Phosphate is indispensable for human life and evolutionary changes over several millions of years have established tightly regulated mechanisms to ensure phosphate homeostasis. In this process, calcium and phosphate metabolism have come to be intricately linked together. Three hormones (PTH, FGF23 and Calcitriol) maintain the fine balance of calcium and phosphate metabolism through their actions at three sites (the gut, the kidneys and the skeleton). Disorders that disrupt this balance can have serious clinical consequences. Acute changes in serum phosphate levels can result in life threatening complications like respiratory failure and cardiac arrythmias. Chronic hypophosphataemia predominantly affects the musculoskeletal system and presents as impaired linear growth, rickets, osteomalacia and dental problems. Hyperphosphataemia is very common in the setting of chronic kidney disease and can be difficult to manage. A thorough understanding of calcium and phosphate homeostasis is essential to diagnose and treat conditions associated with hypo and hyperphosphataemia. In this review, we will discuss the calcium and phosphate metabolism, aetiologies and management of hypo and hyperphosphataemia.