Microwave-Assisted, [Bmim]PF6-Catalyzed Synthesis of Benzoxazoles Under Solvent-free Conditions

Page: [66 - 72] Pages: 7

  • * (Excluding Mailing and Handling)

Abstract

Background: An efficient and green strategy for the synthesis of 2-arylbenzoxazoles using [Bmim]PF6 ionic liquid as a catalyst has been investigated via the condensation of oaminophenol with aldehydes. The microwave-assisted synthesis features some advantages such as good yield of products, broad substrate scope, short reaction time, and absence of metal catalyst and solvent. Furthermore, the synthesis could be conveniently expanded to a gram scale.

Methods: 2-arylbenzoxazoles were obtained from o-aminophenol with aldehydes using [Bmim]PF6 ionic liquid as a catalyst under microwave irradiation at 80ºC, 120 W.

Results: Twenty-three 2-arylbenzoxazole derivatives were furnished in good to excellent yields under optimized conditions. The structures of these compounds were confirmed by analysis of NMR data. In addition, the method could be conveniently expanded to gram scale.

Conclusion: An efficient and straightforward protocol for the synthesis of 2-arylbenzoxazoles catalyzed by [Bmim]PF6 ionic liquid has been demonstrated. The synthesis delivers several advantages such as short reaction time, broad substrate scope, scalability, solvent-free conditions, and high efficiency. The reaction mechanism and applications of this synthesis are currently ongoing in our lab and will be reported in due course.

Graphical Abstract

[1]
Yildiz-Oren, I.; Yalcin, I.; Aki-Sener, E.; Ucarturk, N. Synthesis and structure–activity relationships of new antimicrobial active multisubstituted benzazole derivatives. Eur. J. Med. Chem., 2004, 39(3), 291-298.
[http://dx.doi.org/10.1016/j.ejmech.2003.11.014] [PMID: 15051178]
[2]
Evans, D.A.; Sacks, C.E.; Kleschick, W.A.; Taber, T.R. Polyether antibiotics synthesis. Total synthesis and absolute configuration of the ionophore A-23187. J. Am. Chem. Soc., 1979, 101(22), 6789-6791.
[http://dx.doi.org/10.1021/ja00516a069]
[3]
Kumar, D.; Jacob, M.R.; Reynolds, M.B.; Kerwin, S.M. Synthesis and evaluation of anticancer benzoxazoles and benzimidazoles related to UK-1. Bioorg. Med. Chem., 2002, 10(12), 3997-4004.
[http://dx.doi.org/10.1016/S0968-0896(02)00327-9] [PMID: 12413851]
[4]
Ertan, T.; Yildiz, I.; Tekiner-Gulbas, B.; Bolelli, K.; Temiz-Arpaci, O.; Ozkan, S.; Kaynak, F.; Yalcin, I.; Aki, E. Synthesis, biological evaluation and 2D-QSAR analysis of benzoxazoles as antimicrobial agents. Eur. J. Med. Chem., 2009, 44(2), 501-510.
[http://dx.doi.org/10.1016/j.ejmech.2008.04.001] [PMID: 18524419]
[5]
Yamato, M. Study on the development of biological-active compounds after the model of natural products. Yakugaku Zasshi, 1992, 112(2), 81-99.
[http://dx.doi.org/10.1248/yakushi1947.112.2_81] [PMID: 1517979]
[6]
Song, X.; Vig, B.S.; Lorenzi, P.L.; Drach, J.C.; Townsend, L.B.; Amidon, G.L. Amino acid ester prodrugs of the antiviral agent 2-bromo-5,6-dichloro-1-(β-D-ribofuranosyl)benzimidazole as potential substrates of hPEPT1 transporter. J. Med. Chem., 2005, 48(4), 1274-1277.
[http://dx.doi.org/10.1021/jm049450i] [PMID: 15715497]
[7]
Kusumi, T.; Ooi, T.; Walchli, M.R.; Kakisawa, H. Structure of the novel antibiotics boxazomycins A, B, and C. J. Am. Chem. Soc., 1988, 110(9), 2954-2958.
[http://dx.doi.org/10.1021/ja00217a043]
[8]
Suto, M.J.; Turner, W.R. Synthesis of boxazomycin B and related analogs. Tetrahedron Lett., 1995, 36(40), 7213-7216.
[http://dx.doi.org/10.1016/0040-4039(95)01533-N]
[9]
Benazzouz, A.; Boraud, T.; Dubédat, P.; Boireau, A.; Stutzmann, J.M.; Gross, C. Riluzole prevents MPTP-induced parkinsonism in the rhesus monkey: A pilot study. Eur. J. Pharmacol., 1995, 284(3), 299-307.
[http://dx.doi.org/10.1016/0014-2999(95)00362-O] [PMID: 8666012]
[10]
Terzioglu, N.; van Rijn, R.M.; Bakker, R.A.; De Esch, I.J.P.; Leurs, R. Synthesis and structure–activity relationships of indole and benzimidazole piperazines as histamine H4 receptor antagonists. Bioorg. Med. Chem. Lett., 2004, 14(21), 5251-5256.
[http://dx.doi.org/10.1016/j.bmcl.2004.08.035] [PMID: 15454206]
[11]
Dunwell, D.W.; Evans, D. Synthesis and antiinflammatory activity of some 2-aryl-6-benzoxazoleacetic acid derivatives. J. Med. Chem., 1977, 20(6), 797-801.
[http://dx.doi.org/10.1021/jm00216a011] [PMID: 874954]
[12]
Mortimer, C.G.; Wells, G.; Crochard, J.P.; Stone, E.L.; Bradshaw, T.D.; Stevens, M.F.; Westwell, A.D. Antitumor Benzothiazoles. 26. 1 2-(3,4-Dimethoxyphenyl)-5-fluorobenzothiazole (GW 610, NSC 721648), a simple fluorinated 2-arylbenzothiazole, shows potent and selective inhibitory activity against lung, colon, and breast cancer cell lines. J. Med. Chem., 2006, 49, 179-185.
[http://dx.doi.org/10.1021/jm050942k] [PMID: 16392802]
[13]
Bywater, W.G.; Coleman, W.R.; Kamm, O.; Merritt, H.H. Synthetic anticonvulsants. The preparation and properties of some benzoxazoles. J. Am. Chem. Soc., 1945, 67(6), 905-907.
[http://dx.doi.org/10.1021/ja01222a008]
[14]
Fu, L. Metalation of oxazoles and benzoxazoles. Top. Heterocycl. Chem., 2012, 29, 103-154.
[http://dx.doi.org/10.1007/7081_2012_81]
[15]
Chipem, F.A.S.; Mishra, A.; Krishnamoorthy, G. The role of hydrogen bonding in excited state intramolecular charge transfer. Phys. Chem. Chem. Phys., 2012, 14(25), 8775-8790.
[http://dx.doi.org/10.1039/c2cp23879a] [PMID: 22297383]
[16]
Yongjia, S.; Shengwu, R. Photophysical and photochemical properties of benzoxazole fluorescent whitening agents. Dyes Pigments, 1991, 15(2), 157-164.
[http://dx.doi.org/10.1016/0143-7208(91)87014-E]
[17]
Chanda, K.; Rajasekhar, S.; Maiti, B. A decade update on benzoxazoles, a privileged scaffold in synthetic organic chemistry. Synlett, 2017, 28(5), 521-541.
[http://dx.doi.org/10.1055/s-0036-1588671]
[18]
Steinrück, H.P.; Wasserscheid, P. Ionic liquids in catalysis. Catal. Lett., 2015, 145(1), 380-397.
[http://dx.doi.org/10.1007/s10562-014-1435-x]
[19]
Nguyen, T.T.; Nguyen, X.T.T.; Nguyen, T.L.H.; Tran, P.H. Synthesis of benzoxazoles, benzimidazoles, and benzothiazoles using a brønsted acidic ionic liquid gel as an efficient heterogeneous catalyst under a solvent-free condition. ACS Omega, 2019, 4(1), 368-373.
[http://dx.doi.org/10.1021/acsomega.8b02932] [PMID: 31459336]
[20]
Nguyen, Q.T.; Thi Hang, A.H.; Ho Nguyen, T.L.; Nguyen Chau, D.K.; Tran, P.H. Phosphonium acidic ionic liquid: An efficient and recyclable homogeneous catalyst for the synthesis of 2-arylbenzoxazoles, 2-arylbenzimidazoles, and 2-arylbenzothiazoles. RSC Advances, 2018, 8(21), 11834-11842.
[http://dx.doi.org/10.1039/C8RA01709C] [PMID: 35542773]
[21]
Naeimi, H.; Rahmatinejad, S. Convenient ultrasound promoted synthesis of 2-aryl benzoxazoles in the presence of kcn/ionic liquid as an efficient catalyst under mild conditions. Polycycl. Aromat. Compd., 2016, 36(5), 773-788.
[http://dx.doi.org/10.1080/10406638.2015.1053503]
[22]
Kalbende, P.P. Ionic liquid i.e. 1-Pentyl-3-methylimidazolium bromide mediated synthesis of 2-phenylbenzoxazole. Inter. J. Sci. Res. Chem. Sci., 2020, 7, 20-28.
[23]
Duc, D.X.; Dung, V.C. Microwave-assisted, [Bmim]HSO4-catalyzed the friedländer quinoline synthesis of quinoline under solvent-free conditions. Curr. Organocatal., 2022, 9(2), 117-123.
[http://dx.doi.org/10.2174/2213337209666220127142333]
[24]
Duc, D.X.; Quoc, N.V. Microwave-assisted, copper-free sonogashira coupling between aryl halides and terminal alkynes using recyclable ionic liquid and catalyst. Lett. Org. Chem., 2022, 19(1), 28-33.
[http://dx.doi.org/10.2174/1570178618666210820101129]
[25]
Khalafi-Nezhad, A.; Panahi, F. Ruthenium-catalyzed synthesis of benzoxazoles using acceptorless dehydrogenative coupling reaction of primary alcohols with 2-aminophenol under heterogeneous conditions. ACS Catal., 2014, 4(6), 1686-1692.
[http://dx.doi.org/10.1021/cs5000872]
[26]
Tang, Y.; Li, M.; Gao, H.; Rao, G.; Mao, Z. Efficient Cu-catalyzed intramolecular O -arylation for synthesis of benzoxazoles in water. RSC Advances, 2020, 10(24), 14317-14321.
[http://dx.doi.org/10.1039/D0RA00570C] [PMID: 35498497]
[27]
Putta, R.R.; Chun, S.; Choi, S.H.; Lee, S.B.; Oh, D.C.; Hong, S. Iron(0)-catalyzed transfer hydrogenative condensation of nitroarenes with alcohols: a straightforward approach to benzoxazoles, benzothiazoles, and benzimidazoles. J. Org. Chem., 2020, 85(23), 15396-15405.
[http://dx.doi.org/10.1021/acs.joc.0c02191] [PMID: 33136394]
[28]
Nguyen, L.A.; Dang, T.D.; Ngo, Q.A.; Nguyen, T.B. Sulfur-promoted synthesis of benzoxazoles from 2-aminophenols and aldehydes. Eur. J. Org. Chem., 2020, 2020(25), 3818-3821.
[http://dx.doi.org/10.1002/ejoc.202000523]
[29]
Tang, J.; Cao, Y.; Ruan, F.; Li, F.; Jin, Y.; Ha, M.N.; Han, X.; Ke, Q. New approach for controllable synthesis of N-MnOx microflowers and their superior catalytic performance for benzoxazole synthesis. Ind. Eng. Chem. Res., 2020, 59(20), 9408-9413.
[http://dx.doi.org/10.1021/acs.iecr.0c00746]
[30]
Henry, M.C.; Abbinante, V.M.; Sutherland, A. Iron-catalyzed regioselective synthesis of 2-arylbenzoxazoles and 2-arylbenzothiazoles via alternative reaction pathways. Eur. J. Org. Chem., 2020, 2020(19), 2819-2826.
[http://dx.doi.org/10.1002/ejoc.202000014]
[31]
Ge, B.; Peng, Y.; Liu, J.; Wen, S.; Peng, C.; Cheng, G. Acid-promoted cleavage of the C–C double bond of N-(2-Hydroxylphenyl)enaminones for the synthesis of benzoxazoles. Tetrahedron, 2020, 76(2)130818
[http://dx.doi.org/10.1016/j.tet.2019.130818]
[32]
Asatkar, A.; Lambat, T.L.; Mahmood, S.; Mondal, A.; Singh, M.; Banerjee, S. Facile protocol for the synthesis of benzothiazole, benzoxazole and N-benzimidazole derivatives using rice husk derived chemically activated carbon. Materials today: proceeding, 2020, 738-742.
[33]
Singh, A.S.; Mishra, N.; Kumar, D.; Tiwari, V.K. lewis-acid-mediated benzotriazole ring cleavage (BtRC) strategy for the synthesis of 2-Aryl benzoxazoles from N -acylbenzotriazoles. ACS Omega, 2017, 2(8), 5044-5051.
[http://dx.doi.org/10.1021/acsomega.7b00965] [PMID: 31457781]
[34]
Zhou, Y.; Liu, W.; Liu, Y.; Guan, J.; Yan, J.; Yuan, J-J.; Tao, D-J.; Song, Z. Oxidative NHC catalysis for base-free synthesis of benzoxazinones and benzoazoles by thermal activated NHCs precursor ionic liquid catalyst using air as oxidant. Molecular Catalysis, 2020, 492111013.
[http://dx.doi.org/10.1016/j.mcat.2020.111013]
[35]
Blacker, A.J.; Farah, M.M.; Hall, M.I.; Marsden, S.P.; Saidi, O.; Williams, J.M.J. Synthesis of benzazoles by hydrogen-transfer catalysis. Org. Lett., 2009, 11(9), 2039-2042.
[http://dx.doi.org/10.1021/ol900557u] [PMID: 19354284]
[36]
Evindar, G.; Batey, R.A. Parallel synthesis of a library of benzoxazoles and benzothiazoles using ligand-accelerated copper-catalyzed cyclizations of ortho-halobenzanilides. J. Org. Chem., 2006, 71(5), 1802-1808.
[http://dx.doi.org/10.1021/jo051927q] [PMID: 16496964]
[37]
Wang, L.; Ma, Z.G.; Wei, X.J.; Meng, Q.Y.; Yang, D.T.; Du, S.F.; Chen, Z.F.; Wu, L.Z.; Liu, Q. Synthesis of 2-substituted pyrimidines and benzoxazoles via a visible-light-driven organocatalytic aerobic oxidation: enhancement of the reaction rate and selectivity by a base. Green Chem., 2014, 16(8), 3752-3757.
[http://dx.doi.org/10.1039/C4GC00337C]
[38]
Kilic, A.; Palali, A.A.; Durgun, M.; Tasci, Z.; Ulusoy, M. The coupling of carbon dioxide and epoxides by phenanthroline derivatives containing different Cu(II) complexes as catalyst. Spectrochim. Acta A Mol. Biomol. Spectrosc., 2013, 113, 432-438.
[http://dx.doi.org/10.1016/j.saa.2013.04.124] [PMID: 23747385]
[39]
Chang, W.; Sun, Y.; Huang, Y. One-pot green synthesis of benzoxazole derivatives through molecular sieve-catalyzed oxidative cyclization reaction. Heteroatom Chem., 2017, 28(2)e21360
[http://dx.doi.org/10.1002/hc.21360]
[40]
Moghaddam, F.M.; Saberi, V.; Kalhor, S.; Veisi, N. Palladium(II) immobilized onto the glucose functionalized magnetic nanoparticle as a new and efficient catalyst for the one-pot synthesis of benzoxazoles. Appl. Organomet. Chem., 2018, 32(4)e4240
[http://dx.doi.org/10.1002/aoc.4240]