala enhances object recognition memory and induces chromatin remodeling in the insular cortex. Front Behav Neurosci 2015; 9: 108.
[http://dx.doi.org/10.3389/fnbeh.2015.00108] [PMID: 25972794]
[36]
Porsolt RD, Anton G, Blavet N, Jalfre M. Behavioural despair in rats: A new model sensitive to antidepressant treatments. Eur J Pharmacol 1978; 47(4): 379-91.
[http://dx.doi.org/10.1016/0014-2999(78)90118-8] [PMID: 204499]
[37]
Alam A. A model for formulation of protein assay. Anal Biochem 1992; 203(1): 121-6.
[http://dx.doi.org/10.1016/0003-2697(92)90051-8] [PMID: 1524207]
[38]
Towbin H, Staehelin T, Gordon J. Electrophoretic transfer of proteins from polyacrylamide gels to nitrocellulose sheets: Procedure and some applications. Proc Natl Acad Sci USA 1979; 76(9): 4350-4.
[http://dx.doi.org/10.1073/pnas.76.9.4350] [PMID: 388439]
[39]
Sakamoto K, Karelina K, Obrietan K. CREB: A multifaceted regulator of neuronal plasticity and protection. J Neurochem 2011; 116(1): 1-9.
[http://dx.doi.org/10.1111/j.1471-4159.2010.07080.x] [PMID: 21044077]
[40]
Finkbeiner S, Tavazoie SF, Maloratsky A, Jacobs KM, Harris KM, Greenberg ME. CREB: A major mediator of neuronal neurotrophin responses. Neuron 1997; 19(5): 1031-47.
[http://dx.doi.org/10.1016/S0896-6273(00)80395-5] [PMID: 9390517]
[41]
Esvald EE, Tuvikene J, Sirp A, Patil S, Bramham CR, Timmusk T. CREB family transcription factors are major mediators of BDNF transcriptional autoregulation in cortical neurons. J Neurosci 2020; 40(7): 1405-26.
[http://dx.doi.org/10.1523/JNEUROSCI.0367-19.2019] [PMID: 31915257]
[42]
Lonze BE, Ginty DD. Function and regulation of CREB family transcription factors in the nervous system. Neuron 2002; 35(4): 605-23.
[http://dx.doi.org/10.1016/S0896-6273(02)00828-0] [PMID: 12194863]
[43]
Fu J, Xue R, Gu J, et al. Neuroprotective effect of calcitriol on ischemic/reperfusion injury through the NR3A/CREB pathways in the rat hippocampus. Mol Med Rep 2013; 8(6): 1708-14.
[http://dx.doi.org/10.3892/mmr.2013.1734] [PMID: 24141895]
[44]
Zhang Y, Lin R, Tao J, et al. Electroacupuncture improves cognitive ability following cerebral ischemia reperfusion injury via CaM-CaMKIV-CREB signaling in the rat hippocampus. Exp Ther Med 2016; 12(2): 777-82.
[http://dx.doi.org/10.3892/etm.2016.3428] [PMID: 27446275]
[45]
Moriyama Y, Takagi N, Hashimura K, Itokawa C, Tanonaka K. Intravenous injection of neural progenitor cells facilitates angiogenesis after cerebral ischemia. Brain Behav 2013; 3(2): 43-53.
[http://dx.doi.org/10.1002/brb3.113] [PMID: 23532762]
[46]
Lee SS, Kim CJ, Shin MS, Lim BV. Treadmill exercise ameliorates memory impairment through ERK-Akt-CREB-BDNF signaling pathway in cerebral ischemia gerbils. J Exerc Rehabil 2020; 16(1): 49-57.
[http://dx.doi.org/10.12965/jer.2040014.007] [PMID: 32161734]
[47]
Zhu T, Wang L, Xie W, et al. Notoginsenoside R1 improves cerebral ischemia/reperfusion injury by promoting neurogenesis via the BDNF/Akt/CREB pathway. Front Pharmacol 2021; 12: 615998.
[http://dx.doi.org/10.3389/fphar.2021.615998] [PMID: 34025400]
[48]
Wang S, Yuan Y, Xia W, et al. Neuronal apoptosis and synaptic density in the dentate gyrus of ischemic rats’ response to chronic mild stress and the effects of Notch signaling. PLoS One 2012; 7(8): e42828.
[http://dx.doi.org/10.1371/journal.pone.0042828] [PMID: 22912748]
[49]
Pan G, Cheng J, Shen W, et al. Intensive treadmill training promotes cognitive recovery after cerebral ischemia-reperfusion in juvenile rats. Behav Brain Res 2021; 401: 113085.
[http://dx.doi.org/10.1016/j.bbr.2020.113085] [PMID: 33358915]
[50]
Okamura M, Inoue T, Takamatsu Y, Maejima H. Low-level inhibition of GABAergic synapses enhances gene expressions crucial for neuronal plasticity in the hippocampus after ischemic stroke. J Stroke Cerebrovasc Dis 2020; 29(12): 105316.
[http://dx.doi.org/10.1016/j.jstrokecerebrovasdis.2020.105316] [PMID: 32992173]
[51]
Bai Y-L, Gao B-Y, Xu D-S, et al. Modified constraint-induced movement therapy alters synaptic plasticity of rat contralateral hippocampus following middle cerebral artery occlusion. Neural Regen Res 2020; 15(6): 1045-57.
[http://dx.doi.org/10.4103/1673-5374.270312] [PMID: 31823884]
[52]
El-Tamawy MS, Abd-Allah F, Ahmed SM, Darwish MH, Khalifa HA. Aerobic exercises enhance cognitive functions and brain derived neurotrophic factor in ischemic stroke patients. NeuroRehabilitation 2014; 34(1): 209-13.
[http://dx.doi.org/10.3233/NRE-131020] [PMID: 24284463]
[53]
Wang A, Mi L, Zhang Z, et al. Saikosaponin A improved depression-like behavior and inhibited hippocampal neuronal apoptosis after cerebral ischemia through p-CREB/BDNF pathway. Behav Brain Res 2021; 403: 113138.
[http://dx.doi.org/10.1016/j.bbr.2021.113138] [PMID: 33493495]
[54]
Zhang W, Liu X, Xu W, Wei X, Zhang J, Wang B. Original article effects of BDNF-ERK-CREB signaling pathways on cognitive function and neural plasticity in a rat model of depression. Int J Clin Exp Med 2019; 12(6): 6684-94.
[55]
Ortega-Martínez S. A new perspective on the role of the CREB family of transcription factors in memory consolidation via adult hippocampal neurogenesis. Front Mol Neurosci 2015; 8: 46.
[http://dx.doi.org/10.3389/fnmol.2015.00046] [PMID: 26379491]
[56]
Cheng Y, Su Q, Shao B, et al. 17 β-Estradiol attenuates poststroke depression and increases neurogenesis in female ovariectomized rats. BioMed Res Int 2013; 2013: 1-10.
[http://dx.doi.org/10.1155/2013/392434] [PMID: 24307996]
[57]
Wang S, Zhang Z, Guo Y, Sui Y, Sun Y. Involvement of serotonin neurotransmission in hippocampal neurogenesis and behavioral responses in a rat model of post-stroke depression. Pharmacol Biochem Behav 2010; 95(1): 129-37.
[http://dx.doi.org/10.1016/j.pbb.2009.12.017] [PMID: 20045434]