Phosphate Homeostasis and Disorders of Phosphate Metabolism

Page: [412 - 425] Pages: 14

  • * (Excluding Mailing and Handling)

Abstract

Phosphate is indispensable for human life and evolutionary changes over several millions of years have established tightly regulated mechanisms to ensure phosphate homeostasis. In this process, calcium and phosphate metabolism have come to be intricately linked together. Three hormones (PTH, FGF23 and Calcitriol) maintain the fine balance of calcium and phosphate metabolism through their actions at three sites (the gut, the kidneys and the skeleton). Disorders that disrupt this balance can have serious clinical consequences. Acute changes in serum phosphate levels can result in life threatening complications like respiratory failure and cardiac arrythmias. Chronic hypophosphataemia predominantly affects the musculoskeletal system and presents as impaired linear growth, rickets, osteomalacia and dental problems. Hyperphosphataemia is very common in the setting of chronic kidney disease and can be difficult to manage. A thorough understanding of calcium and phosphate homeostasis is essential to diagnose and treat conditions associated with hypo and hyperphosphataemia. In this review, we will discuss the calcium and phosphate metabolism, aetiologies and management of hypo and hyperphosphataemia.

Graphical Abstract

[1]
Peacock M. Phosphate metabolism in health and disease. Calcif Tissue Int 2021; 108(1): 3-15.
[http://dx.doi.org/10.1007/s00223-020-00686-3] [PMID: 32266417]
[2]
Doherty AH, Ghalambor CK, Donahue SW. Evolutionary physiology of bone: Bone metabolism in changing environments. Physiology 2015; 30(1): 17-29.
[http://dx.doi.org/10.1152/physiol.00022.2014] [PMID: 25559152]
[3]
Wagner DO, Aspenberg P. Where did bone come from? Acta Orthop 2011; 82(4): 393-8.
[http://dx.doi.org/10.3109/17453674.2011.588861] [PMID: 21657973]
[4]
Wodzinski RJ, Ullah AHJ. Phytase. In: Advances in Applied Microbiology. Elsevier 1996; Vol. 42: pp. 263-302.
[5]
Calvo MS, Uribarri J. Contributions to total phosphorus intake: All sources considered. Semin Dial 2013; 26(1): 54-61.
[http://dx.doi.org/10.1111/sdi.12042] [PMID: 23278245]
[6]
Hilfiker H, Hattenhauer O, Traebert M, Forster I, Murer H, Biber J. Characterization of a murine type II sodium-phosphate cotransporter expressed in mammalian small intestine. Proc Natl Acad Sci USA 1998; 95(24): 14564-9.
[http://dx.doi.org/10.1073/pnas.95.24.14564] [PMID: 9826740]
[7]
Tanaka Y, Deluca HF. Role of 1,25-dihydroxyvitamin D3 in maintaining serum phosphorus and curing rickets. Proc Natl Acad Sci USA 1974; 71(4): 1040-4.
[http://dx.doi.org/10.1073/pnas.71.4.1040] [PMID: 4524612]
[8]
Condamine L, Menaa C, Vrtovsnik F, Friedlander G, Garabédian M. Local action of phosphate depletion and insulin-like growth factor 1 on in vitro production of 1,25-dihydroxyvitamin D by cultured mammalian kidney cells. J Clin Invest 1994; 94(4): 1673-9.
[http://dx.doi.org/10.1172/JCI117512] [PMID: 7929846]
[9]
Wu S, Finch J, Zhong M, Slatopolsky E, Grieff M, Brown AJ. Expression of the renal 25-hydroxyvitamin D-24-hydroxylase gene: Regulation by dietary phosphate. Am J Physiol 1996; 271(1 Pt 2): F203-8.
[PMID: 8760262]
[10]
Segawa H, Kaneko I, Yamanaka S, et al. Intestinal Na-P i cotransporter adaptation to dietary Pi content in vitamin D receptor null mice. Am J Physiol Renal Physiol 2004; 287(1): F39-47.
[http://dx.doi.org/10.1152/ajprenal.00375.2003] [PMID: 14996670]
[11]
Imel EA, Econs MJ. Approach to the hypophosphatemic patient. J Clin Endocrinol Metab 2012; 97(3): 696-706.
[http://dx.doi.org/10.1210/jc.2011-1319] [PMID: 22392950]
[12]
Dasgupta I, Shroff R, Bennett-Jones D, McVeigh G. Management of hyperphosphataemia in chronic kidney disease: Summary of National Institute for Health and Clinical Excellence (NICE) guideline. Nephron Clin Pract 2013; 124(1-2): 1-9.
[http://dx.doi.org/10.1159/000354711] [PMID: 24022619]
[13]
Tenenhouse HS. Cellular and molecular mechanisms of renal phosphate transport. J Bone Miner Res 1997; 12(2): 159-64.
[http://dx.doi.org/10.1359/jbmr.1997.12.2.159] [PMID: 9041046]
[14]
Bergwitz C, Roslin NM, Tieder M, et al. SLC34A3 mutations in patients with hereditary hypophosphatemic rickets with hypercalciuria predict a key role for the sodium-phosphate cotransporter NaPi-IIc in maintaining phosphate homeostasis. Am J Hum Genet 2006; 78(2): 179-92.
[http://dx.doi.org/10.1086/499409] [PMID: 16358214]
[15]
Blaine J, Chonchol M, Levi M. Renal control of calcium, phosphate, and magnesium homeostasis. Clin J Am Soc Nephrol 2015; 10(7): 1257-72.
[http://dx.doi.org/10.2215/CJN.09750913] [PMID: 25287933]
[16]
Pfister MF, Ruf I, Stange G, et al. Parathyroid hormone leads to the lysosomal degradation of the renal type II Na/Pi cotransporter. Proc Natl Acad Sci USA 1998; 95(4): 1909-14.
[http://dx.doi.org/10.1073/pnas.95.4.1909] [PMID: 9465116]
[17]
Gattineni J, Bates C, Twombley K, et al. FGF23 decreases renal NaPi-2a and NaPi-2c expression and induces hypophosphatemia in vivo predominantly via FGF receptor 1. Am J Physiol Renal Physiol 2009; 297(2): F282-91.
[http://dx.doi.org/10.1152/ajprenal.90742.2008] [PMID: 19515808]
[18]
Weinman EJ, Biswas R, Steplock D, Douglass TS, Cunningham R, Shenolikar S. Sodium-hydrogen exchanger regulatory factor 1 (NHERF-1) transduces signals that mediate dopamine inhibition of sodium-phosphate co-transport in mouse kidney. J Biol Chem 2010; 285(18): 13454-60.
[http://dx.doi.org/10.1074/jbc.M109.094359] [PMID: 20200151]
[19]
Levi M, Shayman JA, Abe A, et al. Dexamethasone modulates rat renal brush border membrane phosphate transporter mRNA and protein abundance and glycosphingolipid composition. J Clin Invest 1995; 96(1): 207-16.
[http://dx.doi.org/10.1172/JCI118022] [PMID: 7615789]
[20]
Nowik M, Picard N, Stange G, et al. Renal phosphaturia during metabolic acidosis revisited: Molecular mechanisms for decreased renal phosphate reabsorption. Pflugers Arch 2008; 457(2): 539-49.
[http://dx.doi.org/10.1007/s00424-008-0530-5] [PMID: 18535837]
[21]
Biber J, Hernando N, Forster I, Murer H. Regulation of phosphate transport in proximal tubules. Pflugers Arch 2009; 458(1): 39-52.
[http://dx.doi.org/10.1007/s00424-008-0580-8] [PMID: 18758808]
[22]
Fukumoto S. Phosphate metabolism and vitamin D. Bonekey Rep 2014; 3: 497.
[http://dx.doi.org/10.1038/bonekey.2013.231] [PMID: 24605214]
[23]
Peacock M. Calcium metabolism in health and disease. Clin J Am Soc Nephrol 2010; 5 (Suppl. 1): S23-30.
[http://dx.doi.org/10.2215/CJN.05910809] [PMID: 20089499]
[24]
Sabbagh Y, Carpenter TO, Demay MB. Hypophosphatemia leads to rickets by impairing caspase-mediated apoptosis of hypertrophic chondrocytes. Proc Natl Acad Sci USA 2005; 102(27): 9637-42.
[http://dx.doi.org/10.1073/pnas.0502249102] [PMID: 15976027]
[25]
Penido MGMG, Alon US. Phosphate homeostasis and its role in bone health. Pediatr Nephrol 2012; 27(11): 2039-48.
[http://dx.doi.org/10.1007/s00467-012-2175-z] [PMID: 22552885]
[26]
Witteveen JE, van Thiel S, Romijn JA, Hamdy N A T. Therapy of endocrine disease: Hungry bone syndrome: still a challenge in the post-operative management of primary hyperparathyroidism: A systematic review of the literature. Eur J Endocrinol 2013; 168(3): R45-53.
[http://dx.doi.org/10.1530/EJE-12-0528] [PMID: 23152439]
[27]
Arnold A, Dennison E, Kovacs CS, et al. Hormonal regulation of biomineralization. Nat Rev Endocrinol 2021; 17(5): 261-75.
[http://dx.doi.org/10.1038/s41574-021-00477-2] [PMID: 33727709]
[28]
Yoshiko Y, Wang H, Minamizaki T, et al. Mineralized tissue cells are a principal source of FGF23. Bone 2007; 40(6): 1565-73.
[http://dx.doi.org/10.1016/j.bone.2007.01.017] [PMID: 17350357]
[29]
Edmonston D, Wolf M. FGF23 at the crossroads of phosphate, iron economy and erythropoiesis. Nat Rev Nephrol 2020; 16(1): 7-19.
[http://dx.doi.org/10.1038/s41581-019-0189-5] [PMID: 31519999]
[30]
Quarles LD. Endocrine functions of bone in mineral metabolism regulation. J Clin Invest 2008; 118(12): 3820-8.
[http://dx.doi.org/10.1172/JCI36479] [PMID: 19033649]
[31]
Benet-Pagès A, Lorenz-Depiereux B, Zischka H, White KE, Econs MJ, Strom TM. FGF23 is processed by proprotein convertases but not by PHEX. Bone 2004; 35(2): 455-62.
[http://dx.doi.org/10.1016/j.bone.2004.04.002] [PMID: 15268897]
[32]
Tagliabracci VS, Engel JL, Wiley SE, et al. Dynamic regulation of FGF23 by Fam 20C phosphorylation, GalNAc-T3 glycosylation, and furin proteolysis. Proc Natl Acad Sci USA 2014; 111(15): 5520-5.
[http://dx.doi.org/10.1073/pnas.1402218111] [PMID: 24706917]
[33]
Urakawa I, Yamazaki Y, Shimada T, et al. Klotho converts canonical FGF receptor into a specific receptor for FGF23. Nature 2006; 444(7120): 770-4.
[http://dx.doi.org/10.1038/nature05315] [PMID: 17086194]
[34]
Bai X, Miao D, Xiao S, et al. CYP24 inhibition as a therapeutic target in FGF23-mediated renal phosphate wasting disorders. J Clin Invest 2016; 126(2): 667-80.
[http://dx.doi.org/10.1172/JCI81928] [PMID: 26784541]
[35]
Saito H, Kusano K, Kinosaki M, et al. Human fibroblast growth factor-23 mutants suppress Na+-dependent phosphate co-transport activity and 1α,25-dihydroxyvitamin D3 production. J Biol Chem 2003; 278(4): 2206-11.
[http://dx.doi.org/10.1074/jbc.M207872200] [PMID: 12419819]
[36]
Liu C, Li X, Zhao Z, et al. Iron deficiency plays essential roles in the trigger, treatment, and prognosis of autosomal dominant hypophosphatemic rickets. Osteoporos Int 2021; 32(4): 737-45.
[http://dx.doi.org/10.1007/s00198-020-05649-w] [PMID: 32995940]
[37]
Boateng AA, Sriram K, Meguid MM, Crook M. Refeeding syndrome: Treatment considerations based on collective analysis of literature case reports. Nutrition 2010; 26(2): 156-67.
[http://dx.doi.org/10.1016/j.nut.2009.11.017] [PMID: 20122539]
[38]
da Silva JSV, Seres DS, Sabino K, et al. ASPEN consensus recommendations for refeeding syndrome. Nutr Clin Pract 2020; 35(2): 178-95.
[http://dx.doi.org/10.1002/ncp.10474] [PMID: 32115791]
[39]
Kovacs CS. Bone development and mineral homeostasis in the fetus and neonate: Roles of the calciotropic and phosphotropic hormones. Physiol Rev 2014; 94(4): 1143-218.
[http://dx.doi.org/10.1152/physrev.00014.2014] [PMID: 25287862]
[40]
Rustico SE, Calabria AC, Garber SJ. Metabolic bone disease of prematurity. J Clin Transl Endocrinol 2014; 1(3): 85-91.
[http://dx.doi.org/10.1016/j.jcte.2014.06.004] [PMID: 29159088]
[41]
Adamkin DH, Radmacher PG. Current trends and future challenges in neonatal parenteral nutrition. J Neonatal Perinatal Med 2014; 7(3): 157-64.
[http://dx.doi.org/10.3233/NPM-14814008] [PMID: 25318631]
[42]
Chinoy A, Mughal MZ, Padidela R. Metabolic bone disease of prematurity: Causes, recognition, prevention, treatment and long-term con-sequences. Arch Dis Child Fetal Neonatal Ed 2019; 104(5): F560-6.
[http://dx.doi.org/10.1136/archdischild-2018-316330] [PMID: 31079069]
[43]
El Shazly AN, Soliman DR, Assar EH, Behiry EG, Gad Ahmed IAEN. Phosphate disturbance in critically ill children: Incidence, associated risk factors and clinical outcomes. Ann Med Surg 2017; 21(21): 118-23.
[http://dx.doi.org/10.1016/j.amsu.2017.07.079] [PMID: 28861270]
[44]
Schiffl H, Lang SM. Severe acute hypophosphatemia during renal replacement therapy adversely affects outcome of critically ill patients with acute kidney injury. Int Urol Nephrol 2013; 45(1): 191-7.
[http://dx.doi.org/10.1007/s11255-011-0112-x] [PMID: 22227698]
[45]
Levine BS, Ho K, Kraut JA, Coburn JW, Kurokawa K. Effect of metabolic acidosis on phosphate transport by the renal brush-border membrane. Biochim Biophys Acta 1983; 727(1): 7-12.
[46]
van der Vaart A, Waanders F, van Beek AP, Vriesendorp TM, Wolffenbuttel BHR, van Dijk PR. Incidence and determinants of hypophos-phatemia in diabetic ketoacidosis: An observational study. BMJ Open Diabetes Res Care 2021; 9(1)e002018
[http://dx.doi.org/10.1136/bmjdrc-2020-002018] [PMID: 33597187]
[47]
Miszczuk K, Mroczek-Wacinska J, Piekarski R. Wysocka-Lukasik B, Jawniak R, Ben-Skowronek I. Ventricular bigeminy and trigeminy caused by hypophosphataemia during diabetic ketoacidosis treatment: A case report. Ital J Pediatr 2019; 45(1): 42.
[http://dx.doi.org/10.1186/s13052-019-0633-y] [PMID: 30940174]
[48]
Choi HS, Kwon A, Chae HW, Suh J, Kim DH, Kim HS. Respiratory failure in a diabetic ketoacidosis patient with severe hypophosphatemia. Ann Pediatr Endocrinol Metab 2018; 23(2): 103-6.
[http://dx.doi.org/10.6065/apem.2018.23.2.103] [PMID: 29969883]
[49]
Finn BP, Fraser B, O’Connell SM. Supraventricular tachycardia as a complication of severe diabetic ketoacidosis in an adolescent with new-onset type 1 diabetes. BMJ Case Rep 2018; 2018bcr-2017-222861
[http://dx.doi.org/10.1136/bcr-2017-222861] [PMID: 29545427]
[50]
Stokes VJ, Nielsen MF, Hannan FM, Thakker RV. Hypercalcemic disorders in children. J Bone Miner Res 2017; 32(11): 2157-70.
[http://dx.doi.org/10.1002/jbmr.3296] [PMID: 28914984]
[51]
Suva LJ, Winslow GA, Wettenhall RH, et al. A parathyroid hormone-related protein implicated in malignant hypercalcemia: Cloning and expression. Science 1987; 237(4817): 893-6.
[http://dx.doi.org/10.1126/science.3616618] [PMID: 3616618]
[52]
Shimonodan H, Nagayama J, Nagatoshi Y, et al. Acute lymphocytic leukemia in adolescence with multiple osteolytic lesions and hyper-calcemia mediated by lymphoblast-producing parathyroid hormone-related peptide: A case report and review of the literature. Pediatr Blood Cancer 2005; 45(3): 333-9.
[http://dx.doi.org/10.1002/pbc.20357] [PMID: 15700250]
[53]
Hosseini B, Leibl M, Stoffman J, Morris A. Two cases of hypercalcemia in pediatric ovarian dysgerminoma. J Obstet Gynaecol Can 2019; 41(5): 660-5.
[http://dx.doi.org/10.1016/j.jogc.2018.05.004] [PMID: 30551952]
[54]
Srivastava T, Kats A, Martin TJ, Pompolo S, Alon US. Parathyroid-hormone-related protein-mediated hypercalcemia in benign congenital mesoblastic nephroma. Pediatr Nephrol 2011; 26(5): 799-803.
[http://dx.doi.org/10.1007/s00467-010-1728-2] [PMID: 21161280]
[55]
Schipani E, Langman CB, Parfitt AM, et al. Constitutively activated receptors for parathyroid hormone and parathyroid hormone-related peptide in Jansen’s metaphyseal chondrodysplasia. N Engl J Med 1996; 335(10): 708-14.
[http://dx.doi.org/10.1056/NEJM199609053351004] [PMID: 8703170]
[56]
Carpenter TO, Imel EA, Holm IA, Jan de Beur SM, Insogna KL. A clinician’s guide to X-linked hypophosphatemia. J Bone Miner Res 2011; 26(7): 1381-8.
[http://dx.doi.org/10.1002/jbmr.340] [PMID: 21538511]
[57]
Murali SK, Andrukhova O, Clinkenbeard EL, White KE, Erben RG. Excessive osteocytic Fgf23 secretion contributes to pyrophosphate accumulation and mineralization defect in Hyp mice. PLoS Biol 2016; 14(4)e1002427
[http://dx.doi.org/10.1371/journal.pbio.1002427] [PMID: 27035636]
[58]
White KE, Carn G, Lorenz-Depiereux B, Benet-Pages A, Strom TM, Econs MJ. Autosomal-dominant hypophosphatemic rickets (ADHR) mutations stabilize FGF-23. Kidney Int 2001; 60(6): 2079-86.
[http://dx.doi.org/10.1046/j.1523-1755.2001.00064.x] [PMID: 11737582]
[59]
Lorenz-Depiereux B, Benet-Pages A, Eckstein G, et al. Hereditary hypophosphatemic rickets with hypercalciuria is caused by mutations in the sodium-phosphate cotransporter gene SLC34A3. Am J Hum Genet 2006; 78(2): 193-201.
[http://dx.doi.org/10.1086/499410] [PMID: 16358215]
[60]
Levy-Litan V, Hershkovitz E, Avizov L, et al. Autosomal-recessive hypophosphatemic rickets is associated with an inactivation mutation in the ENPP1 gene. Am J Hum Genet 2010; 86(2): 273-8.
[http://dx.doi.org/10.1016/j.ajhg.2010.01.010] [PMID: 20137772]
[61]
Rafaelsen SH, Raeder H, Fagerheim AK, et al. Exome sequencing reveals FAM20c mutations associated with fibroblast growth factor 23-related hypophosphatemia, dental anomalies, and ectopic calcification. J Bone Miner Res 2013; 28(6): 1378-85.
[http://dx.doi.org/10.1002/jbmr.1850] [PMID: 23325605]
[62]
de Castro LF, Ovejero D, Boyce AM. Diagnosis of endocrine disease: Mosaic disorders of FGF23 excess: Fibrous dysplasia/McCune–Albright syndrome and cutaneous skeletal hypophosphatemia syndrome. Eur J Endocrinol 2020; 182(5): R83-99.
[http://dx.doi.org/10.1530/EJE-19-0969] [PMID: 32069220]
[63]
Lumbroso S, Paris F, Sultan C. Activating Gsalpha mutations: Analysis of 113 patients with signs of McCune-Albright syndrome - A European Collaborative Study. J Clin Endocrinol Metab 2004; 89(5): 2107-13.
[http://dx.doi.org/10.1210/jc.2003-031225] [PMID: 15126527]
[64]
Robinson C, Collins MT, Boyce AM. Fibrous dysplasia/mccune-albright syndrome: Clinical and translational perspectives. Curr Osteoporos Rep 2016; 14(5): 178-86.
[http://dx.doi.org/10.1007/s11914-016-0317-0] [PMID: 27492469]
[65]
McCune D. Osteitis fibrosa cystica: The case of a nine year old girl who also exhibits precocious puberty, multiple pigmentation of the skin and hyperthyroidism. Am J Child 1936; 52: 743-4.
[66]
Javaid MK, Boyce A, Appelman-Dijkstra N, et al. Best practice management guidelines for fibrous dysplasia/McCune-Albright syndrome: A consensus statement from the FD/MAS international consortium. Orphanet J Rare Dis 2019; 14(1): 139.
[http://dx.doi.org/10.1186/s13023-019-1102-9] [PMID: 31196103]
[67]
Kumar S, Shah R, Patil V, et al. Tumor-induced rickets-osteomalacia: An enigma. J Pediatr Endocrinol Metab 2020; 33(8): 1097-103.
[http://dx.doi.org/10.1515/jpem-2020-0079] [PMID: 32681779]
[68]
Emodi O, Rachmiel A, Tiosano D, Nagler RM. Maxillary tumour-induced osteomalacia. Int J Oral Maxillofac Surg 2018; 47(10): 1295-8.
[http://dx.doi.org/10.1016/j.ijom.2018.02.008] [PMID: 29571670]
[69]
Wolf M, Rubin J, Achebe M, et al. Effects of iron isomaltoside vs ferric carboxymaltose on hypophosphatemia in iron-deficiency anemia. JAMA 2020; 323(5): 432-43.
[http://dx.doi.org/10.1001/jama.2019.22450] [PMID: 32016310]
[70]
Haque SK, Ariceta G, Batlle D. Proximal renal tubular acidosis: A not so rare disorder of multiple etiologies. Nephrol Dial Transplant 2012; 27(12): 4273-87.
[71]
Fearn A, Allison B, Rice SJ, et al. Clinical, biochemical, and pathophysiological analysis of SLC34A1 mutations. Physiol Rep 2018; 6(12)e13715
[http://dx.doi.org/10.14814/phy2.13715] [PMID: 29924459]
[72]
Tieder M, Modai D, Samuel R, et al. Hereditary hypophosphatemic rickets with hypercalciuria. N Engl J Med 1985; 312(10): 611-7.
[http://dx.doi.org/10.1056/NEJM198503073121003] [PMID: 2983203]
[73]
Bugg NC, Jones JA. HypophosphataemiaPathophysiology, effects and management on the intensive care unit. Anaesthesia 1998; 53(9): 895-902.
[http://dx.doi.org/10.1046/j.1365-2044.1998.00463.x] [PMID: 9849285]
[74]
Foster BL, Nociti FH Jr, Somerman MJ. The rachitic tooth. Endocr Rev 2014; 35(1): 1-34.
[http://dx.doi.org/10.1210/er.2013-1009] [PMID: 23939820]
[75]
Souza MA, Valente Soares LA Junior, dos Santos MA, Vaisbich MH. Dental abnormalities and oral health in patients with Hypophosphatemic rickets. Clinics (São Paulo) 2010; 65(10): 1023-6.
[http://dx.doi.org/10.1590/S1807-59322010001000017] [PMID: 21120305]
[76]
Haffner D, Emma F, Eastwood DM, et al. Clinical practice recommendations for the diagnosis and management of X-linked hypophos-phataemia. Nat Rev Nephrol 2019; 15(7): 435-55.
[http://dx.doi.org/10.1038/s41581-019-0152-5] [PMID: 31068690]
[77]
Laurent MR, De Schepper J, Trouet D, et al. Consensus recommendations for the diagnosis and management of X-linked hypophos-phatemia in Belgium. Front Endocrinol 2021; 12641543
[http://dx.doi.org/10.3389/fendo.2021.641543] [PMID: 33815294]
[78]
DeLacey S, Liu Z, Broyles A, et al. Hyperparathyroidism and parathyroidectomy in X-linked hypophosphatemia patients. Bone 2019; 127: 386-92.
[http://dx.doi.org/10.1016/j.bone.2019.06.025] [PMID: 31276850]
[79]
Imel EA, Glorieux FH, Whyte MP, et al. Burosumab versus conventional therapy in children with X-linked hypophosphataemia: A ran-domised, active-controlled, open-label, phase 3 trial. Lancet 2019; 393(10189): 2416-27.
[http://dx.doi.org/10.1016/S0140-6736(19)30654-3] [PMID: 31104833]
[80]
Padidela R, Cheung MS, Saraff V, Dharmaraj P. Clinical guidelines for burosumab in the treatment of XLH in children and adolescents: British paediatric and adolescent bone group recommendations. Endocr Connect 2020; 9(10): 1051-6.
[http://dx.doi.org/10.1530/EC-20-0291] [PMID: 33112809]
[81]
Bohm NM, Hoover KC, Wahlquist AE, Zhu Y, Velez JCQ. Case-control study and case series of pseudohyperphosphatemia during expo-sure to liposomal amphotericin B. Antimicrob Agents Chemother 2015; 59(11): 6816-23.
[http://dx.doi.org/10.1128/AAC.01306-15] [PMID: 26282423]
[82]
Miller MM, Johnson PN, Hagemann TM, Carter SM, Miller JL. Pseudohyperphosphatemia in children treated with liposomal amphotericin B. J Am Soc Health-Syst Pharm 2014; 71(17): 1462-8.
[83]
Larner AJ. Pseudohyperphosphatemia. Clin Biochem 1995; 28(4): 391-3.
[http://dx.doi.org/10.1016/0009-9120(95)00013-Y] [PMID: 8521592]
[84]
Liamis G, Liberopoulos E, Barkas F, Elisaf M. Spurious electrolyte disorders: A diagnostic challenge for clinicians. Am J Nephrol 2013; 38(1): 50-7.
[http://dx.doi.org/10.1159/000351804] [PMID: 23817179]
[85]
Marraffa JM, Hui A, Stork CM. Severe hyperphosphatemia and hypocalcemia following the rectal administration of a phosphate-containing Fleet pediatric enema. Pediatr Emerg Care 2004; 20(7): 453-6.
[http://dx.doi.org/10.1097/01.pec.0000132217.65600.52] [PMID: 15232246]
[86]
Cheung WL, Hon KL, Fung CM, Leung AK. Tumor lysis syndrome in childhood malignancies. Drugs Context 2020; 9: 2019-8-2.
[http://dx.doi.org/10.7573/dic.2019-8-2]
[87]
Szugye HS. Pediatric rhabdomyolysis. Pediatr Rev 2020; 41(6): 265-75.
[http://dx.doi.org/10.1542/pir.2018-0300] [PMID: 32482689]
[88]
Ramnitz MS, Gourh P, Goldbach-Mansky R, et al. Phenotypic and genotypic characterization and treatment of a cohort with familial tu-moral calcinosis/hyperostosis-hyperphosphatemia syndrome. J Bone Miner Res 2016; 31(10): 1845-54.
[http://dx.doi.org/10.1002/jbmr.2870] [PMID: 27164190]
[89]
Sprecher E. Tumoral calcinosis: New insights for the rheumatologist into a familial crystal deposition disease. Curr Rheumatol Rep 2007; 9(3): 237-42.
[http://dx.doi.org/10.1007/s11926-007-0038-6] [PMID: 17531178]
[90]
Metzker A, Eisenstein B, Oren J, Samuel R. Tumoral calcinosis revisited? common and uncommon features. Eur J Pediatr 1988; 147(2): 128-32.
[http://dx.doi.org/10.1007/BF00442209] [PMID: 3366131]
[91]
Boyce AM, Lee AE, Roszko KL, Gafni RI. Hyperphosphatemic tumoral calcinosis: Pathogenesis, clinical presentation, and challenges in management. Front Endocrinol 2020; 11: 293.
[http://dx.doi.org/10.3389/fendo.2020.00293] [PMID: 32457699]
[92]
Frishberg Y, Topaz O, Bergman R, et al. Identification of a recurrent mutation in GALNT3 demonstrates that hyperostosis-hyperphosphatemia syndrome and familial tumoral calcinosis are allelic disorders. J Mol Med (Berl) 2005; 83(1): 33-8.
[http://dx.doi.org/10.1007/s00109-004-0610-8] [PMID: 15599692]
[93]
Chefetz I, Heller R, Galli-Tsinopoulou A, et al. A novel homozygous missense mutation in FGF23 causes Familial Tumoral Calcinosis associated with disseminated visceral calcification. Hum Genet 2005; 118(2): 261-6.
[http://dx.doi.org/10.1007/s00439-005-0026-8] [PMID: 16151858]
[94]
Ichikawa S, Imel EA, Kreiter ML, et al. A homozygous missense mutation in human KLOTHO causes severe tumoral calcinosis. J Clin Invest 2007; 117(9): 2684-91.
[http://dx.doi.org/10.1172/JCI31330] [PMID: 17710231]
[95]
Farrow EG, Imel EA, White KE. Hyperphosphatemic familial tumoral calcinosis (FGF23, GALNT3 and αKlotho). Best Pract Res Clin Rheumatol 2011; 25(5): 735-47.
[http://dx.doi.org/10.1016/j.berh.2011.10.020] [PMID: 22142751]
[96]
Ketteler M, Block GA, Evenepoel P, et al. Diagnosis, evaluation, prevention, and treatment of chronic kidney disease–mineral and bone disorder: Synopsis of the kidney disease: improving global outcomes 2017 clinical practice guideline update. Ann Intern Med 2018; 168(6): 422-30.
[http://dx.doi.org/10.7326/M17-2640] [PMID: 29459980]
[97]
Vervloet M. Modifying phosphate toxicity in chronic kidney disease. Toxins (Basel) 2019; 11(9): 522.
[http://dx.doi.org/10.3390/toxins11090522] [PMID: 31505780]
[98]
Shroff RC, Donald AE, Hiorns MP, et al. Mineral metabolism and vascular damage in children on dialysis. J Am Soc Nephrol 2007; 18(11): 2996-3003.
[http://dx.doi.org/10.1681/ASN.2006121397] [PMID: 17942964]
[99]
Finer G, Price HE, Shore RM, White KE, Langman CB. Hyperphosphatemic familial tumoral calcinosis: Response to acetazolamide and postulated mechanisms. Am J Med Genet A 2014; 164(6): 1545-9.
[http://dx.doi.org/10.1002/ajmg.a.36476] [PMID: 24668887]
[100]
Garringer HJ, Fisher C, Larsson TE, et al. The role of mutant UDP-N-acetyl-α-D-galactosamine-polypeptide N-acetylgalactosaminyl-] transferase 3 in regulating serum intact fibroblast growth factor 23 and matrix extracellular phosphoglycoprotein in heritable tumoral cal-cinosis. J Clin Endocrinol Metab 2006; 91(10): 4037-42.
[http://dx.doi.org/10.1210/jc.2006-0305] [PMID: 16868048]