Abstract
Background: Clozapine (CLZ) is the only registered drug for treatment-resistant schizophrenia
and also associated with metabolic abnormalities, including obesity, hyperglycemia, and
dyslipidemia.
Objective: This study aimed to examine the effects of CLZ on lipid metabolism in BRL-3A cells,
measure possible effects of artesunate (ART) on the CLZ-induced alterations in lipid metabolism,
and explore the molecular mechanism underlying the CLZ- and ART-induced changes in the cells.
Methods: BRL-3A cells were cultured in DMEM at different conditions in the CLZ experiment (20,
30, or 40 μM CLZ), CLZ-ART experiment (40 μM CLZ followed by ART at 5, 10, or 20 μM), or
CLZ-ART experiment consisting DMSO, CLZ, CLZ+ART, and ART groups. In addition to cell
viability assessment, triglyceride, total and free cholesterol in BRL-3A cells were measured by biochemistry
analyses, and levels of lipid metabolism-related genes and relevant proteins were evaluated
by means of quantitative PCR and Western blot.
Results: CLZ in the used range increased levels of free and total cholesterol in BRL-3A while upregulated
mRNA levels of HMGCR, PPARα, and PPARγ. Moreover, the treatment increased
SREBP-1c mRNA and protein levels in the cells, although it showed no impact on the phosphorylation
of AMPK. ART treatment following CLZ exposure reversed the CLZ-induced high levels of
free and total cholesterol in BRL-3A. ART effectively ameliorated or normalized the CLZ-induced
changes in the HMGCR, PPARα, PPARγ, and SREBP-1c. Furthermore, ART increased AMPK
phosphorylation in BRL-3A.
Conclusion: These results suggest that ART exerts a cholesterol-lowering effect in BRL-3A by affecting
the AMPK/SREBP-1c/PPARγ pathway.
Keywords:
Antipsychotic, artesunate, BRL-3A cells, cholesterol metabolism, AMPK pathway, clozapine (CLZ).
Graphical Abstract
[6]
Howes, O.D.; McCutcheon, R.; Agid, O.; de Bartolomeis, A.; van Beveren, N.J.M.; Birnbaum, M.L.; Bloomfield, M.A.P.; Bressan, R.A.; Buchanan, R.W.; Carpenter, W.T.; Castle, D.J.; Citrome, L.; Daskalakis, Z.J.; Davidson, M.; Drake, R.J.; Dursun, S.; Ebdrup, B.H.; Elkis, H.; Falkai, P.; Fleischacker, W.W.; Gadelha, A.; Gaughran, F.; Glenthøj, B.Y.; Graff-Guerrero, A.; Hallak, J.E.C.; Honer, W.G.; Kennedy, J.; Kinon, B.J.; Lawrie, S.M.; Lee, J.; Leweke, F.M.; MacCabe, J.H.; McNabb, C.B.; Meltzer, H.; Möller, H.J.; Nakajima, S.; Pantelis, C.; Reis Marques, T.; Remington, G.; Rossell, S.L.; Russell, B.R.; Siu, C.O.; Suzuki, T.; Sommer, I.E.; Taylor, D.; Thomas, N.; Üçok, A.; Umbricht, D.; Walters, J.T.R.; Kane, J.; Correll, C.U. Treatment-resistant schizophrenia: treatment response and resistance in psychosis (TRRIP) working group consensus guidelines on diagnosis and terminology.
Am. J. Psychiatry, 2017,
174(3), 216-229.
[
http://dx.doi.org/10.1176/appi.ajp.2016.16050503] [PMID:
27919182]
[16]
Mottillo, S.; Filion, K.B.; Genest, J.; Joseph, L.; Pilote, L.; Poirier, P. The metabolic syndrome and cardiovascular risk a systematic review and meta-analysis. J. Am. Coll. Cardiol., 2010, 56(14), 1113-1132.
[31]
Park, K.G.; Min, A.K.; Koh, E.H.; Kim, H.S.; Kim, M.O.; Park, H.S. Alpha-lipoic acid decreases hepatic lipogenesis through adenosine monophosphate-activated protein kinase (AMPK)-dependent and AMPK- independent pathways. Hepatology, 2008, 48(5), 1477-1486.
[38]
Adebayo, J.O.; Igunnu, A.; Arise, R.O.; Malomo, S.O. Effects of co- administration of artesunate and amodiaquine on some cardiovascular disease indices in rats. Food Chem. Toxicol., 2011, 49(1), 45-48.
[49]
Lapinskas, P.J.; Brown, S.; Leesnitzer, L.M.; Blanchard, S.; Swanson, C.; Cattley, R.C. Role of PPARalpha in mediating the effects of phthalates and metabolites in the liver. Toxicology, 2005, 207(1), 149-163.