Progress in Polymeric Micelles as Viable Wagons for Brain Targeting

Page: [116 - 125] Pages: 10

  • * (Excluding Mailing and Handling)

Abstract

Polymeric micelles have opened up new horizons for improving drug delivery to brain particularly due to their small size, long circulation time, good stability and targetability. They are used to treat a variety of brain conditions, including glioblastoma, migraine, Alzheimer's, Parkinson's, and other conditions linked to the brain. Micelles are currently underutilised in brain targeting despite having several benefits and spanning a wide variety of brain illnesses. Since most medications are unable to cross the blood brain barrier, scientists are continuously working to discover efficient solutions to the problems. The most pressing issue was thought to be the viability and difficulties of translating micelles into the therapeutic setting. This review describes the role of micellar delivery system in brain diseases treatment along with their route of administration and outcomes. The review also discusses the current state of patents and clinical trials in the relevant fields and their potential future applications.

[1]
Xu W, Ling P, Zhang T. Polymeric micelles, a promising drug delivery system to enhance bioavailability of poorly water-soluble drugs. J Drug Deliv 2013; 2013: 340315.
[http://dx.doi.org/10.1155/2013/340315]
[2]
Kwon GS, Kataoka K. Block copolymer micelles as long-circulating drug vehicles. Adv Drug Deliv Rev 1995; 16(2-3): 295-309.
[http://dx.doi.org/10.1016/0169-409X(95)00031-2]
[3]
Begines B, Ortiz T, Pérez-Aranda M, et al. Polymeric nanoparticles for drug delivery: Recent developments and future prospects. Nanomaterials 2020; 10(7): 1403.
[http://dx.doi.org/10.3390/nano10071403] [PMID: 32707641]
[4]
Riess G. Micellization of block copolymers. Prog Polym Sci 2003; 28(7): 1107-70.
[http://dx.doi.org/10.1016/S0079-6700(03)00015-7]
[5]
Virmani R, Pathak K. Targeted polymeric micellar systems for respiratory diseases. In: Targeting Chronic Inflammatory Lung Diseases Using Advanced Drug Delivery Systems. Philip MH, Kamal D, Mehra H, Lisa GP, Kylie AW, Ridhim W, Eds. Elsevier: Amsterdam, 2020; pp. 411-39.
[http://dx.doi.org/10.1016/B978-0-12-820658-4.00020-0]
[6]
Jozala AF, Lopes AM, de Lencastre Novaes LC, Mazzola PG, Penna TCV, Júnior AP. Aqueous two-phase micellar system for nisin extraction in the presence of electrolytes. Food Bioprocess Technol 2013; 6(12): 3456-61.
[http://dx.doi.org/10.1007/s11947-012-1008-1]
[7]
Hickok RS, Wedge SA, Hansen AL, Morris KF, Billiot FH, Warner IM. Pulsed field gradient NMR investigation of solubilization equilibria in amino acid and dipeptide terminated micellar and polymeric surfactant solutions. Magn Reson Chem 2002; 40(12): 755-61.
[http://dx.doi.org/10.1002/mrc.1099]
[8]
Kulthe SS, Choudhari YM, Inamdar NN, Mourya V. Polymeric micelles: authoritative aspects for drug delivery. Des Monomers Polym 2012; 15(5): 465-521.
[http://dx.doi.org/10.1080/1385772X.2012.688328]
[9]
Luo Y, Yao X, Yuan J, Ding T, Gao Q. Preparation and drug controlled-release of polyion complex micelles as drug delivery systems. Colloids Surf B Biointerfaces 2009; 68(2): 218-24.
[http://dx.doi.org/10.1016/j.colsurfb.2008.10.014] [PMID: 19124231]
[10]
Voets IK, de Keizer A, Cohen Stuart MA, Justynska J, Schlaad H. Irreversible structural transitions in mixed micelles of oppositely charged diblock copolymers in aqueous solution. Macromolecules 2007; 40(6): 2158-64.
[http://dx.doi.org/10.1021/ma0614444]
[11]
Nishiyama N, Kataoka K. Current state, achievements, and future prospects of polymeric micelles as nanocarriers for drug and gene delivery. Pharmacol Ther 2006; 112(3): 630-48.
[http://dx.doi.org/10.1016/j.pharmthera.2006.05.006] [PMID: 16815554]
[12]
Zhang Y, Huang Y, Li S. Polymeric micelles: Nanocarriers for cancer-targeted drug delivery. AAPS PharmSciTech 2014; 15(4): 862-71.
[http://dx.doi.org/10.1208/s12249-014-0113-z] [PMID: 24700296]
[13]
Aliabadi HM, Lavasanifar A. Polymeric micelles for drug delivery. Expert Opin Drug Deliv 2006; 3(1): 139-62.
[http://dx.doi.org/10.1517/17425247.3.1.139] [PMID: 16370946]
[14]
Ballabh P, Braun A, Nedergaard M. The blood-brain barrier: An overview. Neurobiol Dis 2004; 16(1): 1-13.
[http://dx.doi.org/10.1016/j.nbd.2003.12.016] [PMID: 15207256]
[15]
Daneman R. The blood-brain barrier in health and disease. Ann Neurol 2012; 72(5): 648-72.
[http://dx.doi.org/10.1002/ana.23648] [PMID: 23280789]
[16]
Zlokovic BV. The blood-brain barrier in health and chronic neurodegenerative disorders. Neuron 2008; 57(2): 178-201.
[http://dx.doi.org/10.1016/j.neuron.2008.01.003] [PMID: 18215617]
[17]
Khan I, Gothwal A, Mishra G, Gupta U. Polymeric micelles. In: Functional Biopolymers Polymers and Polymeric Composites: A Reference Series. Jafar M, Sheardown HM, Al-Ahmed A, Eds. Springer: New York, 2018; pp. 1-29
[http://dx.doi.org/10.1007/978-3-319-92066-5_11-1]
[18]
Elezaby RS, Gad HA, Metwally AA, Geneidi AS, Awad GA. Self- assembled amphiphilic core-shell nanocarriers in line with the modern strategies for brain delivery. J Control Release 2017; 261: 43-61.
[http://dx.doi.org/10.1016/j.jconrel.2017.06.019] [PMID: 28648865]
[19]
Deshmukh AS, Chauhan PN, Noolvi MN, et al. Polymeric micelles: Basic research to clinical practice. Int J Pharm 2017; 532(1): 249-68.
[http://dx.doi.org/10.1016/j.ijpharm.2017.09.005] [PMID: 28882486]
[20]
Kessler RC, Berglund P, Demler O, Jin R, Merikangas KR, Walters EE. Lifetime prevalence and age-of-onset distributions of DSM-IV disorders in the national comorbidity survey replication. Arch Gen Psychiatry 2005; 62(6): 593-602.
[http://dx.doi.org/10.1001/archpsyc.62.6.593] [PMID: 15939837]
[21]
Patel KR, Cherian J, Gohil K, Atkinson D. Schizophrenia: Overview and treatment options. P&T 2014; 39(9): 638-45.
[PMID: 25210417]
[22]
Pokharkar V, Suryawanshi S, Dhapte-Pawar V. Exploring micellar-based polymeric systems for effective nose-to-brain drug delivery as potential neurotherapeutics. Drug Deliv Transl Res 2020; 10(4): 1019-31.
[http://dx.doi.org/10.1007/s13346-019-00702-6] [PMID: 31858442]
[23]
Abdelbary GA, Tadros MI. Brain targeting of olanzapine via intranasal delivery of core–shell difunctional block copolymer mixed nanomicellar carriers: In vitro characterization, ex vivo estimation of nasal toxicity and in vivo biodistribution studies. Int J Pharm 2013; 452(1-2): 300-10.
[http://dx.doi.org/10.1016/j.ijpharm.2013.04.084] [PMID: 23684658]
[24]
Wang F, Yang Z, Liu M, et al. Facile nose-to-brain delivery of rotigotine-loaded polymer micelles thermosensitive hydrogels: In vitro characterization and in vivo behavior study. Int J Pharm 2020; 577: 119046.
[http://dx.doi.org/10.1016/j.ijpharm.2020.119046] [PMID: 31982559]
[25]
Vong LB, Sato Y, Chonpathompikunlert P, Tanasawet S, Hutamekalin P, Nagasaki Y. Self-assembled polydopamine nanoparticles improve treatment in Parkinson’s disease model mice and suppress dopamine-induced dyskinesia. Acta Biomater 2020; 109: 220-8.
[http://dx.doi.org/10.1016/j.actbio.2020.03.021] [PMID: 32268242]
[26]
Agwa MM, Abdelmonsif DA, Khattab SN, Sabra S. Self- assembled lactoferrin-conjugated linoleic acid micelles as an orally active targeted nanoplatform for Alzheimer’s disease. Int J Biol Macromol 2020; 162: 246-61.
[http://dx.doi.org/10.1016/j.ijbiomac.2020.06.058] [PMID: 32531361]
[27]
Lu Y, Guo Z, Zhang Y, et al. Microenvironment remodeling micelles for Alzheimer’s disease therapy by early modulation of activated microglia. Adv Sci 2019; 6(4): 1801586.
[http://dx.doi.org/10.1002/advs.201801586] [PMID: 30828531]
[28]
Zhang J, Liu J, Zhu Y, et al. Photodynamic micelles for amyloid β degradation and aggregation inhibition. Chem Commun 2016; 52(81): 12044-7.
[http://dx.doi.org/10.1039/C6CC06175C] [PMID: 27711295]
[29]
Suksiriworapong J, Rungvimolsin T, A-gomol A, Junyaprasert VB, Chantasart D. Development and characterization of lyophilized diazepam-loaded polymeric micelles. AAPS PharmSciTech 2014; 15(1): 52-64.
[http://dx.doi.org/10.1208/s12249-013-0032-4] [PMID: 24092522]
[30]
Nour SA, Abdelmalak NS, Naguib MJ, Rashed HM, Ibrahim AB. Intranasal brain-targeted clonazepam polymeric micelles for immediate control of status epilepticus: In vitro optimization, ex vivo determination of cytotoxicity, in vivo biodistribution and pharmacodynamics studies. Drug Deliv 2016; 23(9): 3681-95.
[http://dx.doi.org/10.1080/10717544.2016.1223216] [PMID: 27648847]
[31]
Xu K, Zhang L, Gu Y, et al. Increased the TMZ concentration in brain by poly(2-ethyl-2-oxazoline) conjugated temozolomide prodrug micelles for glioblastoma treatment. Eur Polym J 2021; 145: 110232.
[http://dx.doi.org/10.1016/j.eurpolymj.2020.110232]
[32]
Zhang L, Yang S, Huang L, Ho PCL. Poly (ethylene glycol)-block-poly (D, L-lactide) (PEG-PLA) micelles for brain delivery of baicalein through nasal route for potential treatment of neurodegenerative diseases due to oxidative stress and inflammation: An in vitro and in vivo study. Int J Pharm 2020; 591: 119981.
[http://dx.doi.org/10.1016/j.ijpharm.2020.119981] [PMID: 33069896]
[33]
Kanazawa T, Taki H, Okada H. Nose-to-brain drug delivery system with ligand/cell-penetrating peptide-modified polymeric nano-micelles for intracerebral gliomas. Eur J Pharm Biopharm 2020; 152: 85-94.
[http://dx.doi.org/10.1016/j.ejpb.2020.05.001] [PMID: 32387702]
[34]
Niu J, Wang L, Yuan M, Zhang J, Chen H, Zhang Y. Dual-targeting nanocarrier based on glucose and folic acid functionalized pluronic P105 polymeric micelles for enhanced brain distribution. J Drug Deliv Sci Technol 2020; 57: 101343.
[http://dx.doi.org/10.1016/j.jddst.2019.101343]
[35]
Xie Y-T, Du YZ, Yuan H, Hu FQ. Brain-targeting study of stearic acid-grafted chitosan micelle drug-delivery system. Int J Nanomedicine 2012; 7: 3235-44.
[PMID: 22802685]
[36]
Sun P, Xiao Y, Di Q, et al. Transferrin receptor-targeted PEG- PLA polymeric micelles for chemotherapy against glioblastoma multiforme. Int J Nanomedicine 2020; 15: 6673-87.
[http://dx.doi.org/10.2147/IJN.S257459] [PMID: 32982226]
[37]
Shiraishi K, Wang Z, Kokuryo D, Aoki I, Yokoyama M. A polymeric micelle magnetic resonance imaging (MRI) contrast agent reveals blood–brain barrier (BBB) permeability for macromolecules in cerebral ischemia-reperfusion injury. J Control Release 2017; 253: 165-71.
[http://dx.doi.org/10.1016/j.jconrel.2017.03.020] [PMID: 28322975]
[38]
Soliman M, Sheta M, Ibrahim BM, El-Shawwa M, Abd El-Halim S. Novel intranasal drug delivery: geraniol charged polymeric mixed micelles for targeting cerebral insult as a result of ischaemia/reperfusion. Pharmaceutics 2020; 12(1): 76.
[http://dx.doi.org/10.3390/pharmaceutics12010076]
[39]
Karami Z, Sadighian S, Rostamizadeh K, Hosseini SH, Rezaee S, Hamidi M. Magnetic brain targeting of naproxen-loaded polymeric micelles: pharmacokinetics and biodistribution study. Mater Sci Eng C 2019; 100: 771-80.
[http://dx.doi.org/10.1016/j.msec.2019.03.004] [PMID: 30948114]
[40]
Sezgin-bayindir Z, Ergin AD, Parmaksiz M, Elcin AE, Elcin YM, Yuksel N. Evaluation of various block copolymers for micelle formation and brain drug delivery: In vitro characterization and cellular uptake studies. J Drug Deliv Sci Technol 2016; 36: 120-9.
[http://dx.doi.org/10.1016/j.jddst.2016.10.003]
[41]
Jain R, Nabar S, Dandekar P, Patravale V. Micellar nanocarriers: Potential nose-to-brain delivery of zolmitriptan as novel migraine therapy. Pharm Res 2010; 27(4): 655-64.
[http://dx.doi.org/10.1007/s11095-009-0041-x] [PMID: 20151180]
[42]
Abourehab M, Ahmed O, Balata G, Almalki W. Self-assembled biodegradable polymeric micelles to improve dapoxetine delivery across the blood–brain barrier. Int J Nanomedicine 2018; 13: 3679-87.
[http://dx.doi.org/10.2147/IJN.S168148] [PMID: 29983562]
[43]
Rizek P, Kumar N, Jog MS. An update on the diagnosis and treatment of Parkinson disease. CMAJ 2016; 188(16): 1157-65.
[http://dx.doi.org/10.1503/cmaj.151179] [PMID: 27221269]
[44]
Armstrong MJ, Okun MS. Diagnosis and treatment of Parkinson disease: A review. JAMA 2020; 323(6): 548-60.
[http://dx.doi.org/10.1001/jama.2019.22360] [PMID: 32044947]
[45]
Bondi MW, Edmonds EC, Salmon DP. Alzheimer’s disease: Past, present, and future. J Int Neuropsychol Soc 2017; 23(9-10): 818-31.
[http://dx.doi.org/10.1017/S135561771700100X] [PMID: 29198280]
[46]
Sambra V, Echeverria F, Valenzuela A, Chouinard-Watkins R, Valenzuela R. Docosahexaenoic and arachidonic acids as neuroprotective nutrients throughout the life cycle. Nutrients 2021; 13(3): 986.
[http://dx.doi.org/10.3390/nu13030986] [PMID: 33803760]
[47]
Weller J, Budson A. Current understanding of Alzheimer’s disease diagnosis and treatment. F1000 Res 2018; 7: 1161.
[http://dx.doi.org/10.12688/f1000research.14506.1] [PMID: 30135715]
[48]
Dubey D, Kalita J, Misra UK. Status epilepticus: Refractory and super-refractory. Neurol India 2017; 65(7) (Suppl.): S12-7.
[PMID: 28281491]
[49]
Stafstrom CE, Carmant L. Seizures and epilepsy: An overview for neuroscientists. Cold Spring Harb Perspect Med 2015; 5(6): a022426.
[http://dx.doi.org/10.1101/cshperspect.a022426] [PMID: 26033084]
[50]
Hirabayashi Y, Okumura A, Kondo T, et al. Efficacy of a diazepam suppository at preventing febrile seizure recurrence during a single febrile illness. Brain Dev 2009; 31(6): 414-8.
[http://dx.doi.org/10.1016/j.braindev.2008.07.010] [PMID: 18774250]
[51]
Herholz K, Langen K-J, Schiepers C, Mountz JM, Eds. In: Elsevier: Amsterdam, 2012; 42(6): 356-70.
[52]
Phoenix TN, Patmore DM, Boop S, et al. Medulloblastoma genotype dictates blood brain barrier phenotype. Cancer Cell 2016; 29(4): 508-22.
[http://dx.doi.org/10.1016/j.ccell.2016.03.002] [PMID: 27050100]
[53]
Yang Y, Rosenberg GA. Blood-brain barrier breakdown in acute and chronic cerebrovascular disease. Stroke 2011; 42(11): 3323-8.
[http://dx.doi.org/10.1161/STROKEAHA.110.608257] [PMID: 21940972]
[54]
Sorrentino ZA, Laurent D, Hernandez J, et al. Headache persisting after aneurysmal subarachnoid hemorrhage: A narrative review of pathophysiology and therapeutic strategies. Headache 2022; 62(9): 1120-32.
[http://dx.doi.org/10.1111/head.14394] [PMID: 36112096]
[55]
Viswanathan V, Lucke-Wold B, Jones C, et al. Change in opioid and analgesic use for headaches after aneurysmal subarachnoid hemorrhage over time. Neurochirurgie 2021; 67(5): 427-32.
[http://dx.doi.org/10.1016/j.neuchi.2021.03.006] [PMID: 33771620]
[56]
Micelle composition for nucleic acid delivery using temperature-sensitive polymer and method for producing same. WO2016186204A1, 2016.
[57]
Polymer and preparation method thereof, ROS response type siRNA nano micelle and application thereof. CN109880021B, 2019.
[58]
Thomas M, Claudio F. Ced of sn-38-loaded micelles against brain tumor. US20180214375A1, 2014.