[16]
Bradski G. The OpenCV Library. Dr Dobbs J Softw Tools Prof Program 2000.
[18]
Fu J, Zheng H, Mei T. Look closer to see better: Recurrent attention
convolutional neural network for fine-grained image recognition. CVPR IEEE Computer Society. 2017; pp. 4476-84.
[20]
Ronneberger O, Fischer P, Brox T. U-Net: Convolutional networks for biomedical image segmentation. MICCAI 2015; 2015: 234-41.
[23]
Qi CR, Yi L, Su H, Guibas LJ. PointNet++: Deep hierarchical feature learning on point sets in a metric space. arxiv 2017; 2017: 706.02413.
[25]
Zhou Z, Siddiquee MMR, Tajbakhsh N, Liang J. UNet++: A Nested U-Net Architecture for Medical Image Segmentation. In: Lecture Notes in Computer Science Springer. 2018; 11045: p. 3-11.
[31]
Long J, Shelhamer E, Darrell T. Fully Convolutional Networks for Semantic Segmentation. arXiv 2016; 2016: 1605.06211v1.
[32]
Çiçek Ö, Abdulkadir A, Lienkamp SS, Brox T, Ronneberger O. 3D U-Net: Learning Dense Volumetric Segmentation from Sparse Annotation. MICCAI 2016; (2): 424-32.
[33]
Chen Y, Li J, Xiao H, Jin X, Yan S, Feng J. Dual Path Networks. NIPS 2017; 2017: 4467-75.
[35]
Barstugan M, Ozkaya U, Ozturk S. Coronavirus (covid-19) classification using ct images by machine learning methods. arXiv 2003; 2003: 09424.
[39]
Cifci M. Deep Learning Model for Diagnosis of Corona Virus Disease from CT Images. Int J Sci Eng Res 2022; 11(4): 273-8.
[40]
Szegedy C, Ioffe S, Vanhoucke V, Alemi AA. Inception-v4, Inception-ResNet and the Impact of Residual Connections on Learning. AAAI Press 2017; 2017: 4278-84.
[42]
Farid A, Selim GA, Khater HA. Novel Approach of CT Images Feature Analysis and Prediction to Screen for Corona Virus Disease (COVID-19). Int J Sci Eng Res 2020; 11(03): 1141-9.
[43]
Sousa A, Reis F, Zerbini R, Comba J, Falcao A. CNN Filter Learning from Drawn Markers for the Detection of Suggestive Signs of COVID-19 in CT Images. Annu Int Conf IEEE Eng Med Biol Soc 2021; 2021: 3169-72.
[47]
Eberhard JW, Koegl R, Keaveney JP. Adaptive enhancement of Xray images. Google Patents US Patent 4,942,596, 1990.
[48]
Weinstock MB, Echenique A, Russell J, et al. Chest x-ray findings in 636 ambulatory patients with covid-19 presenting to an urgent care center: a normal chest X-ray is no guarantee. J Urgent Care Med 2020; 14(7): 13-8.
[49]
Simonyan K, Zisserman A. Very deep convolutional networks for large-scale image recognition. arXiv 2015; 2015: 1409.1556.
[50]
Szegedy C, Liu W, Jia Y, et al. Going deeper with convolutions. CoRR 2014; 1409: 4842.
[51]
Szegedy C, Vanhoucke V, Ioffe S, Shlens J, Wojna Z. Rethinking the Inception Architecture for Computer Vision CoRR 2015; 1512: 00567.
[53]
Chollet F. Xception: Deep learning with depthwise separable convolutions. IEEE Comput Soc 2017; 2017: 1800-7.
[54]
Sandler M, Howard A, Zhu M, Zhmoginov A, Chen L. MobileNetV2: Inverted residuals and linear bottlenecks. IEEE/CVF Conf Comput Vision Pattern Recogn 2018; 2018: 4510-20.
[55]
Zhang X, Zhou X, Lin M, Sun J. ShuffleNet: An extremely efficient convolutional neural network for mobile devices. IEEE/CVF Conf Comput Vision Pattern Recogn 2018; 2018: 6848-56.
[57]
Farooq M, Hafeez A. Covid-resnet: A deep learning framework for screening of covid19 from radiographs. arXiv 2003; 2003: 143952020.
[67]
Redmon J, Divvala SK, Girshick RB, Farhadi A. You only look once: Unified, real-time object detection. IEEE Comput Soc 2016; 2016: 779-88.
[73]
Gaal G, Maga B, Lukacs A. Attention u-net based adversarial architectures for chest X-ray lung segmentation. arXiv 2003; 2003: 10304.
[89]
Panicker MR, Chen YT, Narayan KV, et al. An approach towards physics informed lung ultrasound image scoring neural network for diagnostic assistance in COVID-19. arXiv 2021; 2021: 2106.069802021.
[90]
Born J, Brändle G, Cossio M, et al. POCOVID-Net: automatic detection of COVID-19 from a new lung ultrasound imaging dataset (POCUS). arXiv 2020; 2020: 12084.
[91]
Hou D, Hou R, Hou J. Interpretable saab subspace network for COVID-19 lung ultrasound screening. IEEE Ann Ubiquit Comput Electron Mobile Commun Confe UEMCON 2020; 2020: 9298069.
[93]
Liu L, Lei W, Wan X, Liu L, Luo Y, Feng C. Semi-supervised active learning for COVID-19 lung ultrasound multi-symptom classification. IEEE 32nd International Conference on Tools with Artificial Intelligence (ICTAI); 09-11 November 2020; Baltimore, MD, USA.
[95]
Gare G, Schoenling A, Philip V, et al. Dense Pixel-Labeling For Reverse-Transfer And Diagnostic Learning On Lung Ultrasound For Covid-19 And Pneumonia Detection. IEEE 18th International Symposium on Biomedical Imaging (ISBI); 13-16 April 2021; Nice, France.
[101]
Che H, Radbel J, Sunderram J, Nosher J, Patel V, Hacihaliloglu I. Multi-feature Multi-Scale CNN-Derived COVID-19 Classification from Lung Ultrasound Data. 2021 43rd Annual International Conference of the IEEE Engineering in Medicine & Biology Society (EMBC); 01-05 November 2021; Mexico.
[102]
Raghavi K, Krishna V. Identify and locate covid-19 point-of-care lung ultrasound markers by using deep learning technique hopfield neural network. JES 2021; 12(6): 595-9.
[112]
Cohen JP, Morrison P, Dao L. Covid-19 image data collection. arXiv 2003; 2003: 2003.11597.
[121]
Karim R, Döhmen T, Rebholz-Schuhmann D, et al. Deep-COVIDExplainer: Explainable COVID-19 diagnosis based on chest X-ray images. arXiv 2022; 2022: 2004.04582.