Review of the Application of Raman Spectroscopy in Qualitative and Quantitative Analysis of Drug Polymorphism

Page: [1340 - 1351] Pages: 12

  • * (Excluding Mailing and Handling)

Abstract

Drug polymorphism is an important factor affecting the drugs quality and clinical efficacy. Therefore, great attention should be paid to the crystal analysis of drugs with their researching and evaluating part. With the booming development of Raman spectroscopy in recent years, more and more crystal analysis investigations were based on vibrational spectroscopy. This review mainly discussed the qualitative and quantitative analysis of active pharmaceutical ingredients (API) and pharmaceutical preparation with Raman spectroscopy. On basis of the determination of the vibration mode of drug molecules and the analysis of their chemical structure, this method had the advantages of universal, non-destructive, fast determination, low samples and cost, etc. This review provides theoretical and technical support for crystal structure, which are worth popularizing. It is expected that it will be helpful to relevant government management institutions, pharmaceutical scientific research institutions and pharmaceutical manufacturers.

Graphical Abstract

[1]
Stahly, G.P. Diversity in single- and multiple-component crystals. The search for and prevalence of polymorphs and cocrystals. Cryst. Growth Des., 2007, 7(6), 1007-1026.
[http://dx.doi.org/10.1021/cg060838j]
[2]
Lee, A.Y.; Erdemir, D.; Myerson, A.S. Crystal polymorphism in chemical process development. Annu. Rev. Chem. Biomol. Eng., 2011, 2(1), 259-280.
[http://dx.doi.org/10.1146/annurev-chembioeng-061010-114224] [PMID: 22432619]
[3]
Garnero, C.; Chattah, A.K.; Longhi, M. Stability of furosemide polymorphs and the effects of complex formation with β-cyclodextrin and maltodextrin. Carbohydr. Polym., 2016, 152, 598-604.
[http://dx.doi.org/10.1016/j.carbpol.2016.07.006] [PMID: 27516309]
[4]
Cherukuvada, S.; Nangia, A. Eutectics as improved pharmaceutical materials: design, properties and characterization. Chem. Commun. (Camb.), 2014, 50(8), 906-923.
[http://dx.doi.org/10.1039/C3CC47521B] [PMID: 24322207]
[5]
Wang, J.R.; Wang, X.; Lu, L.; Mei, X. Highly crystalline forms of valsartan with superior physicochemical stability. Cryst. Growth Des., 2013, 13(7), 3261-3269.
[http://dx.doi.org/10.1021/cg400762w]
[6]
Singaraju, A.B.; Bahl, D.; Wang, C.; Swenson, D.C.; Sun, C.C.; Stevens, L.L. Molecular interpretation of the compaction performance and mechanical properties of caffeine cocrystals: a polymorphic study. Mol. Pharm., 2020, 17(1), 21-31.
[http://dx.doi.org/10.1021/acs.molpharmaceut.9b00377] [PMID: 31756102]
[7]
Šuštar, B.; Bukovec, N.; Bukovec, P. Polymorphism and stability of norfloxacin, (1-ethyl-6-fluoro-1,4-dihydro-4-oxo-7-(1-piperazinil)-3-quinolinocarboxylic acid. J. Therm. Anal., 1993, 40(2), 475-481.
[http://dx.doi.org/10.1007/BF02546616]
[8]
Li, K.; Liu, Q.; Cheng, H.; Deng, Y.; Frost, R.L. The molecular structure of chloritoid: A mid-infrared and near-infrared spectroscopic study. Spectrochim. Acta A Mol. Biomol. Spectrosc., 2015, 145, 604-609.
[http://dx.doi.org/10.1016/j.saa.2015.02.091] [PMID: 25828887]
[9]
Zhu, B.; Wang, J.R.; Mei, X. Insight into the phase transformation among various solid forms of baicalein. Cryst. Growth Des., 2015, 15(10), 4959-4968.
[http://dx.doi.org/10.1021/acs.cgd.5b00858]
[10]
Haleblian, J.; McCrone, W. Pharmaceutical applications of polymorphism. J. Pharm. Sci., 1969, 58(8), 911-929.
[http://dx.doi.org/10.1002/jps.2600580802] [PMID: 4899118]
[11]
Haleblian, J.K. Characterization of habits and crystalline modification of solids and their pharmaceutical applications. J. Pharm. Sci., 1975, 64(8), 1269-1288.
[http://dx.doi.org/10.1002/jps.2600640805] [PMID: 1151699]
[12]
Talaczynska, A.; Dzitko, J.; Cielecka-Piontek, J. Benefits and limitations of polymorphic and amorphous forms of active pharmaceutical ingredients. Curr. Pharm. Des., 2016, 22(32), 4975-4980.
[http://dx.doi.org/10.2174/1381612822666160804100036] [PMID: 27494530]
[13]
Li, M.; Zhang, Q.; Wang, J.R.; Mei, X. Mechanochromism triggered fluorescent color switching among polymorphs of a natural fluorescence pigment. Chem. Commun. (Camb.), 2016, 52(75), 11288-11291.
[http://dx.doi.org/10.1039/C6CC04958C] [PMID: 27722493]
[14]
Zhang, Q.; Mei, X. Two new polymorphs of huperzine a obtained from different dehydration processes of one monohydrate. Cryst. Growth Des., 2016, 16(6), 3535-3542.
[http://dx.doi.org/10.1021/acs.cgd.6b00493]
[15]
Suresh, K.; Nangia, A. Curcumin: pharmaceutical solids as a platform to improve solubility and bioavailability. CrystEngComm, 2018, 20(24), 3277-3296.
[http://dx.doi.org/10.1039/C8CE00469B]
[16]
Chono, S.; Takeda, E.; Seki, T.; Morimoto, K. Enhancement of the dissolution rate and gastrointestinal absorption of pranlukast as a model poorly water-soluble drug by grinding with gelatin. Int. J. Pharm., 2008, 347(1-2), 71-78.
[http://dx.doi.org/10.1016/j.ijpharm.2007.06.037] [PMID: 17689212]
[17]
Singaraju, A.B.; Bahl, D.; Wang, C.; Swenson, D.C.; Sun, C.C.; Stevens, L.L. A molecular interpretation of the compaction performance and mechanical properties of caffeine cocrystals:a polymorphic study. Mol. Pharm., 2020, 17(1), 21-31.
[http://dx.doi.org/10.1021/acs.molpharmaceut.9b00377] [PMID: 31756102]
[18]
Morissette, S.L.; Soukasene, S.; Levinson, D.; Cima, M.J.; Almarsson, Ö. Elucidation of crystal form diversity of the HIV protease inhibitor ritonavir by high-throughput crystallization. Proc. Natl. Acad. Sci. USA, 2003, 100(5), 2180-2184.
[http://dx.doi.org/10.1073/pnas.0437744100] [PMID: 12604798]
[19]
Gao, Z.; Rohani, S.; Gong, J.; Wang, J. Recent developments in the crystallization process: toward the pharmaceutical industry. Engineering (Beijing), 2017, 3(3), 343-353.
[http://dx.doi.org/10.1016/J.ENG.2017.03.022]
[20]
Shi, Q.; Chen, H.; Wang, Y.; Xu, J.; Liu, Z.; Zhang, C. Recent advances in drug polymorphs: Aspects of pharmaceutical properties and selective crystallization. Int. J. Pharm., 2022, 611, 121320.
[http://dx.doi.org/10.1016/j.ijpharm.2021.121320] [PMID: 34843866]
[21]
Pindelska, E.; Sokal, A.; Kolodziejski, W. Pharmaceutical cocrystals, salts and polymorphs: Advanced characterization techniques. Adv. Drug Deliv. Rev., 2017, 117, 111-146.
[http://dx.doi.org/10.1016/j.addr.2017.09.014] [PMID: 28931472]
[22]
Higashi, K.; Ueda, K.; Moribe, K. Recent progress of structural study of polymorphic pharmaceutical drugs. Adv. Drug Deliv. Rev., 2017, 117, 71-85.
[http://dx.doi.org/10.1016/j.addr.2016.12.001] [PMID: 27940141]
[23]
Kumar, A.; Singh, P.; Nanda, A. Hot stage microscopy and its applications in pharmaceutical characterization. Appl. Microsc., 2020, 50(1), 12.
[http://dx.doi.org/10.1186/s42649-020-00032-9] [PMID: 33580349]
[24]
Hao, C.; Jin, J.; Xiong, J.; Yang, Z.; Gao, L.; Ma, Y.; Liu, B.F.; Liu, X.; Chen, Y.; Zhang, G. Polymorphs of DP-VPA solid solutions and their physicochemical properties. J. Pharm. Sci., 2020, 109(7), 2156-2165.
[http://dx.doi.org/10.1016/j.xphs.2020.03.017] [PMID: 32240697]
[25]
Liu, F.; Lizio, R.; Schneider, U.J.; Petereit, H.U.; Blakey, P.; Basit, A.W. SEM/EDX and confocal microscopy analysis of novel and conventional enteric-coated systems. Int. J. Pharm., 2009, 369(1-2), 72-78.
[http://dx.doi.org/10.1016/j.ijpharm.2008.10.035] [PMID: 19061944]
[26]
Eddleston, M.D.; Bithell, E.G.; Jones, W. Transmission electron microscopy of pharmaceutical materials. J. Pharm. Sci., 2010, 99(9), 4072-4083.
[http://dx.doi.org/10.1002/jps.22220] [PMID: 20665849]
[27]
Zhoujin, Y.; Li, Y.; Zhang, M.; Parkin, S.; Guo, J.; Li, T.; Yu, F.; Long, S. Polymorphism and cocrystal salt formation of 2-((2,6-dichlorophenyl)amino)benzoic acid, harvest of a second form of 2-((2,6-dimethylphenyl)amino)benzoic acid, and isomorphism between the two systems. CrystEngComm, 2022, 24(3), 681-690.
[http://dx.doi.org/10.1039/D1CE01407B]
[28]
Lee, M.J.; Aitipamula, S.; Choi, G.J.; Chow, P.S. Agomelatine–hydroquinone (1:1) cocrystal: novel polymorphs and their thermodynamic relationship. Acta Crystallogr. B Struct. Sci. Cryst. Eng. Mater., 2019, 75(6), 969-977.
[http://dx.doi.org/10.1107/S2052520619011739] [PMID: 32830676]
[29]
Aitipamula, S.; Chow, P.S.; Tan, R.B.H. Conformational polymorphs of a muscle relaxant, metaxalone. Cryst. Growth Des., 2011, 11(9), 4101-4109.
[http://dx.doi.org/10.1021/cg200678e]
[30]
Sharma, P.; Gangopadhyay, D.; Umrao, S.; Kumar, S.; Ghosh, A.K.; Mishra, P.C.; Singh, R.K. A novel Raman spectroscopic approach to identify polymorphism in leflunomide: a combined experimental and theoretical study. J. Raman Spectrosc., 2016, 47(4), 468-475.
[http://dx.doi.org/10.1002/jrs.4834]
[31]
Xu, Y.; Wu, S.P.; Liu, X.J.; Zhang, L.J.; Lu, J. Crystal characterization and transformation of the forms I and II of anticoagulant drug rivaroxaban. Cryst. Res. Technol., 2017, 52(3), 1600379.
[http://dx.doi.org/10.1002/crat.201600379]
[32]
Song, Y.; Cong, Y.; Wang, B.; Zhang, N. Applications of Fourier transform infrared spectroscopy to pharmaceutical preparations. Expert Opin. Drug Deliv., 2020, 17(4), 551-571.
[http://dx.doi.org/10.1080/17425247.2020.1737671] [PMID: 32116058]
[33]
Liu, H.; Yang, P.; Li, Z.; Wen, Q.; Li, X.; Zhu, C.; Jiao, P.; Zhuang, W.; Wu, J.; Ying, H. Thermodynamics, characterization, and polymorphic transformation of 1,5-pentanediamine carbonate. Ind. Eng. Chem. Res., 2020, 59(21), 10185-10194.
[http://dx.doi.org/10.1021/acs.iecr.0c00365]
[34]
Detrich, Á.; Dömötör, K.J.; Katona, M.T.; Markovits, I.; Vargáné Láng, J. Polymorphic forms of bisoprolol fumarate. J. Therm. Anal. Calorim., 2019, 135(6), 3043-3055.
[http://dx.doi.org/10.1007/s10973-018-7553-8]
[35]
Ayala, A.P.; Siesler, H.W.; Boese, R.; Hoffmann, G.G.; Polla, G.I.; Vega, D.R. Solid state characterization of olanzapine polymorphs using vibrational spectroscopy. Int. J. Pharm., 2006, 326(1-2), 69-79.
[http://dx.doi.org/10.1016/j.ijpharm.2006.07.023] [PMID: 16949223]
[36]
Hashimoto, K.; Badarla, V.R.; Kawai, A.; Ideguchi, T. Complementary vibrational spectroscopy. Nat. Commun., 2019, 10(1), 4411.
[http://dx.doi.org/10.1038/s41467-019-12442-9] [PMID: 31562337]
[37]
Xu, Y. J.; Southern, S. A.; Szell, P. M. J.; Bryce, D. L. The role of solid-state nuclear magnetic resonance in crystal engineering. CrystEngComm, 2016, 18(28), 5236-5252.
[http://dx.doi.org/10.1039/C6CE01206J]
[38]
Hsieh, W.H.; Cheng, W.T.; Chen, L.C.; Lin, S.Y. Non-isothermal dehydration kinetic study of aspartame hemihydrate using DSC, TGA and DSC-FTIR microspectroscopy. Asian J. Pharmaceut. Sci., 2018, 13(3), 212-219.
[http://dx.doi.org/10.1016/j.ajps.2017.12.001]
[39]
Lin, S.Y. Molecular perspectives on solid-state phase transformation and chemical reactivity of drugs: metoclopramide as an example. Drug Discov. Today, 2015, 20(2), 209-222.
[http://dx.doi.org/10.1016/j.drudis.2014.10.001] [PMID: 25450770]
[40]
Gong, N.; Yang, D.; Jin, G.; Liu, S.; Du, G.; Lu, Y. Structure, characterization, solubility and stability of podophyllotoxin polymorphs. J. Mol. Struct., 2019, 1195, 323-330.
[http://dx.doi.org/10.1016/j.molstruc.2019.05.048]
[41]
Wang, S.L.; Lin, S.Y.; Hsieh, T.F.; Chan, S.A. Thermal behavior and thermal decarboxylation of 10-hydroxycamptothecin in the solid state. J. Pharm. Biomed. Anal., 2007, 43(2), 457-463.
[http://dx.doi.org/10.1016/j.jpba.2006.07.023] [PMID: 16934429]
[42]
Du, Y.; Xue, J. Investigation of polymorphism and cocrystallization of active pharmaceutical ingredients using vibrational spectroscopic techniques. Curr. Pharm. Des., 2016, 22(32), 4917-4928.
[http://dx.doi.org/10.2174/1381612822666160726104604] [PMID: 27464725]
[43]
Hertrampf, A.; Sousa, R.M.; Menezes, J.C.; Herdling, T. Semiquantitative prediction of a multiple API solid dosage form with a combination of vibrational spectroscopy methods. J. Pharm. Biomed. Anal., 2016, 124, 246-253.
[http://dx.doi.org/10.1016/j.jpba.2016.03.003] [PMID: 26970593]
[44]
Hu, Y.; Erxleben, A.; Ryder, A.G.; McArdle, P. Quantitative analysis of sulfathiazole polymorphs in ternary mixtures by attenuated total reflectance infrared, near-infrared and Raman spectroscopy. J. Pharm. Biomed. Anal., 2010, 53(3), 412-420.
[http://dx.doi.org/10.1016/j.jpba.2010.05.002] [PMID: 20605386]
[45]
Kachrimanis, K.; Braun, D.E.; Griesser, U.J. Quantitative analysis of paracetamol polymorphs in powder mixtures by FT-Raman spectroscopy and PLS regression. J. Pharm. Biomed. Anal., 2007, 43(2), 407-412.
[http://dx.doi.org/10.1016/j.jpba.2006.07.032] [PMID: 16935450]
[46]
Campbell Roberts, S.N.; Williams, A.C.; Grimsey, I.M.; Booth, S.W. Quantitative analysis of mannitol polymorphs. FT-Raman spectroscopy. J. Pharm. Biomed. Anal., 2002, 28(6), 1135-1147.
[http://dx.doi.org/10.1016/S0731-7085(02)00059-6] [PMID: 12049978]
[47]
Lamadrid, H. M.; Steele, M. M.; Bodnar, R. J. Relationship between Raman spectral features and fugacity in mixtures of gases. J. Raman Spectroscopy, 2018, 49(3), 581-593.
[http://dx.doi.org/10.1002/jrs.5304]
[48]
Ewing, A.V.; Kazarian, S.G. Recent advances in the applications of vibrational spectroscopic imaging and mapping to pharmaceutical formulations. Spectrochim. Acta, 2018, 197, 10-29.
[http://dx.doi.org/10.1016/j.saa.2017.12.055]
[49]
Šašić, S. An in-depth analysis of Raman and near-infrared chemical images of common pharmaceutical tablets. Appl. Spectrosc., 2007, 61(3), 239-250.
[http://dx.doi.org/10.1366/000370207780220769] [PMID: 17389063]
[50]
Mulvaney, S.P.; Keating, C.D. Raman spectroscopy. Anal. Chem., 2000, 72(12), 145-158.
[http://dx.doi.org/10.1021/a10000155] [PMID: 10882205]
[51]
Chung, H.; Ku, M.S. Comparison of near-Infrared, infrared, and Raman spectroscopy for the analysis of heavy petroleum products. Appl. Spectrosc., 2000, 54(2), 239-245.
[http://dx.doi.org/10.1366/0003702001949168]
[52]
Stewart, S.; Priore, R.J.; Nelson, M.P.; Treado, P.J. Raman Imaging. Annu. Rev. Anal. Chem. (Palo Alto, Calif.), 2012, 5(1), 337-360.
[http://dx.doi.org/10.1146/annurev-anchem-062011-143152] [PMID: 22524218]
[53]
Vankeirsbilck, T.; Vercauteren, A.; Baeyens, W.; Van der Weken, G.; Verpoort, F.; Vergote, G.; Remon, J.P. Applications of Raman spectroscopy in pharmaceutical analysis. Trends Analyt. Chem., 2002, 21(12), 869-877.
[http://dx.doi.org/10.1016/S0165-9936(02)01208-6]
[54]
Dyrby, M.; Engelsen, S.B.; Nørgaard, L.; Bruhn, M.; Lundsberg-Nielsen, L. Chemometric quantitation of the active substance (containing C N) in a pharmaceutical tablet using near-infrared (NIR) transmittance and NIR FT-Raman spectra. Appl. Spectrosc., 2002, 56(5), 579-585.
[http://dx.doi.org/10.1366/0003702021955358]
[55]
Das, R.S.; Agrawal, Y.K. Raman spectroscopy: Recent advancements, techniques and applications. Vib. Spectrosc., 2011, 57(2), 163-176.
[http://dx.doi.org/10.1016/j.vibspec.2011.08.003]
[56]
Smith, G.P.S.; McGoverin, C.M.; Fraser, S.J.; Gordon, K.C. Raman imaging of drug delivery systems. Adv. Drug Deliv. Rev., 2015, 89, 21-41.
[http://dx.doi.org/10.1016/j.addr.2015.01.005] [PMID: 25632843]
[57]
Erxleben, A. Application of vibrational spectroscopy to study solid-state transformations of pharmaceuticals. Curr. Pharm. Des., 2016, 22(32), 4883-4911.
[http://dx.doi.org/10.2174/1381612822666160726110103] [PMID: 27464723]
[58]
Maheux, C.R.; Alarcon, I.Q.; Copeland, C.R.; Cameron, T.S.; Linden, A.; Grossert, J.S. Identification of polymorphism in ethylone hydrochloride: synthesis and characterization. Drug Test. Anal., 2016, 8(8), 847-857.
[http://dx.doi.org/10.1002/dta.1859] [PMID: 26344849]
[59]
Sheikhzadeh, M.; Rohani, S.; Jutan, A.; Manifar, T.; Murthy, K.; Horne, S. Solid-state characterization of buspirone hydrochloride polymorphs. Pharm. Res., 2006, 23(5), 1043-1050.
[http://dx.doi.org/10.1007/s11095-006-9779-6] [PMID: 16715396]
[60]
Gamberini, M.C.; Baraldi, C.; Tinti, A.; Rustichelli, C.; Ferioli, V.; Gamberini, G. Solid state characterization of chloramphenicol palmitate. Raman spectroscopy applied to pharmaceutical polymorphs. J. Mol. Struct., 2006, 785(1-3), 216-224.
[http://dx.doi.org/10.1016/j.molstruc.2005.10.012]
[61]
Schmidt, A.C. Solid-state characterization of chloroprocaine hydrochloride. J. Therm. Anal. Calorim., 2005, 81(2), 291-297.
[http://dx.doi.org/10.1007/s10973-005-0781-8]
[62]
Peng, B.; Zhang, Z.; Wang, J.R.; Li, M.; Zhang, Q.; Mei, X. Confocal Raman micro-spectral evidence and physicochemical evaluation of triamterene salts. Analyst (Lond.), 2019, 144(2), 530-535.
[http://dx.doi.org/10.1039/C8AN01579A] [PMID: 30406224]
[63]
Zhu, Q.; Harris, M.T.; Taylor, L.S. Modification of crystallization behavior in drug/polyethylene glycol solid dispersions. Mol. Pharm., 2012, 9(3), 546-553.
[http://dx.doi.org/10.1021/mp200546p] [PMID: 22299821]
[64]
Tanabe, Y.; Maeno, Y.; Ohashi, K.; Hisada, H.; Roy, A.; Carriere, J.; Heyler, R.; Fukami, T. Screening a trace amount of pharmaceutical cocrystals by using an enhanced nano-spot method. Eur. J. Pharm. Biopharm., 2019, 136, 131-137.
[http://dx.doi.org/10.1016/j.ejpb.2019.01.018] [PMID: 30660695]
[65]
Yang, C.Q.; Wang, J.; Zhang, Z.W. Synthesis and spectral characteristic of pharmaceutical dipfluzine hydrochloride-benzoic acid co-crystal. Spectroscopy Spectral Anal., 2011, 31(9), 2476-2479.
[http://dx.doi.org/10.3964/j.issn.1000-0593(2011)09-2476-04]
[66]
Jabeen, S.; Dines, T.J.; Leharne, S.A.; Chowdhry, B.Z. Raman and IR spectroscopic studies of fenamates-conformational differences in polymorphs of flufenamic acid, mefenamic acid and tolfenamic acid. Spectrochim. Acta, 2012, 96, 972-985.
[http://dx.doi.org/10.1016/j.saa.2012.07.129]
[67]
Al-Dulaimi, S.; Aina, A.; Burley, J. Rapid polymorph screening on milligram quantities of pharmaceutical material using phononmode Raman spectroscopy. CrystEngComm, 2010, 12(4), 1038-1040.
[http://dx.doi.org/10.1039/B921114B]
[68]
Šašić, S.; Mehrens, S. Raman chemical mapping of low-content active pharmaceutical ingredient formulations. III. Statistically optimized sampling and detection of polymorphic forms in tablets on stability. Anal. Chem., 2012, 84(2), 1019-1025.
[http://dx.doi.org/10.1021/ac202396u] [PMID: 22191712]
[69]
Larkin, P.J.; Dabros, M.; Sarsfield, B.; Chan, E.; Carriere, J.T.; Smith, B.C. Polymorph characterization of active pharmaceutical ingredients (APIs) using low-frequency Raman spectroscopy. Appl. Spectrosc., 2014, 68(7), 758-776.
[http://dx.doi.org/10.1366/13-07329] [PMID: 25014842]
[70]
Mehrens, S.M.; Kale, U.J.; Qu, X. Statistical analysis of differences in the Raman spectra of polymorphs. J. Pharm. Sci., 2005, 94(6), 1354-1367.
[http://dx.doi.org/10.1002/jps.20355] [PMID: 15858843]
[71]
Tian, F.; Rades, T.; Sandler, N. Visualizing solvent mediated phase transformation behavior of carbamazepine polymorphs by principal component analysis. AAPS PharmSciTech, 2008, 9(2), 390-394.
[http://dx.doi.org/10.1208/s12249-008-9049-5] [PMID: 18431672]
[72]
Widjaja, E.; Kanaujia, P.; Lau, G.; Ng, W.K.; Garland, M.; Saal, C.; Hanefeld, A.; Fischbach, M.; Maio, M.; Tan, R.B.H. Detection of trace crystallinity in an amorphous system using Raman microscopy and chemometric analysis. Eur. J. Pharm. Sci., 2011, 42(1-2), 45-54.
[http://dx.doi.org/10.1016/j.ejps.2010.10.004] [PMID: 20969956]
[73]
Strachan, C. J.; Rades, T.; Gordon, K. C.; Rantanen, J. Raman spectroscopy for quantitative analysis of pharmaceutical solids. J. Pharm. Pharmacol., 2007, 59(2), 179-192.
[http://dx.doi.org/10.1211/jpp.59.2.0005]
[74]
Langkilde, F.W.; Sjöblom, J.; TekenbergsHjelte, L.; Mrak, J. Quantitative FT-Raman analysis of two crystal forms of a pharmaceutical compound. J. Pharmaceut. Biomed. Anal., 1997, 15(6), 687-696.
[http://dx.doi.org/10.1016/S0731-7085(96)01906-1]
[75]
Taylor, L.S.; Zografi, G. The quantitative analysis of crystallinity using FT-Raman spectroscopy. Pharm. Res., 1998, 15(5), 755-761.
[http://dx.doi.org/10.1023/A:1011979221685] [PMID: 9619786]
[76]
Skorda, D.; Kontoyannis, C.G. Identification and quantitative determination of atorvastatin calcium polymorph in tablets using FT-Raman spectroscopy. Talanta, 2008, 74(4), 1066-1070.
[http://dx.doi.org/10.1016/j.talanta.2007.07.030] [PMID: 18371751]
[77]
Strachan, C.J.; Pratiwi, D.; Gordon, K.C.; Rades, T. Quantitative analysis of polymorphic mixtures of carbamazepine by Raman spectroscopy and principal components analysis. J. Raman Spectrosc., 2004, 35(5), 347-352.
[http://dx.doi.org/10.1002/jrs.1140]
[78]
Otsuka, M. Advances in pharmaceutical manufacturing process management -from physical pharmaceutics to automatic pharmaceutical production. Yakugaku Zasshi, 2021, 141(12), 1343-1357.
[http://dx.doi.org/10.1248/yakushi.21-00159] [PMID: 34853207]
[79]
Tudor, A.M.; Church, S.J.; Hendra, P.J.; Davies, M.C.; Melia, C.D. The qualitative and quantitative analysis of chlorpropamide polymorphic mixtures by near-infrared Fourier transform Raman spectroscopy. Pharm. Res., 1993, 10(12), 1772-1776.
[http://dx.doi.org/10.1023/A:1018934417124] [PMID: 8302765]
[80]
Manimunda, P.; Syed Asif, S.A.; Mishra, M.K. Probing stress induced phase transformation in aspirin polymorphs using Raman spectroscopy enabled nanoindentation. Chem. Commun. (Camb.), 2019, 55(62), 9200-9203.
[http://dx.doi.org/10.1039/C9CC04538D] [PMID: 31309949]
[81]
Cunha, V.R.R.; Izumi, C.M.S.; Petersen, P.A.D.; Magalhães, A.; Temperini, M.L.A.; Petrilli, H.M.; Constantino, V.R.L. Mefenamic acid anti-inflammatory drug: probing its polymorphs by vibrational (IR and Raman) and solid-state NMR spectroscopies. J. Phys. Chem. B, 2014, 118(16), 4333-4344.
[http://dx.doi.org/10.1021/jp500988k] [PMID: 24654805]
[82]
Garbacz, P.; Wesolowski, M. Benzodiazepines co-crystals screening using FTIR and Raman spectroscopy supported by differential scanning calorimetry. Spectrochim. Acta A Mol. Biomol. Spectrosc., 2020, 234, 118242.
[http://dx.doi.org/10.1016/j.saa.2020.118242] [PMID: 32179462]
[83]
Schmidt, A.G.; Wartewig, S.; Picker, K.M. Polyethylene oxides: protection potential against polymorphic transitions of drugs? J. Raman Spectrosc., 2004, 35(5), 360-367.
[http://dx.doi.org/10.1002/jrs.1158]
[84]
Elbagerma, M.A.; Edwards, H.G.M.; Munshi, T.; Hargreaves, M.D.; Matousek, P.; Scowen, I.J. Characterization of new cocrystals by raman spectroscopy, powder X-ray diffraction, differential scanning calorimetry, and transmission raman spectroscopy. Cryst. Growth Des., 2010, 10(5), 2360-2371.
[http://dx.doi.org/10.1021/cg100156a]
[85]
Ren, J.; Mao, S.; Lin, J.; Xu, Y.; Zhu, Q.; Xu, N. Research progress of Raman spectroscopy and Raman imaging in pharmaceutical analysis. Curr. Pharm. Des., 2022, 28(18), 1445-1456.
[http://dx.doi.org/10.2174/1381612828666220518145635] [PMID: 35593344]
[86]
Cailletaud, J.; De Bleye, C.; Dumont, E.; Sacre, P. Y.; Gut, Y.; Leblanc, N.; Letellier, P.; Ginot, Y. M.; Hubert, P.; Ziemons, E. Detection of low dose of piroxicam polymorph in pharmaceutical tablets by surface-enhanced Raman chemical imaging (SER-CI) and multivariate analysis. Int. J. Pharmaceut., 2020, 574, 118913.
[http://dx.doi.org/10.1016/j.ijpharm.2019.118913]
[87]
Tian, Y.W.; Jones, D.S.; Andrews, G.P. An investigation into the role of polymeric carriers on crystal growth within amorphous solid dispersion systems. Mol. Pharmaceut., 2015, 12(4), 1180-1192.
[http://dx.doi.org/10.1021/mp500702s]
[88]
Nakamoto, K.; Urasaki, T.; Hondo, S.; Murahashi, N.; Yonemochi, E.; Terada, K. Evaluation of the crystalline and amorphous states of drug products by nanothermal analysis and Raman imaging. J. Pharm. Biomed. Anal., 2013, 75, 105-111.
[http://dx.doi.org/10.1016/j.jpba.2012.11.020] [PMID: 23246930]
[89]
Ueda, H.; Ida, Y.; Kadota, K.; Tozuka, Y. Raman mapping for kinetic analysis of crystallization of amorphous drug based on distributional images. Int. J. Pharm., 2014, 462(1-2), 115-122.
[http://dx.doi.org/10.1016/j.ijpharm.2013.12.025] [PMID: 24368105]
[90]
Lin, S.Y.; Cheng, W.T.; Wang, S.L. Thermal micro-Raman spectroscopic study of polymorphic transformation of famotidine under different compression pressures. J. Raman Spectrosc., 2007, 38(1), 39-43.
[http://dx.doi.org/10.1002/jrs.1571]
[91]
Stolar, T.; Lukin, S.; Tireli, M.; Sović, I.; Karadeniz, B.; Kereković, I.; Matijašić, G.; Gretić, M.; Katančić, Z.; Dejanović, I.; Michiel, M.; Halasz, I.; Užarević, K. Control of pharmaceutical cocrystal polymorphism on various scales by mechanochemistry: transfer from the laboratory batch to the large-Scale extrusion processing. ACS Sustain. Chem. Eng., 2019, 7(7), 7102-7110.
[http://dx.doi.org/10.1021/acssuschemeng.9b00043]
[92]
Cheng, W.T.; Lin, S.Y.; Li, M.J. Raman microspectroscopic mapping or thermal system used to investigate milling-induced solid state conversion of famotidine polymorphs. J. Raman Spectrosc., 2007, 38(12), 1595-1601.
[http://dx.doi.org/10.1002/jrs.1819]
[93]
Wardhana, Y.W.; Soewandhi, S.N.; Wikarsa, S.; Suendo, V. Observation of polymorphic transformation of amorphous efavirenz during heating and grinding processes using Raman spectroscopy. Res. J. Pharm. Biol. Chem. Sci., 2017, 8, 280-286.
[94]
Bezerra, B.P.; Fonseca, J.C.; de Oliveira, Y.S.; de Santana, M.S.A.; Silva, K.F.; Araújo, B.S.; Ayala, A.P. Phase transitions in secnidazole: Thermal stability and polymorphism studied by X-ray powder diffraction, thermal analysis and vibrational spectroscopy. Vib. Spectrosc., 2016, 86, 90-96.
[http://dx.doi.org/10.1016/j.vibspec.2016.06.007]
[95]
Zeng, Q; Wang, L.; Wu, S. J.; Fang, G. P.; Zhao, M. W.; Li, Z.; Li, W. L. Research progress on the application of spectral imaging technology in pharmaceutical tablet. Int. J. Pharmaceut., 2022, 625, 122100.
[http://dx.doi.org/10.1016/j.ijpharm.2022.122100]
[96]
Wabuyele, B.W.; Sotthivirat, S.; Zhou, G.X.; Ash, J.; Dhareshwar, S.S. Dispersive Raman spectroscopy for quantifying amorphous drug content in intact tablets. J. Pharm. Sci., 2017, 106(2), 579-588.
[http://dx.doi.org/10.1016/j.xphs.2016.10.014] [PMID: 27938895]
[97]
Tian, F.; Zhang, F.; Sandler, N.; Gordon, K.C.; McGoverin, C.M.; Strachan, C.J.; Saville, D.J.; Rades, T. Influence of sample characteristics on quantification of carbamazepine hydrate formation by X-ray powder diffraction and Raman spectroscopy. Eur. J. Pharm. Biopharm., 2007, 66(3), 466-474.
[http://dx.doi.org/10.1016/j.ejpb.2006.12.002] [PMID: 17257816]
[98]
Zimper, U.; Aaltonen, J.; McGoverin, C.; Gordon, K.; Krauel-Goellner, K.; Rades, T. Quantification of process induced disorder in milled samples using different analytical techniques. Pharmaceutics, 2010, 2(1), 30-49.
[http://dx.doi.org/10.3390/pharmaceutics2010030] [PMID: 27721341]
[99]
Aina, A.; Hargreaves, M.D.; Matousek, P.; Burley, J.C. Transmission Raman spectroscopy as a tool for quantifying polymorphic content of pharmaceutical formulations. Analyst (Lond.), 2010, 135(9), 2328-2333.
[http://dx.doi.org/10.1039/c0an00352b] [PMID: 20614090]
[100]
McGoverin, C.M.; Hargreaves, M.D.; Matousek, P.; Gordon, K.C. Pharmaceutical polymorphs quantified with transmission Raman spectroscopy. J. Raman Spectrosc., 2012, 43(2), 280-285.
[http://dx.doi.org/10.1002/jrs.3020]
[101]
Inoue, M.; Hisada, H.; Koide, T.; Fukami, T.; Roy, A.; Carriere, J.; Heyler, R. Transmission low-frequency Raman spectroscopy for quantification of crystalline polymorphs in pharmaceutical tablets. Anal. Chem., 2019, 91(3), 1997-2003.
[http://dx.doi.org/10.1021/acs.analchem.8b04365] [PMID: 30606009]
[102]
Feng, H.; Bondi, R.W., Jr; Anderson, C.A.; Drennen, J.K., III; Igne, B. Investigation of the sensitivity of transmission Raman spectroscopy for polymorph detection in pharmaceutical tablets. Appl. Spectrosc., 2017, 71(8), 1856-1867.
[http://dx.doi.org/10.1177/0003702817690407] [PMID: 28357920]
[103]
Okumura, T.; Otsuka, M. Evaluation of the microcrystallinity of a drug substance, indomethacin, in a pharmaceutical model tablet by chemometric FT-Raman spectroscopy. Pharm. Res., 2005, 22(8), 1350-1357.
[http://dx.doi.org/10.1007/s11095-005-5281-9] [PMID: 16078145]