The Role of Flavanones as Scaffolds for the Development of New Treatments against Malaria and African and American Trypanosomiases

Page: [1479 - 1498] Pages: 20

  • * (Excluding Mailing and Handling)

Abstract

Parasitic infections are diseases transmitted by parasites usually found in contaminated food, water, or insect bites. Generally classified as neglected tropical diseases, malaria and trypanosomiases are some of the most prominent parasitic diseases that cause significant loss of life annually. In 2020, an estimated 241 million malaria cases were reported, with 627,000 deaths worldwide. An estimated 6 to 7 million people are infected with Trypanosoma cruzi worldwide, whereas an estimated 1000 global cases of African human trypanosomiasis were reported in 2020. Flavanones are a group of compounds that belong to the flavonoid family and are chemically obtained by direct cyclization of chalcones. Recent pharmacological studies have demonstrated the effectiveness of plant flavanones in inhibiting the growth of the parasites responsible for malaria and trypanosomiases. The present work aims to summarize up-to-date and comprehensive literature information on plant flavanones with antimalarial and antitrypanosomal activities. The mechanisms of action of the antiparasitic flavanones are also discussed. A literature search was performed for naturally occurring flavanones and antimalarial and antitrypanosomal activities by referencing textbooks and scientific databases (SciFinder, Wiley, American Chemical Society, Science Direct, National Library of Medicine, Scientific Electronic Library Online, Web of Science, etc.) from their inception until April 2022. Based on in vitro experiments, more than sixty flavanones were reported to exhibit antimalarial, anti-T. cruzi, and anti-T. brucei activities. Previous studies demonstrated that these compounds bind to PGP-like transporters of P. falciparum to reverse the parasite’s resistance. Other reports pinpointed the direct effect of these compounds on the mitochondria of the malaria parasite. Moreover, flavanones have shown strong docking to several validated T. cruzi and T. brucei protein targets, including adenosine kinase, pteridine reductase 1, dihydrofolate reductase, and trypanothione reductase, among others. Flavanones, isolated and characterized from diverse plant parts, were reported to exhibit moderate to high activity against P. falciparum, T. cruzi, and T. brucei in in vitro studies. These potentially active flavanones can be used as scaffolds for the development of new antiparasitic agents. However, more studies on the cytotoxicity, pharmacokinetics, and mechanisms of action of potent flavanones should be performed.

Graphical Abstract

[1]
Tigabu, A.; Taye, S.; Aynalem, M.; Adane, K. Prevalence and associated factors of intestinal parasitic infections among patients attending Shahura Health Center, Northwest Ethiopia. BMC Res. Notes, 2019, 12(1), 333.
[http://dx.doi.org/10.1186/s13104-019-4377-y] [PMID: 31186041]
[2]
The World Health Organization (WHO). The Fact Sheets; , 2021. Available from: https://www.who.int/teams/global-malaria-programme/reports/world-malaria-report-2021
[3]
The World Health Organization (WHO). Malaria. Key facts; , 2022. Available from: https://www.who.int/news-room/fact-sheets/detail/malaria
[4]
Gujjari, L.; Kalani, H.; Pindiprolu, S.K.; Arakareddy, B.P.; Yadagiri, G. Current challenges and nanotechnology-based pharmaceutical strategies for the treatment and control of malaria. Parasite Epidemiol. Control, 2022, 17, e00244.
[http://dx.doi.org/10.1016/j.parepi.2022.e00244] [PMID: 35243049]
[5]
Subramanian, G.; Belekar, M.A.; Shukla, A.; Tong, J.X.; Sinha, A.; Chu, T.T.T.; Kulkarni, A.S.; Preiser, P.R.; Reddy, D.S.; Tan, K.S.W.; Shanmugam, D.; Chandramohanadas, R. Targeted phenotypic screening in Plasmodium falciparum and Toxoplasma gondii reveals novel modes of action of medicines for malaria venture malaria box molecules. MSphere, 2018, 3(1), e00534-e17.
[http://dx.doi.org/10.1128/mSphere.00534-17] [PMID: 29359192]
[6]
Meibalan, E.; Marti, M. Biology of malaria transmission. Cold Spring Harb. Perspect. Med., 2017, 7(3), a025452.
[http://dx.doi.org/10.1101/cshperspect.a025452] [PMID: 27836912]
[7]
Ouédraogo, A.; Tiono, A.B.; Diarra, A.; Bougouma, E.C.C.; Nébié, I.; Konaté, A.T.; Sirima, S.B. Transplacental transmission of Plasmodium falciparum in a highly malaria endemic area of Burkina Faso. J. Trop. Med., 2012, 2012, 1-7.
[http://dx.doi.org/10.1155/2012/109705] [PMID: 22174725]
[8]
D’Alessandro, U.; Hill, J.; Tarning, J.; Pell, C.; Webster, J.; Gutman, J.; Sevene, E. Treatment of uncomplicated and severe malaria during pregnancy. Lancet Infect. Dis., 2018, 18(4), e133-e146.
[http://dx.doi.org/10.1016/S1473-3099(18)30065-3] [PMID: 29395998]
[9]
Luzolo, A.L.; Ngoyi, D.M. Cerebral malaria. Brain Res. Bull., 2019, 145, 53-58.
[http://dx.doi.org/10.1016/j.brainresbull.2019.01.010] [PMID: 30658131]
[10]
Krettli, A.U.; Miller, L.H. Malaria: A sporozoite runs through it. Curr. Biol., 2001, 11(10), R409-R412.
[http://dx.doi.org/10.1016/S0960-9822(01)00221-4] [PMID: 11378408]
[11]
Greenwood, B.M.; Fidock, D.A.; Kyle, D.E.; Kappe, S.H.I.; Alonso, P.L.; Collins, F.H.; Duffy, P.E. Malaria: Progress, perils, and pros-pects for eradication. J. Clin. Invest., 2008, 118(4), 1266-1276.
[http://dx.doi.org/10.1172/JCI33996] [PMID: 18382739]
[13]
The World Health Organization (WHO). 2022. Available from: https://www.who.int/health-topics/chagas-disease
[14]
Lidani, K.C.F.; Andrade, F.A.; Bavia, L.; Damasceno, F.S.; Beltrame, M.H.; Messias-Reason, I.J.; Sandri, T.L. Chagas disease: From dis-covery to a worldwide health problem. Front. Public Health, 2019, 7, 166.
[http://dx.doi.org/10.3389/fpubh.2019.00166] [PMID: 31312626]
[15]
Liu, Q.; Zhou, X.N. Preventing the transmission of American trypanosomiasis and its spread into non-endemic countries. Infect. Dis. Poverty, 2015, 4(1), 60.
[http://dx.doi.org/10.1186/s40249-015-0092-7] [PMID: 26715535]
[16]
Skaf, J.; Hamarsheh, O.; Berninger, M.; Balasubramanian, S.; Oelschlaeger, T.A.; Holzgrabe, U. Improving anti-trypanosomal activity of alkamides isolated from Achillea fragrantissima. Fitoterapia, 2018, 125, 191-198.
[http://dx.doi.org/10.1016/j.fitote.2017.11.001] [PMID: 29108932]
[17]
Plewes, K.; Leopold, S.J.; Kingston, H.W.F.; Dondorp, A.M. Malaria. Infect. Dis. Clin. North Am., 2019, 33(1), 39-60.
[http://dx.doi.org/10.1016/j.idc.2018.10.002] [PMID: 30712767]
[18]
Afonso, A.M.; Ebell, M.H.; Tarleton, R.L. A systematic review of high quality diagnostic tests for Chagas disease. PLoS Negl. Trop. Dis., 2012, 6(11), e1881.
[http://dx.doi.org/10.1371/journal.pntd.0001881] [PMID: 23145201]
[19]
Gomes, Y.M.; Lorena, V.M.B.; Luquetti, A.O. Diagnosis of Chagas disease: what has been achieved? What remains to be done with regard to diagnosis and follow up studies? Mem. Inst. Oswaldo Cruz, 2009, 104(S1), 115-121.
[http://dx.doi.org/10.1590/S0074-02762009000900017] [PMID: 19753466]
[20]
Qvarnstrom, Y.; Schijman, A.G.; Veron, V.; Aznar, C.; Steurer, F.; da Silva, A.J. Sensitive and specific detection of Trypanosoma cruzi DNA in clinical specimens using a multi-target real-time PCR approach. PLoS Negl. Trop. Dis., 2012, 6(7), e1689.
[http://dx.doi.org/10.1371/journal.pntd.0001689] [PMID: 22802973]
[21]
Karakavuk, M.; Aykur, M.; Ünver, A.; Döşkaya, M. Parasitic diseases that can infect travelers to Africa. Turkish J. Parasitol., 2018, 42(2), 154-160.
[http://dx.doi.org/10.5152/tpd.2018.5256] [PMID: 29780009]
[22]
Antonio-Nkondjio, C.; Ndo, C.; Njiokou, F.; Bigoga, J.D.; Awono-Ambene, P.; Etang, J.; Ekobo, A.S.; Wondji, C.S. Review of malaria situation in Cameroon: technical viewpoint on challenges and prospects for disease elimination. Parasit. Vectors, 2019, 12(1), 501.
[http://dx.doi.org/10.1186/s13071-019-3753-8] [PMID: 31655608]
[23]
PAHO-WHO. Guidelines for the treatment of malaria., 2011. Available from: https://www.paho.org/hq/dmdocuments/2011/WHO_Treatment_Guidelines_Olumense.pdf [Accessed on 11th May 2022].
[24]
Babokhov, P.; Sanyaolu, A.O.; Oyibo, W.A.; Fagbenro-Beyioku, A.F.; Iriemenam, N.C. A current analysis of chemotherapy strategies for the treatment of human African trypanosomiasis. Pathog. Glob. Health, 2013, 107(5), 242-252.
[http://dx.doi.org/10.1179/2047773213Y.0000000105] [PMID: 23916333]
[25]
Uliassi, E.; Fiorani, G.; Krauth-Siegel, R.L.; Bergamini, C.; Fato, R.; Bianchini, G.; Carlos Menéndez, J.; Molina, M.T.; López-Montero, E.; Falchi, F.; Cavalli, A.; Gul, S.; Kuzikov, M.; Ellinger, B.; Witt, G.; Moraes, C.B.; Freitas-Junior, L.H.; Borsari, C.; Costi, M.P.; Bolognesi, M.L. Crassiflorone derivatives that inhibit Trypanosoma brucei glyceraldehyde-3-phosphate dehydrogenase (Tb GAPDH) and Trypanosoma cruzi trypanothione reductase (Tc TR) and display trypanocidal activity. Eur. J. Med. Chem., 2017, 141, 138-148.
[http://dx.doi.org/10.1016/j.ejmech.2017.10.005] [PMID: 29031061]
[26]
Cock, I.E.; Selesho, M.I.; Van Vuuren, S.F. A review of the traditional use of southern African medicinal plants for the treatment of selected parasite infections affecting humans. J. Ethnopharmacol., 2018, 220, 250-264.
[http://dx.doi.org/10.1016/j.jep.2018.04.001] [PMID: 29621583]
[27]
Rukachaisirikul, T.; Saekee, A.; Tharibun, C.; Watkuolham, S.; Suksamrarn, A. Biological activities of the chemical constituents ofErythrina stricta and Erythrina subumbrans. Arch. Pharm. Res., 2007, 30(11), 1398-1403.
[http://dx.doi.org/10.1007/BF02977363] [PMID: 18087807]
[28]
Cho, N.; Valenciano, A.L.; Du, Y.; Clement, J.; Cassera, M.B.; Goetz, M.; Kingston, D.G.I. Antiplasmodial flavanones and a stilbene from Carpha glomerata. Bioorg. Med. Chem. Lett., 2018, 28(20), 3368-3371.
[http://dx.doi.org/10.1016/j.bmcl.2018.09.003] [PMID: 30219526]
[29]
Alenezi, S.S.; Natto, M.J.; Igoli, J.O.; Gray, A.I.; Fearnley, J.; Fearnley, H.; de Koning, H.P.; Watson, D.G. Novel flavanones with anti-trypanosomal activity isolated from Zambian and Tanzanian propolis samples. Int. J. Parasitol. Drugs Drug Resist., 2020, 14, 201-207.
[http://dx.doi.org/10.1016/j.ijpddr.2020.10.011] [PMID: 33160277]
[30]
Grecco, S.S.; Reimão, J.Q.; Tempone, A.G.; Sartorelli, P.; Cunha, R.L.O.R.; Romoff, P.; Ferreira, M.J.P.; Fávero, O.A.; Lago, J.H.G. In vitro antileishmanial and antitrypanosomal activities of flavanones from Baccharis retusa DC. (Asteraceae). Exp. Parasitol., 2012, 130(2), 141-145.
[http://dx.doi.org/10.1016/j.exppara.2011.11.002] [PMID: 22143090]
[31]
Khan, M.K.; Zill-E-Huma; Dangles, O. A comprehensive review on flavanones, the major citrus polyphenols. J. Food Compos. Anal., 2014, 33(1), 85-104.
[http://dx.doi.org/10.1016/j.jfca.2013.11.004]
[32]
Xu, G.; Ye, X.; Chen, J.; Liu, D. Effect of heat treatment on the phenolic compounds and antioxidant capacity of citrus peel extract. J. Agric. Food Chem., 2007, 55(2), 330-335.
[http://dx.doi.org/10.1021/jf062517l] [PMID: 17227062]
[33]
Bocco, A.; Cuvelier, M.E.; Richard, H.; Berset, C. Antioxidant activity and phenolic composition of citrus peel and seed extracts. J. Agric. Food Chem., 1998, 46(6), 2123-2129.
[http://dx.doi.org/10.1021/jf9709562]
[34]
Xu, G.H.; Chen, J.C.; Liu, D.H.; Zhang, Y.H.; Jiang, P.; Ye, X.Q. Minerals, phenolic compounds, and antioxidant capacity of citrus peel extract by hot water. J. Food Sci., 2008, 73(1), C11-C18.
[http://dx.doi.org/10.1111/j.1750-3841.2007.00546.x] [PMID: 18211343]
[35]
Kim, M.R.; Kim, W.C.; Lee, D.Y.; Kim, C.W. Recovery of narirutin by adsorption on a non-ionic polar resin from a water-extract of Citrus unshiu peels. J. Food Eng., 2007, 78(1), 27-32.
[http://dx.doi.org/10.1016/j.jfoodeng.2005.09.004]
[36]
Kim, J.W.; Lee, B.C.; Lee, J.H.; Nam, K.C.; Lee, S.C. Effect of electron-beam irradiation on the antioxidant activity of extracts from Citrus unshiu pomaces. Radiat. Phys. Chem., 2008, 77(1), 87-91.
[http://dx.doi.org/10.1016/j.radphyschem.2007.02.082]
[37]
Li, B.B.; Smith, B.; Hossain, M.M. Extraction of phenolics from citrus peels. Separ. Purif. Tech., 2006, 48(2), 182-188.
[http://dx.doi.org/10.1016/j.seppur.2005.07.005]
[38]
Akbari, H. Principals of Solar Engineering, 3rd ed; CRC Press: Florida, 2019.
[39]
Herrero, M.; Sánchez-Camargo, A.P.; Cifuentes, A.; Ibáñez, E. Plants, seaweeds, microalgae and food by-products as natural sources of functional ingredients obtained using pressurized liquid extraction and supercritical fluid extraction. Trends Analyt. Chem., 2015, 71, 26-38.
[http://dx.doi.org/10.1016/j.trac.2015.01.018]
[40]
Dahmoune, F.; Spigno, G.; Moussi, K.; Remini, H.; Cherbal, A.; Madani, K. Pistacia lentiscus leaves as a source of phenolic compounds: Microwave-assisted extraction optimized and compared with ultrasound-assisted and conventional solvent extraction. Ind. Crops Prod., 2014, 61, 31-40.
[http://dx.doi.org/10.1016/j.indcrop.2014.06.035]
[41]
Chaves, J.O.; de Souza, M.C.; da Silva, L.C.; Lachos-Perez, D.; Torres-Mayanga, P.C.; Machado, A.P.F.; Forster-Carneiro, T.; Vázquez-Espinosa, M.; González-de-Peredo, A.V.; Barbero, G.F.; Rostagno, M.A. Extraction of flavonoids from natural sources using modern techniques. Front Chem., 2020, 8, 507887.
[http://dx.doi.org/10.3389/fchem.2020.507887] [PMID: 33102442]
[42]
Chemat, F.; Rombaut, N.; Sicaire, A.G.; Meullemiestre, A.; Fabiano-Tixier, A.S.; Abert-Vian, M. Ultrasound assisted extraction of food and natural products. Mechanisms, techniques, combinations, protocols and applications. A review. Ultrason. Sonochem., 2017, 34, 540-560.
[http://dx.doi.org/10.1016/j.ultsonch.2016.06.035] [PMID: 27773280]
[43]
Ávila-Gálvez, M.Á.; Giménez-Bastida, J.A.; González-Sarrías, A.; Espín, J.C. New insights into the metabolism of the flavanones eriocitrin and hesperedin: A comparative human pharmacokinetic study. Antioxidants, 2021, 10(3), 435.
[http://dx.doi.org/10.3390/antiox10030435] [PMID: 33799874]
[44]
Andújar, S.A.; Filippa, M.A.; Ferretti, F.H.; Blanco, S.E. Isomerization of 4′-methoxy-flavanone in alkaline medium. Determination of the enolate formation constant. J. Mol. Struct. THEOCHEM, 2003, 636(1-3), 157-166.
[http://dx.doi.org/10.1016/S0166-1280(03)00474-3]
[45]
Dittmer, C.; Raabe, G.; Hintermann, L. Asymmetric cyclization of 2’hydroxychalcones to flavanones: catalysis by chiral Bronsted acids and bases. Eur. J. Org. Chem., 2007, 2007(35), 5886-5898.
[http://dx.doi.org/10.1002/ejoc.200700682]
[46]
Shin, K.C.; Nam, H.K.; Oh, D.K. Hydrolysis of flavanone glycosides by β-glucosidase from Pyrococcus furiosus and its application to the production of flavanone aglycones from citrus extracts. J. Agric. Food Chem., 2013, 61(47), 11532-11540.
[http://dx.doi.org/10.1021/jf403332e] [PMID: 24188428]
[47]
Boumendjel, A.; Blanc, M.; Williamson, G.; Barron, D. Efficient synthesis of flavanone glucuronides. J. Agric. Food Chem., 2009, 57(16), 7264-7267.
[http://dx.doi.org/10.1021/jf9011467] [PMID: 19653653]
[48]
Khan, M.K.; Abert-Vian, M.; Fabiano-Tixier, A.S.; Dangles, O.; Chemat, F. Ultrasound-assisted extraction of polyphenols (flavanone glycosides) from orange (Citrus sinensis L.) peel. Food Chem., 2010, 119(2), 851-858.
[http://dx.doi.org/10.1016/j.foodchem.2009.08.046]
[49]
Ahmed, M.S.; Galal, A.M.; Ross, S.A.; Ferreira, D.; ElSohly, M.A.; Ibrahim, A.R.S.; Mossa, J.S.; El-Feraly, F.S. A weakly antimalarial biflavanone from Rhus retinorrhoea. Phytochemistry, 2001, 58(4), 599-602.
[http://dx.doi.org/10.1016/S0031-9422(01)00244-8] [PMID: 11576606]
[50]
Yenesew, A.; Induli, M.; Derese, S.; Midiwo, J.O.; Heydenreich, M.; Peter, M.G.; Akala, H.; Wangui, J.; Liyala, P.; Waters, N.C. Anti-plasmodial flavonoids from the stem bark of Erythrina abyssinica. Phytochemistry, 2004, 65(22), 3029-3032.
[http://dx.doi.org/10.1016/j.phytochem.2004.08.050] [PMID: 15504437]
[51]
Baren, C.; Anao, I.; Lira, P.D.L.; Debenedetti, S.; Houghton, P.; Croft, S.; Martino, V. Triterpenic acids and flavonoids from Satureja parvifolia. Evaluation of their antiprotozoal activity. Z. Naturforsch. C J. Biosci., 2006, 61(3-4), 189-192.
[http://dx.doi.org/10.1515/znc-2006-3-406] [PMID: 16729575]
[52]
Portet, B.; Fabre, N.; Roumy, V.; Gornitzka, H.; Bourdy, G.; Chevalley, S.; Sauvain, M.; Valentin, A.; Moulis, C. Activity-guided isolation of antiplasmodial dihydrochalcones and flavanones from Piper hostmannianum var. berbicense. Phytochemistry, 2007, 68(9), 1312-1320.
[http://dx.doi.org/10.1016/j.phytochem.2007.02.006] [PMID: 17397884]
[53]
Zakaria, I.; Ahmat, N.; Jaafar, F.M.; Widyawaruyanti, A. Flavonoids with antiplasmodial and cytotoxic activities of Macaranga triloba. Fitoterapia, 2012, 83(5), 968-972.
[http://dx.doi.org/10.1016/j.fitote.2012.04.020] [PMID: 22561914]
[54]
Yenesew, A.; Akala, H.M.; Twinomuhwezi, H.; Chepkirui, C.; Irungu, B.N.; Eyase, F.L.; Kamatenesi-Mugisha, M.; Kiremire, B.T.; Johnson, J.D.; Waters, N.C. The antiplasmodial and radical scavenging activities of flavonoids of Erythrina burttii. Acta Trop., 2012, 123(2), 123-127.
[http://dx.doi.org/10.1016/j.actatropica.2012.04.011] [PMID: 22575309]
[55]
Muiva-Mutisya, L.M.; Atilaw, Y.; Heydenreich, M.; Koch, A.; Akala, H.M.; Cheruiyot, A.C.; Brown, M.L.; Irungu, B.; Okalebo, F.A.; Derese, S.; Mutai, C.; Yenesew, A. Antiplasmodial prenylated flavanonols from Tephrosia subtriflora. Nat. Prod. Res., 2018, 32(12), 1407-1414.
[http://dx.doi.org/10.1080/14786419.2017.1353510] [PMID: 28714338]
[56]
Senadeera, S.P.D.; Lucantoni, L.; Duffy, S.; Avery, V.M.; Carroll, A.R. Antiplasmodial β-triketone-flavanone hybrids from the flowers of the Australian tree Corymbia torelliana. J. Nat. Prod., 2018, 81(7), 1588-1597.
[http://dx.doi.org/10.1021/acs.jnatprod.8b00154] [PMID: 29969262]
[57]
Nyandoro, S.S.; Maeda, G.; Munissi, J.J.E.; Gruhonjic, A.; Fitzpatrick, P.A.; Lindblad, S.; Duffy, S.; Pelletier, J.; Pan, F.; Puttreddy, R.; Avery, V.M.; Erdélyi, M. A new benzopyranyl cadenane sesquiterpene and other antiplasmodial and cytotoxic metabolites from Cleistoch-lamys kirkii. Molecules, 2019, 24(15), 2746.
[http://dx.doi.org/10.3390/molecules24152746] [PMID: 31362371]
[58]
Maeda, G.; Munissi, J.J.E.; Lindblad, S.; Duffy, S.; Pelletier, J.; Avery, V.M.; Nyandoro, S.S.; Erdélyi, M. A meroisoprenoid, heptenolides and C-benzylated flavonoids from Sphaerocoryne gracilis ssp. gracilis. J. Nat. Prod., 2020, 83(2), 316-322.
[http://dx.doi.org/10.1021/acs.jnatprod.9b00721] [PMID: 32067457]
[59]
Kim, Y.C.; Kim, H.S.; Wataya, Y.; Sohn, D.H.; Kang, T.H.; Kim, M.S.; Kim, Y.M.; Lee, G.M.; Chang, J.D.; Park, H. Antimalarial activity of lavandulyl flavanones isolated from the roots of Sophora flavescens. Biol. Pharm. Bull., 2004, 27(5), 748-750.
[http://dx.doi.org/10.1248/bpb.27.748] [PMID: 15133260]
[60]
Kanokmedhakul, S.; Kanokmedhakul, K.; Nambuddee, K.; Kongsaeree, P. New bioactive prenylflavonoids and dibenzocycloheptene deri-vative from roots of Dendrolobium lanceolatum. J. Nat. Prod., 2004, 67(6), 968-972.
[http://dx.doi.org/10.1021/np030519j] [PMID: 15217275]
[61]
Weniger, B.; Vonthron-Sénécheau, C.; Kaiser, M.; Brun, R.; Anton, R. Comparative antiplasmodial, leishmanicidal and antitrypanosomal activities of several biflavonoids. Phytomedicine, 2006, 13(3), 176-180.
[http://dx.doi.org/10.1016/j.phymed.2004.10.008] [PMID: 16428025]
[62]
Boonphong, S.; Puangsombat, P.; Baramee, A.; Mahidol, C.; Ruchirawat, S.; Kittakoop, P. Bioactive compounds from Bauhinia purpurea possessing antimalarial, antimycobacterial, antifungal, anti-inflammatory, and cytotoxic activities. J. Nat. Prod., 2007, 70(5), 795-801.
[http://dx.doi.org/10.1021/np070010e] [PMID: 17480099]
[63]
Khaomek, P.; Ichino, C.; Ishiyama, A.; Sekiguchi, H.; Namatame, M.; Ruangrungsi, N.; Saifah, E.; Kiyohara, H.; Otoguro, K.; Omura, S.; Yamada, H. In vitro antimalarial activity of prenylated flavonoids from Erythrina fusca. J. Nat. Med., 2008, 62(2), 217-220.
[http://dx.doi.org/10.1007/s11418-007-0214-z] [PMID: 18404327]
[64]
Salvatore, M.J.; King, A.B.; Graham, A.C.; Onishi, H.R.; Bartizal, K.F.; Abruzzo, G.K.; Gill, C.J.; Ramjit, H.G.; Pitzenberger, S.M.; Witherup, K.M. Antibacterial activity of lonchocarpol A. J. Nat. Prod., 1998, 61(5), 640-642.
[http://dx.doi.org/10.1021/np9703961] [PMID: 9599265]
[65]
Innok, P.; Rukachaisirikul, T.; Suksamrarn, A. Flavanoids and pterocarpans from the bark of Erythrina fusca. Chem. Pharm. Bull. (Tokyo), 2009, 57(9), 993-996.
[http://dx.doi.org/10.1248/cpb.57.993] [PMID: 19721263]
[66]
Dhooghe, L.; Maregesi, S.; Mincheva, I.; Ferreira, D.; Marais, J.P.J.; Lemière, F.; Matheeussen, A.; Cos, P.; Maes, L.; Vlietinck, A.; Apers, S.; Pieters, L. Antiplasmodial activity of (I-3,II-3)-biflavonoids and other constituents from Ormocarpum kirkii. Phytochemistry, 2010, 71(7), 785-791.
[http://dx.doi.org/10.1016/j.phytochem.2010.02.005] [PMID: 20189612]
[67]
Konziase, B. Protective activity of biflavanones from Garcinia kola against Plasmodium infection. J. Ethnopharmacol., 2015, 172, 214-218.
[http://dx.doi.org/10.1016/j.jep.2015.06.038] [PMID: 26129936]
[68]
Chen, Y.; Zhao, J.; Qiu, Y.; Yuan, H.; Khan, S.I.; Hussain, N.; Iqbal Choudhary, M.; Zeng, F.; Guo, D.A.; Khan, I.A.; Wang, W. Prenylated flavonoids from the stems and roots of Tripterygium wilfordii. Fitoterapia, 2017, 119, 64-68.
[http://dx.doi.org/10.1016/j.fitote.2017.04.003] [PMID: 28389278]
[69]
Tuenter, E.; Zarev, Y.; Matheeussen, A.; Elgorashi, E.; Pieters, L.; Foubert, K. Antiplasmodial prenylated flavonoids from stem bark of Erythrina latissima. Phytochem. Lett., 2019, 30, 169-172.
[http://dx.doi.org/10.1016/j.phytol.2019.02.001]
[70]
Boonyaketgoson, S.; Du, Y.; Valenciano Murillo, A.L.; Cassera, M.B.; Kingston, D.G.I.; Trisuwan, K. Flavanones from the twigs and barks of Artocarpus lakoocha having antiplasmodial and antiTB activities. Chem. Pharm. Bull. (Tokyo), 2020, 68(7), 671-674.
[http://dx.doi.org/10.1248/cpb.c20-00080] [PMID: 32612002]
[71]
Boniface, P.K.; Ferreira, E.I. Flavonoids as efficient scaffolds: Recent trends for malaria, leishmaniasis, Chagas disease, and dengue. Phytother. Res., 2019, 33(10), 2473-2517. a.
[http://dx.doi.org/10.1002/ptr.6383] [PMID: 31441148]
[72]
Tasdemir, D.; Kaiser, M.; Brun, R.; Yardley, V.; Schmidt, T.J.; Tosun, F.; Rüedi, P. Antitrypanosomal and antileishmanial activities of flavonoids and their analogues: In vitro, in vivo, structure-activity relationship, and quantitative structure-activity relationship studies. Antimicrob. Agents Chemother., 2006, 50(4), 1352-1364.
[http://dx.doi.org/10.1128/AAC.50.4.1352-1364.2006] [PMID: 16569852]
[73]
Grecco, S.S.; Reimão, J.Q.; Tempone, A.G.; Sartorelli, P.; Romoff, P.; Ferreira, M.J.P.; Fávero, O.A.; Lago, J.H.G. Isolation of an anti-leishmanial and antitrypanosomal flavanone from the leaves of Baccharis retusa DC. (Asteraceae). Parasitol. Res., 2010, 106(5), 1245-1248.
[http://dx.doi.org/10.1007/s00436-010-1771-8] [PMID: 20165875]
[74]
Boutaleb-Charki, S.; Sánchez-Moreno, M.; Díaz, J.G.; Rosales, M.J.; Huertas, O.; Ramon Gutierrez-Sánchez, R.; Marín, C. Activity and mode of action of flavonoids compounds against intracellular and extracellular forms of Trypanosoma cruzi. Open Nat. Prod. J., 2011, 4(1), 1-7.
[http://dx.doi.org/10.2174/1874848101104010001]
[75]
Salem, M.M.; Capers, J.; Rito, S.; Werbovetz, K.A. Antiparasitic activity of C-geranyl flavonoids from Mimulus bigelovii. Phytother. Res., 2011, 25(8), 1246-1249.
[http://dx.doi.org/10.1002/ptr.3404] [PMID: 21796699]
[76]
Alotaibi, A.; Ebiloma, G.U.; Williams, R.; Alfayez, I.A.; Natto, M.J.; Alenezi, S.; Siheri, W.; AlQarni, M.; Igoli, J.O.; Fearnley, J.; De Ko-ning, H.P.; Watson, D.G. Activity of compounds from temperate Propolis against Trypanosom brucei and Leishmania mexicana. Molecules, 2021, 26(13), 3912.
[http://dx.doi.org/10.3390/molecules26133912] [PMID: 34206940]
[77]
Zheoat, A.M.; Alenezi, S.; Elmahallawy, E.K.; Ungogo, M.A.; Alghamdi, A.H.; Watson, D.G.; Igoli, J.O.; Gray, A.I.; de Koning, H.P.; Ferro, V.A. Antitrypanosomal and antileishmanial activity of chalcones and flavanones from Polygonum salicifolium. Pathogens, 2021, 10(2), 175.
[http://dx.doi.org/10.3390/pathogens10020175] [PMID: 33562567]
[78]
Boniface, P.K.; Elizabeth, F.I. Flavonoid-derived privileged scaffolds in anti-Trypanosoma brucei drug discovery. Curr. Drug Targets, 2019, 20(12), 1295-1314.
[http://dx.doi.org/10.2174/1389450120666190618114857] [PMID: 31215385]
[79]
Rasul, A.; Millimouno, F.M.; Ali Eltayb, W.; Ali, M.; Li, J.; Li, X. Pinocembrin: a novel natural compound with versatile pharmacological and biological activities. BioMed Res. Int., 2013, 2013, 1-9.
[http://dx.doi.org/10.1155/2013/379850] [PMID: 23984355]
[80]
Boniface, P.K.; Ferreira, E.I. Therapeutic potential of flavonoid derivatives for certain neglected tropical diseases. Curr. Drug Targets, 2022, 2022, 1-3.
[81]
Gil, J.P.; Fançony, C. Plasmodium falciparum multidrug resistance proteins (pfMRPs). Front. Pharmacol., 2021, 12, 759422.
[http://dx.doi.org/10.3389/fphar.2021.759422] [PMID: 34790129]
[82]
Comte, G.; Daskiewicz, J.B.; Bayet, C.; Conseil, G.; Viornery-Vanier, A.; Dumontet, C.; Di Pietro, A.; Barron, D. C-Isoprenylation of flavonoids enhances binding affinity toward P-glycoprotein and modulation of cancer cell chemoresistance. J. Med. Chem., 2001, 44(5), 763-768.
[http://dx.doi.org/10.1021/jm991128y] [PMID: 11262086]
[83]
Boumendjel, A.; Di Pietro, A.; Dumontet, C.; Barron, D. Recent advances in the discovery of flavonoids and analogs with high-affinity binding to P-glycoprotein responsible for cancer cell multidrug resistance. Med. Res. Rev., 2002, 22(5), 512-529.
[http://dx.doi.org/10.1002/med.10015] [PMID: 12210557]
[84]
Pérez-Victoria, J.M.; Pérez-Victoria, F.J.; Conseil, G.; Maitrejean, M.; Comte, G.; Barron, D.; Di Pietro, A.; Castanys, S.; Gamarro, F. High-affinity binding of silybin derivatives to the nucleotidebinding domain of a Leishmania tropica P-glycoprotein-like transporter and chemosensitization of a multidrug-resistant parasite to daunomycin. Antimicrob. Agents Chemother., 2001, 45(2), 439-446.
[http://dx.doi.org/10.1128/AAC.45.2.439-446.2001] [PMID: 11158738]
[85]
Maciel Diogo, G.; Andrade, J.S.; Sales, Junior, P.A.; Maria Fonseca Murta, S.; Dos Santos, V.M.R.; Taylor, J.G. Trypanocidal activity of flavanone derivatives. Molecules, 2020, 25(2), 397.
[http://dx.doi.org/10.3390/molecules25020397] [PMID: 31963596]
[86]
Bortoluzzi, A.A.M.; Staffen, I.V.; Banhuk, F.W.; Griebler, A.; Matos, P.K.; Ayala, T.S.; da Silva, E.A.A.; Sarragiotto, M.H.; Schuquel, I.T.A.; Jorge, T.C.M.; Menolli, R.A. Determination of chemical structure and anti-Trypanosoma cruzi activity of extracts from the roots of Lonchocarpus cultratus (Vell.) A.M.G. Azevedo & H.C. Lima. Saudi J. Biol. Sci., 2021, 28(1), 99-108.
[http://dx.doi.org/10.1016/j.sjbs.2020.08.036] [PMID: 33424286]
[87]
Berg, M.; Kohl, L.; Van der Veken, P.; Joossens, J.; Al-Salabi, M.I.; Castagna, V.; Giannese, F.; Cos, P.; Versées, W.; Steyaert, J.; Grellier, P.; Haemers, A.; Degano, M.; Maes, L.; de Koning, H.P.; Augustyns, K. Evaluation of nucleoside hydrolase inhibitors for treatment of African trypanosomiasis. Antimicrob. Agents Chemother., 2010, 54(5), 1900-1908.
[http://dx.doi.org/10.1128/AAC.01787-09] [PMID: 20194690]
[88]
Ha, C.H.H.; Fatima, A.; Gaurav, A. In silico investigation of flavonoids as potential trypanosomal nucleoside hydrolase inhibitors. Adv. Bioinforma., 2015, 2015, 1-10.
[http://dx.doi.org/10.1155/2015/826047] [PMID: 26640486]
[89]
Sienkiewicz, N.; Ong, H.B.; Fairlamb, A.H. Trypanosoma brucei pteridine reductase 1 is essential for survival in vitro and for virulence in mice. Mol. Microbiol., 2010, 77(3), 658-671.
[http://dx.doi.org/10.1111/j.1365-2958.2010.07236.x] [PMID: 20545846]