Preparation, Characterization and Drug Delivery Research of γ-Polyglutamic Acid Nanoparticles: A Review

Page: [795 - 806] Pages: 12

  • * (Excluding Mailing and Handling)

Abstract

γ-Polyglutamic acid is a kind of biomaterial and environmentally friendly polymer material with the characteristics of water solubility and good biocompatibility. It has a wide range of applications in medicine, food, cosmetics and other fields. This article reviews the preparation, characterization and medical applications of γ-polyglutamic acid nanoparticles. Nanoparticles prepared by using γ- polyglutamic acid not only had the traditional advantages of enhancing drug stability and slow-release effect, but also were simple to prepare without any biological toxicity. The current methods of nanoparticle preparation mainly include the ion gel method and solvent exchange method, which use the total electrostatic force, van der Waals force, hydrophobic interaction force and hydrogen bond force between molecules to embed materials with different characteristics. At present, there are more and more studies on the use of γ-polyglutamic acid to encapsulate drugs, and the research on the mechanism of its encapsulation and sustained release has gradually matured. The development and application of polyglutamic acid nanoparticles have broad prospects.

Graphical Abstract

[1]
Mcmollan J, Batrakova E, Gendelman H E. Cell delivery of therapeutic nanoparticles. Prog Mol Biol T ransl 2011; 104: 563-601.
[http://dx.doi.org/10.1016/B978-0-12-416020-0.00014-0]
[2]
Zhao L. Preparation and pharmacokinetics study of the fishoil microcapsules. Thesis Zhejiang University: Hangzhou 2005.
[3]
Perelshtein I, Applerot G, Perkas N, Guibert G, Mikhailov S, Gedanken A. Sonochemical coating of silver nanoparticles on textile fabrics (nylon, polyester and cotton) and their antibacterial activity. Nanotechnology 2008; 19(24): 245705.
[http://dx.doi.org/10.1088/0957-4484/19/24/245705] [PMID: 21825830]
[4]
Gentile P, Chiono V, Carmagnola I, Hatton P. An overview of poly(lactic-co-glycolic) acid (PLGA)-based biomaterials for bone tissue engineering. Int J Mol Sci 2014; 15(3): 3640-59.
[http://dx.doi.org/10.3390/ijms15033640] [PMID: 24590126]
[5]
Danhier F, Ansorena E, Silva JM, Coco R, Le Breton A, Préat V. PLGA-based nanoparticles: An overview of biomedical applications. J Control Release 2012; 161(2): 505-22.
[http://dx.doi.org/10.1016/j.jconrel.2012.01.043] [PMID: 22353619]
[6]
Hines DJ, Kaplan DL. Poly(lactic-co-glycolic) acid-controlled-release systems: experimental and modeling insights. Crit Rev Ther Drug Carrier Syst 2013; 30(3): 257-76.
[http://dx.doi.org/10.1615/CritRevTherDrugCarrierSyst.2013006475] [PMID: 23614648]
[7]
Shih IL, Van YT. The production of poly-(γ-glutamic acid) from microorganisms and its various applications. Bioresour Technol 2001; 79(3): 207-25.
[http://dx.doi.org/10.1016/S0960-8524(01)00074-8] [PMID: 11499575]
[8]
Shekhar K, Madhu MN, Pradeep B, Banji D. A review on microen capsulation. Pharm Sci Rev Res 2010; 5: 58-62.
[9]
Akagi T, Matsusaki M, Akashi M. Pharmaceutical and medical applications of poly-γ-glutamic acid. Hamano, Y (eds) Microbiology Monographs . , vol 15 Springer Berlin, Heidelberg 2010.
[http://dx.doi.org/10.1007/978-3-642-12453-2_7]
[10]
Khalil I, Khechara M, Kurusamy S, et al. Poly-gamma-glutamic acid (γ-PGA)-based encapsulation of adenovirus to evade neutralizing antibodies. Molecules 2018; 23(10): 2565.
[http://dx.doi.org/10.3390/molecules23102565] [PMID: 29393867]
[11]
Song HT, Guo T, Zhang RH, Ma Y, Li X, Bi KS. Studies on heart-protecting musk pH-dependent gradient-release pellets. Yao Xue Xue Bao 2002; 37(10): 812-7.
[PMID: 12567868]
[12]
Kakizawa Y, Kataoka K. Block copolymer micelles for delivery of gene and related compounds. Adv Drug Deliv Rev 2002; 54(2): 203-22.
[http://dx.doi.org/10.1016/S0169-409X(02)00017-0] [PMID: 11897146]
[13]
Zhang L, Eisenberg A. Multiple morphologies of “Crew-Cut” aggregates of polystyrene-b-poly (acrylic acid) block copolymers. Science 1995; 268(5218): 1728-31.
[http://dx.doi.org/10.1126/science.268.5218.1728] [PMID: 17834990]
[14]
Sun Y, Liu Y, Liu W, Lu C, Wang L. Chitosan microparticles ionically cross-linked with poly(γ-glutamic acid) as antimicrobial peptides and nitric oxide delivery systems. Biochem Eng J 2015; 95: 78-85.
[http://dx.doi.org/10.1016/j.bej.2014.11.022]
[15]
Singh MN, Yadav HKS, Ram M, Shivakumar HG. Freeze dried chitosan/ poly-(glutamic acid) microparticles for intestinal delivery of lansoprazole. Curr Drug Deliv 2012; 9(1): 95-104.
[http://dx.doi.org/10.2174/156720112798376041] [PMID: 21864257]
[16]
Shima F, Schulte B, Keul H, Moeller M, Akashi M. Preparation of microparticles composed of amphiphilic poly(γ-glutamic acid) through hydrophobic interactions. Polym J 2014; 46(3): 184-8.
[http://dx.doi.org/10.1038/pj.2013.74]
[17]
Chen XJ, Cai K, Lu N, et al. Preparation and characte rization of streptomycin sulphate-loaded nanocapsule coated with chitosan and poly-γ-glutamic acid. Chin J Pesticide Sci 2013; 15(3): 331-6.
[18]
Hong DY, Lee JS, Lee HG. Chitosan/poly-γ-glutamic acid nanoparticles improve the solubility of lutein. Int J Biol Macromol 2016; 85: 9-15.
[http://dx.doi.org/10.1016/j.ijbiomac.2015.12.044] [PMID: 26712702]
[19]
Lin YH, Sonaje K, Lin KM, et al. Multi-ion-crosslinked nanoparticles with pH-responsive characteristics for oral delivery of protein drugs. J Control Release 2008; 132(2): 141-9.
[http://dx.doi.org/10.1016/j.jconrel.2008.08.020] [PMID: 18817821]
[20]
Letchford K, Burt H. A review of the formation and classification of amphiphilic block copolymer nanoparticulate structures: Micelles, nanospheres, nanocapsules and polymersomes. Eur J Pharm Biopharm 2007; 65(3): 259-69.
[http://dx.doi.org/10.1016/j.ejpb.2006.11.009] [PMID: 17196803]
[21]
Matsusaki M, Hiwatari K, Higashi M, Kaneko T, Akashi M. Stably-dispersed and surface-functional bionanoparticles prepared by self-assembling amphipathic polymers of hydrophilic poly(γ-glutamic acid) bearing hydrophobic amino acids. Chem Lett 2004; 33(4): 398-9.
[http://dx.doi.org/10.1246/cl.2004.398]
[22]
Kim H, Akagi T, Akashi M. Preparation of size tunable amphiphilic poly(amino acid) nanoparticles. Macromol Biosci 2009; 9(9): 842-8.
[http://dx.doi.org/10.1002/mabi.200800367] [PMID: 19422015]
[23]
Akagi T, Kaneko T, Kida T, Akashi M. Multifunctional conjugation of proteins on/into bio-nanoparticles prepared by amphiphilic poly(γ-glutamic acid). J Biomater Sci Polym Ed 2006; 17(8): 875-92.
[http://dx.doi.org/10.1163/156856206777996871] [PMID: 17024878]
[24]
Das MK, Sarma A, Chakraborty T. PLGA-derived anticancer Nano therapeutics: Promises and challenges for the future. Chem Pharm Res 2016; 8(2): 484-99.
[25]
Pradeepkumar P, Sangeetha R, Gunaseelan S, Varalakshmi P, Chuturgoon AA, Rajan M. Folic acid conjugated polyglutamic acid drug vehicle synthesis through deep eutectic solvent for targeted release of paclitaxel. ChemistrySelect 2019; 4(35): 10225-35.
[http://dx.doi.org/10.1002/slct.201902256]
[26]
Ma S, Li X, Ran M, et al. Fabricating nanoparticles co-loaded with survivin siRNA and Pt(IV) prodrug for the treatment of platinum-resistant lung cancer. Int J Pharm 2021; 601: 120577.
[http://dx.doi.org/10.1016/j.ijpharm.2021.120577] [PMID: 33839227]
[27]
Łukasiewicz S, Szczepanowicz K, Podgórna K, et al. Encapsulation of clozapine in polymeric nanocapsules and its biological effects. Colloids Surf B Biointerfaces 2016; 140(1): 342-52.
[http://dx.doi.org/10.1016/j.colsurfb.2015.12.044] [PMID: 26774571]
[28]
Van Lysebetten D, Malfanti A, Deswarte K, et al. Lipid-polyglutamate nanoparticle vaccine platform. ACS Appl Mater Interfaces 2021; 13(5): 6011-22.
[http://dx.doi.org/10.1021/acsami.0c20607] [PMID: 33507728]
[29]
Honary S, Zahir F. Effect of zeta potential on the properties of nano-drug delivery systems. Trop J Pharm Res 2013; 12(2): 265-73.
[http://dx.doi.org/10.4314/tjpr.v12i2.20]
[30]
Cho EJ, Holback H, Liu KC, Abouelmagd SA, Park J, Yeo Y. Nanoparticle characterization: State of the art, challenges, and emerging technologies. Mol Pharm 2013; 10(6): 2093-110.
[http://dx.doi.org/10.1021/mp300697h] [PMID: 23461379]
[31]
Luo M, Huang Y, Zhu M, et al. Properties of different natural organic matter influence the adsorption and aggregation behavior of TiO2 nanoparticles. J Saudi Chem Soc 2018; 22(2): 146-54.
[http://dx.doi.org/10.1016/j.jscs.2016.01.007]
[32]
Ren D, Chen P, Zheng P, Xu Z. pH/redox dual response nanoparticles with poly-γ-glutamic acid for enhanced intracellular drug delivery. Colloids Surf A Physicochem Eng Asp 2019; 577: 412-20.
[http://dx.doi.org/10.1016/j.colsurfa.2019.06.002]
[33]
Kou Y, Feng R, Chen J, et al. Development of a nattokinase-polysialic acid complex for advanced tumor treatment. Eur J Pharm Sci 2020; 145: 105241.
[http://dx.doi.org/10.1016/j.ejps.2020.105241] [PMID: 32001345]
[34]
Jiang L Y, Liu X F, Xuan G S. Preparation of ph-sensitive β-cyclodextrin derivatives and evaluation of their drug-loading properties. IOP Conference Series: Materials Science and Engineering 2020; 774(1): 012009-(9pp).
[http://dx.doi.org/10.1088/1757-899X/774/1/012009]
[35]
Luo K. Complexation, layer-by-layer assembly and drugcarrier fabrication of polyelectrolytes based on Poly (α, L-glutamic acid). PhD Thesis Shanghai University: Shanghai 2009.
[36]
Yan S, Zhu J, Wang Z, Yin J, Zheng Y, Chen X. Layer-by-layer assembly of poly(l-glutamic acid)/chitosan microcapsules for high loading and sustained release of 5-fluorouracil. Eur J Pharm Biopharm 2011; 78(3): 336-45.
[http://dx.doi.org/10.1016/j.ejpb.2010.12.031] [PMID: 21195174]
[37]
Yan S, Rao S, Zhu J, et al. Nanoporous multilayer poly(l-glutamic acid)/chitosan microcapsules for drug delivery. Int J Pharm 2012; 427(2): 443-51.
[http://dx.doi.org/10.1016/j.ijpharm.2012.01.025] [PMID: 22301425]
[38]
Hernandez-Patlan D, Solis-Cruz B, Cano-Vega MA, et al. Development of chitosan and alginate nanocapsules to increase the solubility, permeability and stability of curcumin. J Pharm Innov 2019; 14(2): 132-40.
[http://dx.doi.org/10.1007/s12247-018-9341-1]
[39]
Huang M, Lü S, Ji Y, et al. A nattokinase carrier bonding with polyglutamic acid peptide dendrimer for improved thrombolysis. Polym Adv Technol 2019; 30(9): 2353-60.
[http://dx.doi.org/10.1002/pat.4677]
[40]
Liang HF, Chen CT, Chen SC, et al. Paclitaxel-loaded poly(γ-glutamic acid)-poly(lactide) nanoparticles as a targeted drug delivery system for the treatment of liver cancer. Biomaterials 2006; 27(9): 2051-9.
[http://dx.doi.org/10.1016/j.biomaterials.2005.10.027] [PMID: 16307794]
[41]
Hsieh CW, Lu WC, Hsieh WC, Huang YP, Lai CH, Ko WC. Improvement of the stability of nattokinase using γ-polyglutamic acid as a coating material for microencapsulation. Lebensm Wiss Technol 2009; 42(1): 144-9.
[http://dx.doi.org/10.1016/j.lwt.2008.05.025]
[42]
Zhang X, Lyu X, Tong Y, Wang J, Ye J, Yang R. Chitosan/casein based microparticles with a bilayer shell–core structure for oral delivery of nattokinase. Food Funct 2020; 11(12): 10799-816.
[http://dx.doi.org/10.1039/D0FO02349C] [PMID: 33232435]
[43]
Wu C, Wu T, Fang Z, et al. Formation, characterization and release kinetics of chitosan/γ-PGA encapsulated nisin nanoparticles. RSC Advances 2016; 6(52): 46686-95.
[http://dx.doi.org/10.1039/C6RA06003J]
[44]
Bai C, Zheng J, Zhao L, Chen L, Xiong H, McClements DJ. Development of oral delivery systems with enhanced antioxidant and anticancer activity: Coix seed oil and β-carotene coloaded liposomes. J Agric Food Chem 2019; 67(1): 406-14.
[http://dx.doi.org/10.1021/acs.jafc.8b04879] [PMID: 30566345]
[45]
Liu X, Wang P, Zou YX, Luo ZG, Tamer TM. Co-encapsulation of vitamin c and β-carotene in liposomes: Storage stability, antioxidant activity, and in vitro gastrointestinal digestion. Food Res Int 2020; 136: 109587.
[http://dx.doi.org/10.1016/j.foodres.2020.109587] [PMID: 32846615]
[46]
Xue P, Hou M, Sun L, et al. Calcium-carbonate packaging magnetic polydopamine nanoparticles loaded with indocyanine green for near-infrared induced photothermal/photodynamic therapy. Acta Biomater 2018; 81: 242-55.
[http://dx.doi.org/10.1016/j.actbio.2018.09.045] [PMID: 30267884]
[47]
Ye W, Wang N, Hu K, et al. Bio-inspired microcapsule for targeted antithrombotic drug delivery. RSC Advances 2018; 8(48): 27253-9.
[http://dx.doi.org/10.1039/C8RA04273J] [PMID: 35539989]
[48]
Hu Q, Bae M, Fleming E, Lee JY, Luo Y. Biocompatible polymeric nanoparticles with exceptional gastrointestinal stability as oral delivery vehicles for lipophilic bioactives. Food Hydrocoll 2019; 89: 386-95.
[http://dx.doi.org/10.1016/j.foodhyd.2018.10.057]
[49]
Zhang J, Li HH, Chen YF, et al. Microencapsulation of immunoglobulin Y: Optimization with response surface morphology and controlled release during simulated gastrointestinal digestion Microencapsulation of immunoglobulin Y: Optimization with response surface morphology and controlled release during simulated gastrointestinal digestion. J Zhejiang Univ Sci B 2020; 21(8): 611-27.
[http://dx.doi.org/10.1631/jzus.B2000172]
[50]
Dudhipala NR, Ettireddy SR, Puchakayala GR. Attenuation of lipid levels in triton induced hyperlipidemia rats through rosuvastatin calcium nanoparticles: Pharmacokinetic and pharmacodynamic studies. Chem Phys Lipids 2021; 237: 105081.
[http://dx.doi.org/10.1016/j.chemphyslip.2021.105081] [PMID: 33811848]
[51]
Kodama Y, Nakashima M, Nagahara T, et al. Development of a dna vaccine for melanoma metastasis by inhalation based on an analysis of transgene expression characteristics of naked pDNA and a ternary complex in mouse lung tissues. Pharmaceutics 2020; 12(6): 540.
[http://dx.doi.org/10.3390/pharmaceutics12060540] [PMID: 32545209]
[52]
de Vasconcelos CL, Bezerril PM, dos Santos DES, Dantas TNC, Pereira MR, Fonseca JLC. Effect of molecular weight and ionic strength on the formation of polyelectrolyte complexes based on poly(methacrylic acid) and chitosan. Biomacromolecules 2006; 7(4): 1245-52.
[http://dx.doi.org/10.1021/bm050963w] [PMID: 16602745]
[53]
Wang H, Bai Y, Yang B, Yan H. Properties and effect on controlled release of essential oil microcapsules of sodium alginate/microcrystalline cellulose composite wall. Food Sci Tech-Brazil 2020; 45(2): 111-6.
[54]
Bhat AR, Irorere VU, Bartlett T, et al. Improving survival of probiotic bacteria using bacterial poly-γ-glutamic acid. Int J Food Microbiol 2015; 196: 24-31.
[http://dx.doi.org/10.1016/j.ijfoodmicro.2014.11.031] [PMID: 25506798]
[55]
Yan L. Sustained-release properties and targeted modification analysis of γ-poly (glutamic acid) as a targted drug delivery system 2009.
[56]
Liu B, Che C, Liu J, et al. Fabrication and antitumor mechanism of a nanoparticle drug delivery system: graphene oxide/chitosan oligosaccharide/ γ-polyglutamic acid composites for anticancer drug delivery. ChemistrySelect 2019; 4(43): 12491-502.
[http://dx.doi.org/10.1002/slct.201903145]
[57]
Arroyo-Crespo JJ, Deladriere C, Nebot VJ, et al. Anticancer activity driven by drug linker modification in a polyglutamic acid-based combination-drug conjugate. Adv Funct Mater 2018; 28(22): 1800931.
[http://dx.doi.org/10.1002/adfm.201800931]
[58]
Chang YH. Calcium-mineralized doxorubicin-loaded polypeptide nanoparticle for osteosarcoma chemotherapy Thesis China Medical University: Shenyang 2019.
[59]
García O, Blanco MD, Martín JA, Teijón JM. 5-fluorouracil trapping in poly(2-hydroxyethyl methacrylate-co-acrylamide) hydrogels: In vitro drug delivery studies. Eur Polym J 2000; 36(1): 111-22.
[http://dx.doi.org/10.1016/S0014-3057(99)00037-3]
[60]
Muzzalupo R, Nicoletta FP, Trombino S, Cassano R, Iemma F, Picci N. A new crown ether as vesicular carrier for 5-fluoruracil: Synthesis, characterization and drug delivery evaluation. Colloids Surf B Biointerfaces 2007; 58(2): 197-202.
[http://dx.doi.org/10.1016/j.colsurfb.2007.03.010] [PMID: 17434295]
[61]
Singh B, Chauhan N. Preliminary evaluation of molecular imprinting of 5-fluorouracil within hydrogels for use as drug delivery systems. Acta Biomater 2008; 4(5): 1244-54.
[http://dx.doi.org/10.1016/j.actbio.2008.03.017] [PMID: 18448400]
[62]
Hussain M, Beale G, Hughes M, Akhtar S. Co-delivery of an antisense oligonucleotide and 5-fluorouracil using sustained release poly (lactide-co-glycolide) microsphere formulations for potential combination therapy in cancer. Int J Pharm 2002; 234(1-2): 129-38.
[http://dx.doi.org/10.1016/S0378-5173(01)00950-4] [PMID: 11839444]
[63]
Yu J, Wu N, Zheng X, Zheng M. Preparation of water-soluble chitosan/poly-gama-glutamic acid-Tanshinone IIA encapsulation composite and its in vitro / in vivo drug release properties. Biomed Phys Eng Express 2020; 6(4): 045020.
[http://dx.doi.org/10.1088/2057-1976/ab9ab2] [PMID: 33444280]
[64]
Su Z, Han C, Liu E, Zhang F, Liu B, Meng X. Formation, characterization and application of arginine-modified chitosan/γ-poly glutamic acid nanoparticles as carrier for curcumin. Int J Biol Macromol 2021; 168(31): 215-22.
[http://dx.doi.org/10.1016/j.ijbiomac.2020.12.050] [PMID: 33309665]
[65]
Zheng YF, Ye J, Zhang ZR, Li LW. A new type of glutathione-responsive anti-osteosarcoma prodrug nanoparticles. Mater Technol 2021; 5770: 1-9.
[http://dx.doi.org/10.1080/10667857.2021.1908769]
[66]
Xu F, Zhong H, Chang Y, et al. Targeting death receptors for drug-resistant cancer therapy: Codelivery of pTRAIL and monensin using dual-targeting and stimuli-responsive self-assembling nanocomposites. Biomaterials 2018; 158: 56-73.
[http://dx.doi.org/10.1016/j.biomaterials.2017.12.018] [PMID: 29304403]
[67]
Qi N, Zhang Y, Tang X, Li A. Cationic/anionic polyelectrolyte (PLL/PGA) coated vesicular phospholipid gels (VPGS) loaded with cytarabine for sustained release and anti-glioma effects. Drug Des Devel Ther 2020; 14: 1825-36.
[http://dx.doi.org/10.2147/DDDT.S248362] [PMID: 32494124]
[68]
Pillarisetti S, Maya S, Sathianarayanan S, Jayakumar R. Tunable pH and redox-responsive drug release from curcumin conjugated γ-polyglutamic acid nanoparticles in cancer microenvironment. Colloids Surf B Biointerfaces 2017; 159: 809-19.
[http://dx.doi.org/10.1016/j.colsurfb.2017.08.057] [PMID: 28886517]
[69]
Hou KT, Liu TI, Chiu HC, Chiang WH. DOX/ICG-carrying γ-PGA-g-PLGA-based polymeric nanoassemblies for acid-triggered rapid DOX release combined with NIR-activated photothermal effect. Eur Polym J 2019; 110: 283-92.
[http://dx.doi.org/10.1016/j.eurpolymj.2018.11.038]
[70]
Ashiuchi M, Hakumai Y, Shibatani S, et al. Poly-γ-glutamate-based materials for multiple infection prophylaxis possessing versatile coating performance. Int J Mol Sci 2015; 16(10): 24588-99.
[http://dx.doi.org/10.3390/ijms161024588] [PMID: 26501266]
[71]
Owais M, Khan AA, Zubair S, Zia Q. Self-assembled amphotericin b-loaded polyglutamic acid nanoparticles: Preparation, characterization and in vitro potential against candida albicans. Int J Nanomedicine 2015; 10(1): 1769-90.
[http://dx.doi.org/10.2147/IJN.S63155] [PMID: 25784804]
[72]
Su YR, Yu SH, Chao AC, et al. Preparation and properties of pH-responsive, self-assembled colloidal nanoparticles from guanidine-containing polypeptide and chitosan for antibiotic delivery. Colloids Surf A Physicochem Eng Asp 2016; 494(5): 9-20.
[http://dx.doi.org/10.1016/j.colsurfa.2016.01.017]
[73]
Ran DX, Cheng PC, Zheng P, Xu ZN, Lu S. Preparation of poly-γ-glutamic acid/chitosan nanoparticles and pH responsive release properties. J J Functional Polymers 2020; 33(1): 54-62.
[http://dx.doi.org/10.14133/j.cnki.1008-9357.20181128001]
[74]
Li M, Zhang Z, Li S, Tian Z, Ma X. Study on the mechanism of production of γ-PGA and nattokinase in Bacillus subtilis natto based on RNA-seq analysis. Microb Cell Fact 2021; 20(1): 83.
[http://dx.doi.org/10.1186/s12934-021-01570-x] [PMID: 33836770]
[75]
Huang MJS. Synthesis of Polylutamic Acid Dendrimer and Its Application in Anti-cancer and Thrombolysis Combined Treatment Thesis Lanzhou University: Lanzhou 2020.
[76]
Zhang SF, Lü S, Yang J, Huang M, Liu Y, Liu M. Synthesis of multiarm peptide dendrimers for dual targeted thrombolysis. ACS Macro Lett 2020; 9(2): 238-44.
[http://dx.doi.org/10.1021/acsmacrolett.0c00054] [PMID: 35638687]
[77]
Kurosaki T, Katafuchi Y, Hashizume J, et al. Induction of mucosal immunity by pulmonary administration of a cell-targeting nanoparticle. Drug Deliv 2021; 28(1): 1585-93.
[http://dx.doi.org/10.1080/10717544.2021.1955040] [PMID: 34291725]
[78]
Hoennscheidt C, Kreyenschulte D, Margaritis A, Krull R. Production of stable quinine nanodispersions using esterified γ-polyglutamic acid biopolymer. Biochem Eng J 2013; 79(15): 259-66.
[http://dx.doi.org/10.1016/j.bej.2013.08.004]
[79]
Béduneau A, Saulnier P, Benoit JP. Active targeting of brain tumors using nanocarriers. Biomaterials 2007; 28(33): 4947-67.
[http://dx.doi.org/10.1016/j.biomaterials.2007.06.011] [PMID: 17716726]
[80]
Ju L. Biosynthesis and Nanocapsule Preparation of γ-Polyglutamic Acid. Thesis Shanghai Institute of Technology: Shanghai 2011.
[81]
Shen YP. Construction and Evaluation of Nanosacle Drug Delivery System Based on Polyamino Acid 2020.
[82]
Kuo YC, Yu HW. Transport of saquinavir across human brain-microvascular endothelial cells by poly(lactide-co-glycolide) nanoparticles with surface poly-(γ-glutamic acid). Int J Pharm 2011; 416(1): 365-75.
[http://dx.doi.org/10.1016/j.ijpharm.2011.06.037] [PMID: 21736932]