Citric Acid Promoted Green Synthesis of Bioactive Heterocycles

Page: [73 - 91] Pages: 19

  • * (Excluding Mailing and Handling)

Abstract

In this review, we report green transformations of biologically active heterocycles catalyzed by Citric acid. Citric acid is found naturally in citrus fruits, especially lemons and limes. Citric acid is soluble in water used as a highly efficient and biodegradable catalyst for multi-component transformations, biomimetic reactions, and C-C bond formation. It has been applicable for the multicomponent synthesis of pyrano[2, 3-e]pyrimidin, pyrano[2, 3-d]pyrazol-amines, amidoalkyl naphthols, tetrahydropyridines, indazolo[ 2,1-b]phthalazine-triones, indazolo[2,1-b]phthalazine-triones, indazolo[2,1-b]phthalazine-triones, ethyl 3-methyl-4,5-dioxo-1,2-diphenylpyrrolidine-3-carboxylate and 2,4-disubstituted thiazoles from ketones via C-Br, C-S, and C-N Bond Formations. Citric acid is also used in combination with ultrasound for the synthesis of biologically active pyrazolyl-bis coumarinyl methanes and pyrrolidinone. Citric acid is used in the generation of nanocatalysts, mesoporous carbon materials (OMCs) as well as polymerization reactions by the reaction of resorcinol/formaldehyde resin. Citric acid is also used in the generation of fluorescent 1,4-disubstituted-1,2,3-triazoles1,8-dioxo-decahydroacridines by Hantzsch condensation.

Graphical Abstract

[1]
Max, B.; Salgado, J.M.; Rodríguez, N.; Cortés, S.; Converti, A.; Domínguez, J.M. Biotechnological production of citric acid. Braz. J. Microbiol., 2010, 41(4), 862-875.
[http://dx.doi.org/10.1590/S1517-83822010000400005] [PMID: 24031566]
[2]
(a) Behera, B.C.; Mishra, R.; Mohapatra, S. Microbial citric acid: Production, properties, application, and future perspectives. Food Front., 2021, 2(1), 62-76. http://dx.doi.org/10.1002/fft2.66;
(b) Ciriminna, R.; Meneguzzo, F.; Delisi, R.; Pagliaro, M. Citric acid: Emerging applications of key biotechnology industrial product. Chem. Cent. J., 2017, 11(1), 22.
[http://dx.doi.org/10.1186/s13065-017-0251-y] [PMID: 28326128]
[4]
Kubicek, C.P. The role of sugar uptake and channeling for citric acid accumulation by Aspergillus niger. Food Technol. Biotechnol., 1998, 36, 173-176.
[5]
Rymowicz, W.; Fatykhova, A.R.; Kamzolova, S.V.; Rywińska, A; Morgunov, I.G. Citric acid production from glycerol-containing waste of biodiesel industry by Yarrowia lipolytica in batch, repeated batch, and cell recycle regimes. Appl. Microbiol. Biotechnol., 2010, 87(3), 971-979.
[http://dx.doi.org/10.1007/s00253-010-2561-z] [PMID: 20376633]
[6]
Förster, A.; Aurich, A.; Mauersberger, S.; Barth, G. Citric acid production from sucrose using a recombinant strain of the yeast Yarrowia lipolytica. Appl. Microbiol. Biotechnol., 2007, 75(6), 1409-1417.
[http://dx.doi.org/10.1007/s00253-007-0958-0] [PMID: 17447058]
[7]
Grimoux, E.; Adams, P. Synthesis of citric acid. C. R. Hebd. Seances Acad. Sci., 1980, 90, 1252.
[8]
Haller, A.; Held, A. Synthesis of citric acid. C R Acad Sci., 1890, 111, 682-685.
[9]
Lawrence, W.T. XLIV.—A synthesis of citric acid. J. Chem. Soc. Trans., 1897, 71(0), 457-459.
[http://dx.doi.org/10.1039/CT8977100457]
[10]
Winkel, C.; Buitenhuis, E.G.; Lugtenburg, J. Synthesis and spectroscopic study of 13C-labelled citric acids. Recl. Trav. Chim. Pays Bas, 1989, 108(2), 51-56.
[http://dx.doi.org/10.1002/recl.19891080203]
[11]
Naveen, P.; Sivamani, S.; Cuento, A.; Pachiyappan, S. Chemical route for synthesis of citric acid from orange and grape juices. Chem. Ind. Chem. Eng. Q., 2022, 28(2), 135-140.
[http://dx.doi.org/10.2298/CICEQ200820025N]
[12]
Wehmer, C. Note sur la fermentation citrique. Bull. Soc. Chim. Fr., 1893, 9, 728.
[13]
Kuforiji, O.; Kuboye, A.; Odunfa, S. Orange and pineapplewastes as potential substrates for citric acid production. Int. J. Plant Biol., 2010, 1(1), e4.
[http://dx.doi.org/10.4081/pb.2010.e4]
[14]
Singh, D.G.; Kaur, B.S.; Verma, M.; Tyagi, R.D. Recent advances in citric acid bio-production and recovery. Food Bioprocess Technol., 2011, 4(4), 505-529.
[http://dx.doi.org/10.1007/s11947-010-0399-0]
[15]
Vasanthabharathi, V.; Sajitha, N.; Jayalakshmi, S. Citric acid production from U-V mutated estuarine Aspergillus niger. Adv. Biol. Res., 2013, 7, 89-94.
[16]
Li, Z.; Wen, X.; Liu, H. Efficient conversion of bio-renewable citric acid to high-value carboxylic acids on stable solid catalysts. Green Chem., 2022, 24(4), 1650-1658.
[http://dx.doi.org/10.1039/D1GC04497D]
[17]
Kolah, A.K.; Asthana, N.S.; Vu, D.T.; Lira, C.T.; Miller, D.J. Reaction kinetics of the catalytic esterification of citric acid with ethanol. Ind. Eng. Chem. Res., 2007, 46(10), 3180-3187.
[http://dx.doi.org/10.1021/ie060828f]
[18]
Baizer, M.M.; Dub, M.; Gister, S.; Steinberg, N.G. Synthesis of isoniazid from citric acid. J. Am. Pharm. Assoc. (Sci. Ed), 1956, 45(7), 478-480.
[http://dx.doi.org/10.1002/jps.3030450714] [PMID: 13345683]
[19]
Thopate, S.R.; Kote, S.R.; Rohokale, S.V.; Thorat, N.M. Citric acid catalysed Beckmann rearrangement, under solvent free conditions. J. Chem. Res., 2011, 35(2), 124-125.
[http://dx.doi.org/10.3184/174751911X557296]
[20]
Rohokale, S.; Kote, S.; Deshmukh, S.; Thopate, S. Natural organic acids promoted Beckmann rearrangement: Green and expeditious synthesis of amides under solvent-free conditions. Chem. Pap., 2014, 68(4), 575-578.
[http://dx.doi.org/10.2478/s11696-013-0481-y]
[21]
Abd El-Rahman, N.M.; Nasreen, A. Citric acid catalyzed deprotection of carbonyl compounds from phenylhydrazones, semicarbazones and oximes under microwave irradiations. Orient. J. Chem., 2017, 33, 2030-2035.
[http://dx.doi.org/10.13005/ojc/330451]
[22]
Ghorbani-Choghamarani, A.; Rezaei, S. An efficient catalytic procedure for the selective oxidation of sulfides to sulfoxides by citric acid/Al (NO3)3.9H2O/MBr under mild and heterogeneous conditions. J. Chin. Chem. Soc. (Taipei), 2009, 56(2), 251-254.
[http://dx.doi.org/10.1002/jccs.200900036]
[23]
Éll, A.H.; Closson, A.; Adolfsson, H.; Bäckvall, J-E. Efficient osmium/rhenium‐catalyzed dihydroxylation of olefins with hydrogen peroxide under acidic conditions. Adv. Synth. Catal., 2003, 345(8), 1012-1016.
[http://dx.doi.org/10.1002/adsc.200303043]
[24]
Bihanic, C.; Lasbleiz, A.; Regnier, M.; Petit, E.; Le Blainvaux, P.; Grison, C. New sustainable synthetic routes to cyclic oxyterpenes using the Ecocatalyst toolbox. Molecules, 2021, 26(23), 7194.
[http://dx.doi.org/10.3390/molecules26237194]
[25]
Li, P.; Ma, F.; Wang, P.; Zhang, Z. Highly efficient low melting mixture catalyzed synthesis of 1, 8‐dioxo‐dodecahydroxanthene derivatives. Chin. J. Chem., 2013, 31(6), 757-763.
[http://dx.doi.org/10.1002/cjoc.201300152]
[26]
Napoleon, A.A.; Nawaz Khan, F.R. Potential anti-tubercular and in vitro anti-inflammatory agents: 9-substituted 1,8-dioxo-octahydro-xanthenes through cascade/domino reaction by citric fruit juices. Med. Chem. Res., 2014, 23(11), 4749-4760.
[http://dx.doi.org/10.1007/s00044-014-1033-x]
[27]
Cahyana, A.H.; Pratiwi, D.; Ardiansah, B. Synthesis and biological investigation of 3,3,6,6-tetramethyl-9-styryl-1,8-dioxooctahydro-xanthene promoted by Fe3O4-supported citric acid as a magnetically recoverable catalyst. Rasayan J. Chem., 2016, 9, 896-902.
[28]
Ahmed, M.Z.; Patel, N.T.; Shaikh, K.A.; Baseer, M.A.; Shaikh, S.; Patti, V.A. Atom efficient grinding technique for the synthesis of hydrazones catalyzed by citric acid. Elixier Org. Chem, 2010, 43, 6583-6585.
[29]
Enugala, R.; Nuvvula, S.; Kotra, V.; Varala, R.; Adapa, S.R. Green approach for the efficient synthesis of quinolines promoted by citric acid. Heterocycles, 2008, 75, 2523-2533.
[http://dx.doi.org/10.3987/COM-08-11405]
[30]
Wagh, Y.B.; Dalal, D.S. Microwave-assisted domino cyclization reactions. Curr. Microw. Chem., 2021, 8(3), 140-172.
[http://dx.doi.org/10.2174/2213335608666211006121803]
[31]
Seyedi, N.; Khabazzadeh, H. Glycerin and citric acid: a green and efficient catalytic medium for synthesis of bis(indolyl)methanes. Res. Chem. Intermed., 2015, 41(4), 2603-2607.
[http://dx.doi.org/10.1007/s11164-013-1372-0]
[32]
Sharma, A.; Obrai, S.; Kumar, R.; Kaur, A.; Hundal, G. 5-Methyl-5-aryldipyrromethanes: synthesis, crystal structure and anion binding studies. Supramol. Chem., 2013, 25(8), 474-480.
[http://dx.doi.org/10.1080/10610278.2013.794280]
[33]
Wagh, Y.B.; Tayade, Y.A.; Dalal, D.S. Sulfonic acid functionalized magnetic nanocatalysts in organic synthesis; Synthetic Applications, 2022, p. 333.
[34]
Kumari, M.; Gupta, R.; Jain, Y. Preparation of a simple biocompatible magnetite@citric acid: An efficient reusable solid acid catalyst for the rapid synthesis of antipyrine Schiff’s bases and study of their radical scavenging potential. Synth. Commun., 2019, 49(4), 529-538.
[http://dx.doi.org/10.1080/00397911.2018.1556795]
[35]
Guy, R.G. The Chemistry of the Cyanates and Their Thio Derivatives; Patai, S., Ed.; Wiley Interscience: New York, 1977, p. 819.
[36]
Shahidi, F. Sulphur Compounds in Foods; Mussinan, C.J; Keelan, M.E., Ed.; American Chemical Society: Washington, DC, 1994, p. 106.
[http://dx.doi.org/10.1021/bk-1994-0564.ch009]
[37]
Khazaei, A.; Zolfigol, M.A.; Mokhlesi, M.; Pirveysian, M. Citric acid as a trifunctional organocatalyst for thiocyanation of aromatic and heteroaromatic compounds in aqueous media. Can. J. Chem., 2012, 90(5), 427-432.
[http://dx.doi.org/10.1139/v2012-013]
[38]
Labade, V.B.; Shinde, P.V.; Pawar, S.S.; Shingare, M.S. Citric acid: an efficient and biodegradable catalyst for the convenient synthesis of 1,5-benzodiazepines in water. J. Chem. Biol., 2011, 1, 349-354.
[39]
Badran, M.M.; Abouzid, K.A.M.; Hussein, M.H.M. Synthesis of certain substituted quinoxalines as antimicrobial agents (part II). Arch. Pharm. Res., 2003, 26(2), 107-113.
[http://dx.doi.org/10.1007/BF02976653] [PMID: 12643584]
[40]
Smits, R.A.; Lim, H.D.; Hanzer, A.; Zuiderveld, O.P.; Guaita, E.; Adami, M.; Coruzzi, G.; Leurs, R.; de Esch, I.J.P. Fragment based design of new H4 receptor-ligands with anti-inflammatory properties in vivo. J. Med. Chem., 2008, 51(8), 2457-2467.
[http://dx.doi.org/10.1021/jm7014217] [PMID: 18357976]
[41]
Guillon, J.; Grellier, P.; Labaied, M.; Sonnet, P.; Léger, J.M.; Déprez-Poulain, R.; Forfar-Bares, I.; Dallemagne, P.; Lemaître, N.; Péhourcq, F.; Rochette, J.; Sergheraert, C.; Jarry, C. Synthesis, antimalarial activity, and molecular modeling of new pyrrolo[1,2-a]quinoxalines, bispyrrolo[1,2-a]quinoxalines, bispyrido[3,2-e]pyrrolo[1,2-a]pyrazines, and bispyrrolo[1,2-a]thieno[3,2-e]pyrazines. J. Med. Chem., 2004, 47(8), 1997-2009.
[http://dx.doi.org/10.1021/jm0310840] [PMID: 15055999]
[42]
Sanna, P.; Carta, A.; Loriga, M.; Zanetti, S.; Sechi, L. Synthesis of 3,6,7-substituted-quinoxalin-2-ones for evaluation of antimicrobial and anticancer activity. Part 2. Farmaco, 1999, 54(3), 161-168.
[http://dx.doi.org/10.1016/S0014-827X(99)00010-5] [PMID: 10371029]
[43]
Sarges, R.; Howard, H.R.; Browne, R.G.; Lebel, L.A.; Seymour, P.A.; Koe, B.K. 4-Amino[1,2,4]triazolo[4,3-a]quinoxalines. A novel class of potent adenosine receptor antagonists and potential rapid-onset antidepressants. J. Med. Chem., 1990, 33(8), 2240-2254.
[http://dx.doi.org/10.1021/jm00170a031] [PMID: 2374150]
[44]
Mahesh, R.; Dhar, A.K. TVNV, T.S.; Thirunavukkarasu, S.; Devadoss, T. Citric acid: An efficient and green catalyst for rapid one pot synthesis of quinoxaline derivatives at room temperature. Chin. Chem. Lett., 2011, 22, 389-392.
[http://dx.doi.org/10.1016/j.cclet.2010.11.002]
[45]
Akelis, L.; Rousseau, J.; Juskenas, R.; Dodonova, J.; Rousseau, C.; Menuel, S.; Prevost, D.; Tumkevičius, S.; Monflier, E.; Hapiot, F. Greener Paal-Knorr pyrrole synthesis by mechanical activation. Eur. J. Org. Chem., 2016, 2016(1), 31-35.
[http://dx.doi.org/10.1002/ejoc.201501223]
[46]
Bukvić Krajačić, M.; Novak, P.; Dumić, M.; Cindrić, M.; Paljetak, H.Č.; Kujundžić, N. Novel ureas and thioureas of 15-membered azalides with antibacterial activity against key respiratory pathogens. Eur. J. Med. Chem., 2009, 44(9), 3459-3470.
[http://dx.doi.org/10.1016/j.ejmech.2009.02.001] [PMID: 19303171]
[47]
Mahajan, A.; Yeh, S.; Nell, M.; van Rensburg, C.E.J.; Chibale, K. Synthesis of new 7-chloroquinolinyl thioureas and their biological investigation as potential antimalarial and anticancer agents. Bioorg. Med. Chem. Lett., 2007, 17(20), 5683-5685.
[http://dx.doi.org/10.1016/j.bmcl.2007.07.049] [PMID: 17768052]
[48]
Bloom, J.D.; DiGrandi, M.J.; Dushin, R.G.; Curran, K.J.; Ross, A.A.; Norton, E.B.; Terefenko, E.; Jones, T.R.; Feld, B.; Lang, S.A. Thiourea inhibitors of herpes viruses. part 1: bis-(aryl)thiourea inhibitors of CMV. Bioorg. Med. Chem. Lett., 2003, 13(17), 2929-2932.
[http://dx.doi.org/10.1016/S0960-894X(03)00586-9] [PMID: 14611860]
[49]
Sharma, S.K.; Wu, Y.; Steinbergs, N.; Crowley, M.L.; Hanson, A.S.; Casero, R.A., Jr; Woster, P.M. (Bis)urea and (bis)thiourea inhibitors of lysine-specific demethylase 1 as epigenetic modulators. J. Med. Chem., 2010, 53(14), 5197-5212.
[http://dx.doi.org/10.1021/jm100217a] [PMID: 20568780]
[50]
Liav, A.; Angala, S.K.; Brennan, P.J. N‐Glycosyl‐ N′‐[p‐(isoamyloxy)phenyl]‐thiourea derivatives: Potential anti‐TB therapeutic agents. Synth. Commun., 2008, 38(8), 1176-1183.
[http://dx.doi.org/10.1080/00397910701865777]
[51]
Jangale, A.D.; Kumavat, P.P.; Wagh, Y.B.; Tayade, Y.A.; Mahulikar, P.P.; Dalal, D.S. Green process development for the synthesis of aliphatic symmetrical N, N′-disubstituted thiourea derivatives in aqueous medium. Synth. Commun., 2015, 45(3), 376-385.
[http://dx.doi.org/10.1080/00397911.2014.963876]
[52]
Kumavat, P.P.; Jangale, A.D.; Patil, D.R.; Dalal, K.S.; Meshram, J.S.; Dalal, D.S. Green synthesis of symmetrical N, N′-disubstituted thiourea derivatives in water using solar energy. Environ. Chem. Lett., 2013, 11(2), 177-182.
[http://dx.doi.org/10.1007/s10311-012-0394-y]
[53]
Azizi, N.; Alipour, M. Synthesis of carboxylic dithiocarbamic anhydride and substituted thiourea derivatives in water. Environ. Chem. Lett., 2018, 16(4), 1415-1421.
[http://dx.doi.org/10.1007/s10311-018-0743-6]
[54]
Azizi, N.; Khajeh-Amiri, A.; Ghafuri, H.; Bolourtchian, M. Toward a practical and waste-free synthesis of thioureas in water. Mol. Divers., 2011, 15(1), 157-161.
[http://dx.doi.org/10.1007/s11030-010-9236-7] [PMID: 20180020]
[55]
Li, Z.; Wang, Z.Y.; Zhao, Y.L.; Xing, Y.L.; Zhu, W. An environmentally benign method for the synthesis of symmetrical n, n′-disubstituted thioureas in a water medium. Phosphorus Sulfur Silicon Relat. Elem., 2005, 180(12), 2745-2750.
[http://dx.doi.org/10.1080/104265090968082]
[56]
Steppeler, F.; Iwan, D.; Wojaczyńska, E.; Wojaczyński, J. Chiral thioureas-preparation and significance in asymmetric synthesis and medicinal chemistry. Molecules, 2020, 25(2), 401.
[http://dx.doi.org/10.3390/molecules25020401] [PMID: 31963671]
[57]
Arefi, M.; Kazemi Miraki, M.; Mostafalu, R.; Satari, M.; Heydari, A. Citric acid stabilized on the surface of magnetic nanoparticles as an efficient and recyclable catalyst for transamidation of carboxamides, phthalimide, urea and thiourea with amines under neat conditions. J. Indian Chem. Soc., 2019, 16(2), 393-400.
[http://dx.doi.org/10.1007/s13738-018-1523-8]
[58]
Dahab, M.A.; Derasp, J.S.; Beauchemin, A.M. Thieme chemistry journals awardees-where are they now? a cascade synthesis of 1, 2, 4-Triazin-3 (2H)-ones using nitrogen-substituted isocyanates. Synlett, 2017, 28, 456-460.
[59]
Govindaraju, S.; Tabassum, S.; Pasha, M.A. Citric‐acid‐catalyzed green and sustainable synthesis of novel functionalized pyrano [2,3‐e] pyrimidin‐and pyrano [2, 3‐d] pyrazol‐amines in water via onepot multicomponent approaches. ChemistrySelect, 2018, 3(13), 3832-3838.
[http://dx.doi.org/10.1002/slct.201703023]
[60]
Ghorbani-Choghamarani, A.; Taghipour, T. Green and one-pot three-component synthesis of 2, 3-dihydroquinazolin-4 (1H)-ones promoted by citric acid as recoverable catalyst in water. Lett. Org. Chem., 2011, 8(7), 470-476.
[http://dx.doi.org/10.2174/157017811796505025]
[61]
Fahimi, N.; Reza, S.A. Citric acid: A green bioorganic catalyst for one-pot three-component synthesis of 2, 3-dihydroquinazoline-4 (1H)-ones. Curr. Organocatal., 2015, 3(1), 39-44.
[http://dx.doi.org/10.2174/2213337202666150602221505]
[62]
Akpotu, S.O.; Moodley, B.; Vamsi, B.; Ofomaja, A.; Maddila, S.; Jonnalagadda, S.B. Citric Acid/MCM‐48 catalyzed multicomponent reaction: An efficient method for the novel synthesis of quinoline derivatives. ChemistrySelect, 2019, 4(23), 7003-7009.
[http://dx.doi.org/10.1002/slct.201900907]
[63]
Koolivand, M.; Nikoorazm, M.; Ghorbani-Choghamarani, A.; Azadbakht, R.; Tahmasbi, B. Ni-citric acid coordination polymer as a practical catalyst for multicomponent reactions. Sci. Rep., 2021, 11(1), 24475.
[http://dx.doi.org/10.1038/s41598-021-03857-w] [PMID: 34963682]
[64]
Feurer, A.; Luithle, J.; Wirtz, S.; Koenig, G.; Stasch, J.; Stahl, E.; Schreiber, R.; Wunder, F; Lang, D. Novel 2,5-disubstituted pyrimidine derivatives. Wo 2004009589, 2004.
[65]
Nasr, M.N.; Gineinah, M.M. Pyrido[2, 3-d]pyrimidines and pyrimido[5′,4′:5, 6]pyrido[2, 3-d]pyrimidines as new antiviral agents: Synthesis and biological activity. Arch. Pharm. (Weinheim), 2002, 335(6), 289-295.
[http://dx.doi.org/10.1002/1521-4184(200208)335:6<289:AID-ARDP289>3.0.CO;2-Z] [PMID: 12210772]
[66]
Ahluwalia, V.K.; Dahiya, A.; Garg, V. Reaction of 5-amino-4-formyl-3-methyl(or phenyl)-1-phenyl-1H-pyrazoles with active methylene compounds: Synthesis of fused heterocyclic rings. Indian J. Chem., 1997, 36B, 88-91.
[67]
Mohamed, N.R.; Khaireldin, N.Y.; Fahmyb, A.F.; El-Sayeda, A.A.F. Facile synthesis of fused nitrogen containing heterocycles as anticancer agents. Pharma Chem., 2010, 2, 400-417.
[68]
Pawar, P.B.; Jadhav, S.D.; Patil, B.M.; Shejwal, R.V.; Patil, S. Rapid one-pot four component synthesis of bioactive pyranopyrazoles using citric acid as a mild organocatalyst. Arch. Appl. Sci. Res., 2014, 6, 150-158.
[69]
Karimi-Jaberi, Z.; Fereydoonnezhad, A. One-pot, organocatalytic synthesis of spirooxindoles using citric acid in aqueous media. Iran. Chem. Commun, 2017, 5, 1-10.
[70]
Ghorbani-Choghamarani, A.; Taghipour, T.; Azadi, G. One‐pot, green and efficient synthesis of 3, 4‐dihydropyrimidin‐2 (1H)‐ones or thiones catalyzed by citric acid. J. Chin. Chem. Soc. (Taipei), 2013, 60 n/a
[http://dx.doi.org/10.1002/jccs.201300118]
[71]
Ramu, E.; Kotra, V.; Bansal, N.; Varala, R.; Adapa, S.R. Green approach for the efficient synthesis of Biginelli compounds promoted by citric acid under solvent-free conditions. Rasayan J. Chem., 2008, 1, 188-194.
[72]
Rikani, A.; Setamdideh, D. One-pot and three-component synthesis of isoxazol-5(4H)-one derivatives in the presence of citric acid. Orient. J. Chem., 2016, 32(3), 1433-1437.
[http://dx.doi.org/10.13005/ojc/320317]
[73]
Ghorbani-Choghamarani, A.; Shiri, L.; Azadi, G.; Pourbahar, N. One-pot synthesis of 2,4,5-tri-substituted and 1,2,4,5-tetra-substituted imidazoles catalyzed by poly(4-vinylpyridinium tribromide) (P.V.P.Br3) or citric acid. Res. Chem. Intermed., 2015, 41(8), 4997-5005.
[http://dx.doi.org/10.1007/s11164-014-1583-z]
[74]
Chouha, N.; Boumoud, T.; Tebabel, I.; Boumoud, B.; Debache, A. An efficient one-pot synthesis of 2, 4, 5-trisubstituted imidazole catalysed by citric acid. Der. Pharma Chem., 2016, 8, 202-206.
[75]
Warekar, P.P.; Patil, P.T.; Patil, K.T.; Jamale, D.K.; Kolekar, G.B.; Anbhule, P.V. Ecofriendly synthesis and biological evaluation of 4-(4-nitro-phenyl)-2-phenyl-1,4-dihydro-benzo[4,5]imidazo[1,2-a]pyrimidine-3-carboxylic acid ethyl ester derivatives as an antitubercular agents. Synth. Commun., 2016, 46(24), 2022-2030.
[http://dx.doi.org/10.1080/00397911.2016.1244273]
[76]
Patil, M.; Karhale, S.; Kudale, A.; Kumbhar, A.; More, S.; Helavi, V. Green protocol for the synthesis of 1, 8-dioxo-decahydroacridines by Hantzsch condensation using citric acid as organocatalyst. Curr. Sci., 2019, 116(6), 936-942.
[http://dx.doi.org/10.18520/cs/v116/i6/936-942]
[77]
Pawar, P.B.; Jadahv, S.D.; Deshmukh, M.B.; Patil, S. Citric acid as a mild and inexpensive organocatalyst for synthesis of tetrahydrobenzo[z] xanthen-11-ones and dibenzo [a, j] xanthenes under solvent-free condition. Indian J. Chem., 2014, 53B(9), 1185-1193.
[78]
Salahi, S.; Maghsoodlou, M.T.; Hazeri, N.; Lashkari, M.; Garcia-Granda, S.; Torre-Fernandez, L. An efficient green synthesis of dispirohydroquinolines via a diastereoselective one-pot eight-component reaction. Chin. J. Catal., 2015, 36(7), 1023-1028.
[http://dx.doi.org/10.1016/S1872-2067(15)60846-4]
[79]
Ahankar, H.; Ramazani, A.; Ślepokura, K.; Lis, T.; Joo, S.W. Synthesis of pyrrolidinone derivatives from aniline, an aldehyde and diethyl acetylenedicarboxylate in an ethanolic citric acid solution under ultrasound irradiation. Green Chem., 2016, 18(12), 3582-3593.
[http://dx.doi.org/10.1039/C6GC00157B]
[80]
Singh, H.; Rajput, J.K. Chelation and calcination promoted preparation of perovskite-structured BiFeO3 nanoparticles: a novel magnetic catalyst for the synthesis of dihydro-2-oxypyrroles. J. Mater. Sci., 2018, 53(5), 3163-3188.
[http://dx.doi.org/10.1007/s10853-017-1790-2]
[81]
Ahankar, H.; Ramazani, A.; Saeidian, H.; Ślepokura, K.; Lis, T. Synthesis, crystal structure, and DFT studies of ethyl 4-hydroxy-2-(4-methoxyphenyl)-5-oxo-1-phenyl-2, 5-dihydro-1H-pyrrole-3-carboxylate. J. Struct. Chem., 2021, 62(1), 47-57.
[http://dx.doi.org/10.1134/S0022476621010066]
[82]
Ningdale, V.B.; Chaudhar, U.N.; Shaikh, K.A. An eco-friendly protocol for synthesis of β-aminoketones via Mannich reaction using citric acid: a biodegradable catalyst. IOSR J. Appl. Chem, 2014, 7, 86-89.
[http://dx.doi.org/10.9790/5736-07428689]
[83]
Shaikh, K.A.; Chaudhar, U.N.; Ningdale, V.B. Citric acid catalyzed synthesis of amidoalkyl naphthols under solvent-free condition: an eco-friendly protocol. IOSR J. Appl. Chem, 2014, 7, 90-93.
[http://dx.doi.org/10.9790/5736-07429093]
[84]
Zolfigol, M.A.; Mokhlesi, M.; Farahmand, S. Application of citric acid as highly efficient and green organocatalyst for multi-component synthesis of indazolo[2,1-b]phthalazine-triones. J. Indian Chem. Soc., 2013, 10(3), 577-581.
[http://dx.doi.org/10.1007/s13738-012-0193-1]
[85]
Mohammat, M.F.; Safyudin, U.; Rashid, F.N.A.A.; Salleh, S.N.M.; Johari, S.A.; Shaameri, Z.; Hamzah, A.S. Synthesis of ethyl 3-methyl-4, 5-dioxo-1, 2-diphenylpyrrolidine-3-carboxylate analogues using green and expeditious grinding method. Russ. J. Gen. Chem., 2021, 91(11), 2272-2279.
[http://dx.doi.org/10.1134/S1070363221110141]
[86]
Madanifar, Z.; Maghsoodlou, M.T.; Kangani, M.; Hazeri, N. Citric acid, a green catalyst for the one-pot, multi-component synthesis of highly substituted piperidines. Res. Chem. Intermed., 2015, 41(12), 9863-9869.
[http://dx.doi.org/10.1007/s11164-015-1993-6]
[87]
Bharti, R.; Sharma, R. Natural acid catalyzed aqua mediated multicomponent synthesis of tetrahydropyridines and its antioxidant activities. Mater. Today, 2021, 45, 3186-3194.
[88]
Safaei-Ghomi, J.; Tavazo, M.; Vakili, M.R.; Shahbazi-Alavi, H. Chitosan functionalized by citric acid: An efficient catalyst for one-pot synthesis of 2,4-diamino-5 H -[1]benzopyrano[2,3- b]pyridine-3-carbonitriles 5-(arylthio) or 5-[(arylmethyl)thio] substituted. J. Sulfur Chem., 2017, 38(3), 236-248.
[http://dx.doi.org/10.1080/17415993.2016.1275633]
[89]
Wagh, Y.B.; Dalal, K.S.; Padvi, S.A.; Terdale, S.S.; Dalal, D.S.; Mahulikar, P.P. Efficient and greener synthesis of functionalized isoniazid azomethines from aromatic aldehydes and isatins using citric acid in aqueous ethanol. Polycycl. Aromat. Compd., 2021, 1-13.
[http://dx.doi.org/10.1080/10406638.2021.2015396]