A Review on Recent Development of Novel Heterocycles as Acetylcholinesterase Inhibitor for the Treatment of Alzheimer’s Disease

Page: [225 - 246] Pages: 22

  • * (Excluding Mailing and Handling)

Abstract

Alzheimer's Disease (AD), affecting a large population worldwide, is characterized by the old population's loss of memory and learning ability. Cholinergic deficiency is associated with AD, and various cholinesterase inhibitors have been developed to treat AD, including naturallyderived inhibitors, synthetic analogs, and hybrids. Acetylcholinesterase (AChE) has obtained a renewed interest as a therapeutic target in Alzheimer's disease (AD) due to increased neural cells' function by increasing the concentration of acetylcholine. In this review, we reported the recent development of novel heterocyclic compounds such as coumarin-benzotriazole hybrids, carbazole derivatives, tacrine conjugates, N-benzyl-piperidine-aryl-acyl hydrazones hybrid, spiropyrazoline derivatives, coumarin-dithiocarbamate hybrids, etc., as AChE inhibitors for the treatment of Alzheimer disease. All the bioactive compounds show an effect on different cells and interact simultaneously with the catalytic active site (CAS) and peripheral anionic site (PAS) of AChE with a narrow range of IC50 values from 0.4 nm to 88.21 μm using Ellman’s in vitro AChE assay method and show high BBB permeability in vitro. In addition, the in vitro fluorescence assay study using Amplex Red assay kits revealed that all the compounds could inhibit self-induced β-amyloid (Aβ) aggregation with the highest inhibition range from 31.4 to 82%. Furthermore, most of the compounds show a low toxicity profile during in vivo studies. The results suggest that all the compounds constitute promising leads for the AChE targeted approach for Alzheimer’s disease.

Graphical Abstract

[1]
Reitz C, Mayeux R. Alzheimer disease: Epidemiology, diagnostic criteria, risk factors and biomarkers. Biochem Pharmacol 2014; 88(4): 640-51.
[http://dx.doi.org/10.1016/j.bcp.2013.12.024] [PMID: 24398425]
[2]
Kumar A, Singh A. Ekavali. A review on Alzheimer’s disease pathophysiology and its management: an update. Pharmacol Rep 2015; 67(2): 195-203.
[http://dx.doi.org/10.1016/j.pharep.2014.09.004] [PMID: 25712639]
[3]
Li Q, Yang H, Chen Y, Sun H. Recent progress in the identification of selective butyrylcholinesterase inhibitors for Alzheimer’s disease. Eur J Med Chem 2017; 132: 294-309.
[http://dx.doi.org/10.1016/j.ejmech.2017.03.062] [PMID: 28371641]
[4]
Palmer AM. Neuroprotective therapeutics for Alzheimer’s disease: progress and prospects. Trends Pharmacol Sci 2011; 32(3): 141-7.
[http://dx.doi.org/10.1016/j.tips.2010.12.007] [PMID: 21256602]
[5]
León R, Garcia AG, Marco-Contelles J. Recent advances in the multitarget-directed ligands approach for the treatment of Alzheimer’s disease. Med Res Rev 2013; 33(1): 139-89.
[http://dx.doi.org/10.1002/med.20248] [PMID: 21793014]
[6]
Ballard C, Gauthier S, Corbett A, Brayne C, Aarsland D, Jones E. Alzheimer’s disease. Lancet 2011; 377(9770): 1019-31.
[http://dx.doi.org/10.1016/S0140-6736(10)61349-9] [PMID: 21371747]
[7]
Dalle E, Mabandla M, Daniels W. Dielectric constant and conductivity of blood plasma: Possible novel biomarkers for Alzheimer’s disease. J Nurse Pract 2018; 14: 129-35.
[http://dx.doi.org/10.1155/2020/5756382] [PMID: 32148652]
[8]
Mushtaq G, Greig N, Khan J, Kamal M. Status of acetylcholinesterase and butyrylcholinesterase in Alzheimer’s disease and type 2 diabetes mellitus. CNS Neurol Disord Drug Targets 2014; 13(8): 1432-9.
[http://dx.doi.org/10.2174/1871527313666141023141545] [PMID: 25345511]
[9]
Zhang P, Xu S, Zhu Z, Xu J. Multi-target design strategies for the improved treatment of Alzheimer’s disease. Eur J Med Chem 2019; 176: 228-47.
[http://dx.doi.org/10.1016/j.ejmech.2019.05.020] [PMID: 31103902]
[10]
Wang H, Zhang H. Reconsideration of anticholinesterase therapeutic strategies against Alzheimer’s disease. ACS Chem Neurosci 2019; 10(2): 852-62.
[http://dx.doi.org/10.1021/acschemneuro.8b00391] [PMID: 30521323]
[11]
Oset-Gasque MJ, Marco-Contelles J. Alzheimer’s disease, the one-molecule, onetarget paradigm, and the multi-target directed ligand approach. ACS Chem Neurosci 2018; 9(3): 401-3.
[http://dx.doi.org/10.1021/acschemneuro.8b00069] [PMID: 29465220]
[12]
Silman I, Sussman JL. Acetylcholinesterase: How is structure related to function? Chem Biol Interact 2008; 175(1-3): 3-10.
[http://dx.doi.org/10.1016/j.cbi.2008.05.035] [PMID: 18586019]
[13]
Berg L, Andersson CD, Artursson E, et al. Targeting acetylcholinesterase: identification of chemical leads by high throughput screening, structure determination and molecular modeling. PLoS One 2011; 6(11): e26039.
[http://dx.doi.org/10.1371/journal.pone.0026039] [PMID: 22140425]
[14]
Tripathi A, Srivastava UC. Acetylcholinsterase: A versatile enzyme of nervous system. Ann Neurosci 2008; 15(4): 106-11.
[http://dx.doi.org/10.5214/ans.0972.7531.2008.150403]
[15]
López-Arrieta JM, Schneider L. Metrifonate for Alzheimer’s disease. Cochrane Database Syst Rev 2006; 2(2): CD003155.
[PMID: 16625573]
[16]
Tougu V. Acetylcholinesterase: Mechanism of catalysis and inhibition. Curr Med Chem Cent Nerv Syst Agents 2001; 1(2): 155-70.
[http://dx.doi.org/10.2174/1568015013358536]
[17]
Zhang Y, Kua J, McCammon JA. Role of the catalytic triad and oxyanion hole in acetylcholinesterase catalysis: An ab initio QM/MM study. J Am Chem Soc 2002; 124(35): 10572-7.
[http://dx.doi.org/10.1021/ja020243m] [PMID: 12197759]
[18]
Sharma K. Cholinesterase inhibitors as Alzheimer’s therapeutics. Mol Med Rep 2019; 20(2): 1479-87.
[http://dx.doi.org/10.3892/mmr.2019.10374] [PMID: 31257471]
[19]
Brown D, Superti-Furga G. Rediscovering the sweet spot in drug discovery. Drug Discov Today 2003; 8(23): 1067-77.
[http://dx.doi.org/10.1016/S1359-6446(03)02902-7] [PMID: 14693466]
[20]
Overington JP, Al-Lazikani B, Hopkins AL. How many drug targets are there? Nat Rev Drug Discov 2006; 5(12): 993-6.
[http://dx.doi.org/10.1038/nrd2199] [PMID: 17139284]
[21]
Szuromi P, Vinson V, Marshall E. Rethinking drug discovery. Science 2004; 303(5665): 1795.
[http://dx.doi.org/10.1126/science.303.5665.1795]
[22]
Francis PT, Palmer AM, Snape M, Wilcock GK. The cholinergic hypothesis of Alzheimer’s disease: A review of progress. J Neurol Neurosurg Psychiatry 1999; 66(2): 137-47.
[http://dx.doi.org/10.1136/jnnp.66.2.137] [PMID: 10071091]
[23]
Whitehouse PJ, Price DL, Struble RG, Clark AW, Coyle JT, DeLong MR. Alzheimer’s disease and senile dementia: Loss of neurons in the basal forebrain. Science 1982; 215(4537): 1237-9.
[http://dx.doi.org/10.1126/science.7058341] [PMID: 7058341]
[24]
Farlow MR, Evans RM. Pharmacologic treatment of cognition in Alzheimer’s dementia. Neurology 1998; 51(S1): S36-44.
[http://dx.doi.org/10.1212/WNL.51.1_Suppl_1.S36] [PMID: 9674761]
[25]
Perry EK, Tomlinson BE, Blessed G, Bergmann K, Gibson PH, Perry RH. Correlation of cholinergic abnormalities with senile plaques and mental test scores in senile dementia. BMJ 1978; 2(6150): 1457-9.
[http://dx.doi.org/10.1136/bmj.2.6150.1457] [PMID: 719462]
[26]
Buccafusco JJ, Terry AV. Multiple central nervous system targets for eliciting beneficial effects on memory and cognition. J Pharmacol Exp Ther 2000; 295: 438-46.
[27]
Bryson HM, Benfield P. Donepezil. Drugs Aging 1997; 10(3): 234-9.
[http://dx.doi.org/10.2165/00002512-199710030-00007] [PMID: 9108896]
[28]
Scott LJ, Goa KL. Galantamine. Drugs 2000; 60(5): 1095-122.
[http://dx.doi.org/10.2165/00003495-200060050-00008] [PMID: 11129124]
[29]
Polinsky RJ. Clinical pharmacology of rivastigmine: A new-generation acetylcholinesterase inhibitor for the treatment of alzheimer’s disease. Clin Ther 1998; 20(4): 634-47.
[http://dx.doi.org/10.1016/S0149-2918(98)80127-6] [PMID: 9737824]
[30]
Nordberg A, Svensson AL. Cholinesterase inhibitors in the treatment of Alzheimer’s disease: A comparison of tolerability and pharmacology. Drug Saf 1998; 19(6): 465-80.
[http://dx.doi.org/10.2165/00002018-199819060-00004] [PMID: 9880090]
[31]
Fariss MW, Mumaw VR, Walton LP. Tetrahydroaminoacridine-induced apoptosis in rat hepatocytes. Toxicol In Vitro 1996; 10(4): 383-93.
[http://dx.doi.org/10.1016/0887-2333(96)00034-3] [PMID: 20650219]
[32]
Marucci G, Buccioni M, Ben DD, Lambertucci C, Volpini R, Amenta F. Efficacy of acetylcholinesterase inhibitors in Alzheimer’s disease. Neuropharmacology 2020; 108352.
[http://dx.doi.org/10.1016/j.neuropharm.2020.108352] [PMID: 33035532]
[33]
Truong B, Quiroz J, Priefer R. Acetylcholinesterase inhibitors for Alzheimer’s disease: Past, present, and potential future. Med Res Arch 2020; 8(12): 1-27.
[http://dx.doi.org/10.18103/mra.v8i12.2271]
[34]
Parsons CG, Stöffler A, Danysz W. Memantine: a NMDA receptor antagonist that improves memory by restoration of homeostasis in the glutamatergic system - too little activation is bad, too much is even worse. Neuropharmacology 2007; 53(6): 699-723.
[http://dx.doi.org/10.1016/j.neuropharm.2007.07.013] [PMID: 17904591]
[35]
Parsons CG, Danysz W, Quack G. Memantine is a clinically well tolerated N-methyl-d-aspartate (NMDA) receptor antagonist-a review of preclinical data. Neuropharmacology 1999; 38(6): 735-67.
[http://dx.doi.org/10.1016/S0028-3908(99)00019-2] [PMID: 10465680]
[36]
Dey A, Bhattacharya R, Mukherjee A, Pandey DK. Natural products against Alzheimer’s disease: Pharmaco-therapeutics and biotechnological interventions. Biotechnol Adv 2017; 35(2): 178-216.
[http://dx.doi.org/10.1016/j.biotechadv.2016.12.005] [PMID: 28043897]
[37]
Li Y, Zhang X, Jiang L, et al. Inhibition of acetylcholinesterase (ache): A potential therapeutic target to treat Alzheimer’s disease. Chem Biol Drug Des 2015; 86(4): 776-82.
[http://dx.doi.org/10.1111/cbdd.12550] [PMID: 25736722]
[38]
Huang L, Luo Z, He F, Shi A, Qin F, Li X. Berberine derivatives, with substituted amino groups linked at the 9-position, as inhibitors of acetylcholinesterase/butyrylcholinesterase. Bioorg Med Chem Lett 2010; 20(22): 6649-52.
[http://dx.doi.org/10.1016/j.bmcl.2010.09.013] [PMID: 20880702]
[39]
Su T, Xie S, Wei H, Yan J, Huang L, Li X. Synthesis and biological evaluation of berberine-thiophenyl hybrids as multi-functional agents: Inhibition of acetylcholinesterase, butyrylcholinesterase, and Aβ aggregation and antioxidant activity. Bioorg Med Chem 2013; 21(18): 5830-40.
[http://dx.doi.org/10.1016/j.bmc.2013.07.011] [PMID: 23932451]
[40]
Ahmed T, Gilani AH. Inhibitory effect of curcuminoids on acetylcholinesterase activity and attenuation of scopolamine-induced amnesia may explain medicinal use of turmeric in Alzheimer’s disease. Pharmacol Biochem Behav 2009; 91(4): 554-9.
[http://dx.doi.org/10.1016/j.pbb.2008.09.010] [PMID: 18930076]
[41]
Yan J, Hu J, Liu A, He L, Li X, Wei H. Design, synthesis, and evaluation of multitarget-directed ligands against Alzheimer’s disease based on the fusion of donepezil and curcumin. Bioorg Med Chem 2017; 25(12): 2946-55.
[http://dx.doi.org/10.1016/j.bmc.2017.02.048] [PMID: 28454848]
[42]
Li Y, Peng P, Tang L, Hu Y, Hu Y, Sheng R. Design, synthesis and evaluation of rivastigmine and curcumin hybrids as site-activated multitarget-directed ligands for Alzheimer’s disease therapy. Bioorg Med Chem 2014; 22(17): 4717-25.
[http://dx.doi.org/10.1016/j.bmc.2014.07.009] [PMID: 25082512]
[43]
Tello-Franco V, Lozada-García M, Soriano-García M. Experimental and computational studies on the inhibition of acetylcholinesterase by curcumin and some of its derivatives. Curr Computeraided Drug Des 2013; 9(2): 289-98.
[http://dx.doi.org/10.2174/15734099113099990007] [PMID: 23106780]
[44]
Zhang L, Cao H, Wen J, Xu M. Green tea polyphenol (-)-epigallocatechin-3-gallate enhances the inhibitory effect of huperzine A on acetylcholinesterase by increasing the affinity with serum albumin. Nutr Neurosci 2009; 12(4): 142-8.
[http://dx.doi.org/10.1179/147683009X423283] [PMID: 19622237]
[45]
Xiao J, Chen X, Zhang L, Talbot SG, Li GC, Xu M. Investigation of the mechanism of enhanced effect of EGCG on huperzine A’s inhibition of acetylcholinesterase activity in rats by a multispectroscopic method. J Agric Food Chem 2008; 56(3): 910-5.
[http://dx.doi.org/10.1021/jf073036k] [PMID: 18193834]
[46]
Ali B, Jamal QMS, Shams S, et al. In silico analysis of green tea polyphenols as inhibitors of AChE and BChE enzymes in Alzheimer’s disease treatment. CNS Neurol Disord Drug Targets 2016; 15(5): 624-8.
[http://dx.doi.org/10.2174/1871527315666160321110607] [PMID: 26996169]
[47]
Matsuzaki H, Shimizu Y, Iwata N, et al. Antidepressant-like effects of a water-soluble extract from the culture medium of Ganoderma lucidum mycelia in rats. BMC Complement Altern Med 2013; 13(1): 370.
[http://dx.doi.org/10.1186/1472-6882-13-370] [PMID: 24369991]
[48]
Huang S, Mao J, Ding K, et al. Polysaccharides from ganoderma lucidum promote cognitive function and neural progenitor proliferation in mouse model of Alzheimer’s disease. Stem Cell Reports 2017; 8(1): 84-94.
[http://dx.doi.org/10.1016/j.stemcr.2016.12.007] [PMID: 28076758]
[49]
Yue Z, Jun L, Nenghui H, Xiaoyi Z. Protective effects and mechanism of ganoderma lucidum triterpenoids on learning and memory function of Alzheimer disease model animals. J Food Sci Biotechnol 2012; 31: 741-4.
[http://dx.doi.org/10.1007/s11356-019-05638-5]
[50]
Yue Z, Jun L, Nenghui H, Xiaoyi Z. Influence of ganoderma lucidum triterpenoids on learning memory function and the activity of T-AOC of Alzheimer disease model animals. Zhonghua Zhongyiyao Zazhi 2012; 27: 2318-21.
[51]
Wang ZY, Liu JG, Li H, Yang HM. Pharmacological effects of active components of Chinese herbal medicine in the treatment of Alzheimer’s disease: A review. Am J Chin Med 2016; 44(8): 1525-41.
[http://dx.doi.org/10.1142/S0192415X16500853] [PMID: 27848250]
[52]
Sonmez F, Zengin Kurt B, Gazioglu I, et al. Design, synthesis and docking study of novel coumarin ligands as potential selective acetylcholinesterase inhibitors. J Enzyme Inhib Med Chem 2017; 32(1): 285-97.
[http://dx.doi.org/10.1080/14756366.2016.1250753] [PMID: 28097911]
[53]
He Q, Liu J, Lan JS, et al. Coumarin-dithiocarbamate hybrids as novel multitarget AChE and MAO-B inhibitors against Alzheimer’s disease: Design, synthesis and biological evaluation. Bioorg Chem 2018; 81: 512-28.
[http://dx.doi.org/10.1016/j.bioorg.2018.09.010] [PMID: 30245233]
[54]
Jiang N, Huang Q, Liu J, et al. Design, synthesis and biological evaluation of new coumarin-dithiocarbamate hybrids as multifunctional agents for the treatment of Alzheimer’s disease. Eur J Med Chem 2018; 146: 287-98.
[http://dx.doi.org/10.1016/j.ejmech.2018.01.055] [PMID: 29407958]
[55]
Jalili-Baleh L, Nadri H, Forootanfar H, et al. Novel 3-phenylcoumarin-lipoic acid conjugates as multi-functional agents for potential treatment of Alzheimer’s disease. Bioorg Chem 2018; 79: 223-34.
[http://dx.doi.org/10.1016/j.bioorg.2018.04.030] [PMID: 29775948]
[56]
Jalili-Baleh L, Forootanfar H. Küçükkılınç TT, et al. Design, synthesis and evaluation of novel multi-target-directed ligands for treatment of Alzheimer’s disease based on coumarin and lipoic acid scaffolds. Eur J Med Chem 2018; 152: 600-14.
[http://dx.doi.org/10.1016/j.ejmech.2018.04.058] [PMID: 29763808]
[57]
de Souza GA, da Silva SJ, Del Cistia CN, et al. Discovery of novel dual-active 3-(4-(dimethylamino)phenyl)-7-aminoalcoxy-coumarin as potent and selective acetylcholinesterase inhibitor and antioxidant. J Enzyme Inhib Med Chem 2019; 34(1): 631-7.
[http://dx.doi.org/10.1080/14756366.2019.1571270] [PMID: 30727776]
[58]
Singh A, Sharma S, Arora S, et al. New coumarin-benzotriazole based hybrid molecules as inhibitors of acetylcholinesterase and amyloid aggregation. Bioorg Med Chem Lett 2020; 30(20): 127477.
[http://dx.doi.org/10.1016/j.bmcl.2020.127477] [PMID: 32781220]
[59]
Mishra CB, Gusain S, Shalini S, et al. Development of novel carbazole derivatives with effective multifunctional action against Alzheimer’s diseases: Design, synthesis, in silico, in vitro and in vivo investigation. Bioorg Chem 2020; 95: 103524.
[http://dx.doi.org/10.1016/j.bioorg.2019.103524] [PMID: 31918396]
[60]
Khoobi M, Ghanoni F, Nadri H, et al. New tetracyclic tacrine analogs containing pyrano[2,3-c]pyrazole: Efficient synthesis, biological assessment and docking simulation study. Eur J Med Chem 2015; 89: 296-303.
[http://dx.doi.org/10.1016/j.ejmech.2014.10.049] [PMID: 25462245]
[61]
Cen J, Guo H, Hong C, et al. Development of tacrine-bifendate conjugates with improved cholinesterase inhibitory and pro-cognitive efficacy and reduced hepatotoxicity. Eur J Med Chem 2018; 144: 128-36.
[http://dx.doi.org/10.1016/j.ejmech.2017.12.005] [PMID: 29268129]
[62]
Li G, Hong G, Li X, et al. Synthesis and activity towards Alzheimer’s disease in vitro: Tacrine, phenolic acid and ligustrazine hybrids. Eur J Med Chem 2018; 148: 238-54.
[http://dx.doi.org/10.1016/j.ejmech.2018.01.028] [PMID: 29466774]
[63]
Yao H, Uras G, Zhang P, et al. Discovery of novel tacrine-pyrimidone hybrids as potent dual AChE/GSK-3 inhibitors for the treatment of Alzheimer’s disease. J Med Chem 2021; 64(11): 7483-506.
[http://dx.doi.org/10.1021/acs.jmedchem.1c00160] [PMID: 34024109]
[64]
Gorecki L, Uliassi E, Bartolini M, et al. Phenothiazine-tacrine heterodimers: Pursuing multitarget directed approach in Alzheimer’s disease. ACS Chem Neurosci 2021; 12(9): 1698-715.
[http://dx.doi.org/10.1021/acschemneuro.1c00184] [PMID: 33852284]
[65]
Ozten O, Zengin Kurt B, Sonmez F, Dogan B, Durdagi S. Synthesis, molecular docking and molecular dynamics studies of novel tacrine-carbamate derivatives as potent cholinesterase inhibitors. Bioorg Chem 2021; 115: 105225.
[http://dx.doi.org/10.1016/j.bioorg.2021.105225] [PMID: 34364052]
[66]
Viegas DFP, de Freitas Silva M, Divino da Rocha M, et al. Design, synthesis and pharmacological evaluation of N -benzyl-piperidinyl-aryl-acylhydrazone derivatives as donepezil hybrids: Discovery of novel multi-target anti-alzheimer prototype drug candidates. Eur J Med Chem 2018; 147: 48-65.
[http://dx.doi.org/10.1016/j.ejmech.2018.01.066] [PMID: 29421570]
[67]
Kumar B, Kumar V, Prashar V, et al. Dipropargyl substituted diphenylpyrimidines as dual inhibitors of monoamine oxidase and acetylcholinesterase. Eur J Med Chem 2019; 177: 221-34.
[http://dx.doi.org/10.1016/j.ejmech.2019.05.039] [PMID: 31151057]
[68]
Tarikoğulları AH, Çizmecioğlu M, Saylam M, Parlar S, Alptüzün V, Soyer Z. Synthesis and cholinesterase inhibitory activity of some phenylacetamide derivatives bearing 1H-pyrazole and 1H-1,2,4-triazole. Marmara Pharm J 2015; 20(1): 21-7.
[http://dx.doi.org/10.12991/mpj.2016202105828]
[69]
Jalili-Baleh L, Nadri H, Moradi A, et al. New racemic annulated pyrazolo[1,2-b]phthalazines as tacrine-like AChE inhibitors with potential use in Alzheimer’s disease. Eur J Med Chem 2017; 139: 280-9.
[http://dx.doi.org/10.1016/j.ejmech.2017.07.072] [PMID: 28803044]
[70]
Gutti G, Kumar D, Paliwal P, et al. Development of pyrazole and spiropyrazoline analogs as multifunctional agents for treatment of Alzheimer’s disease. Bioorg Chem 2019; 90: 103080.
[http://dx.doi.org/10.1016/j.bioorg.2019.103080] [PMID: 31271946]
[71]
Gálvez J, Polo S, Insuasty B, et al. Design, facile synthesis, and evaluation of novel spiro- and pyrazolo[1,5-c]quinazolines as cholinesterase inhibitors: Molecular docking and MM/GBSA studies. Comput Biol Chem 2018; 74: 218-29.
[http://dx.doi.org/10.1016/j.compbiolchem.2018.03.001] [PMID: 29655025]
[72]
Kumar D, Gupta SK, Ganeshpurkar A, et al. Development of Piperazinediones as dual inhibitor for treatment of Alzheimer’s disease. Eur J Med Chem 2018; 150: 87-101.
[http://dx.doi.org/10.1016/j.ejmech.2018.02.078] [PMID: 29524731]
[73]
Rodríguez-Lavado J, Gallardo-Garrido C, Mallea M, et al. Synthesis, in vitro evaluation and molecular docking of a new class of indolylpropyl benzamidopiperazines as dual AChE and SERT ligands for Alzheimer’s disease. Eur J Med Chem 2020; 198: 112368.
[http://dx.doi.org/10.1016/j.ejmech.2020.112368] [PMID: 32388114]
[74]
Guzior N, Bajda M, Rakoczy J, Brus B, Gobec S, Malawska B. Isoindoline-1,3-dione derivatives targeting cholinesterases: Design, synthesis and biological evaluation of potential anti-Alzheimer’s agents. Bioorg Med Chem 2015; 23(7): 1629-37.
[http://dx.doi.org/10.1016/j.bmc.2015.01.045] [PMID: 25707322]
[75]
Fernandes TB, Cunha MR, Sakata RP, et al. Synthesis, molecular modeling, and evaluation of novel sulfonylhydrazones as acetylcholinesterase inhibitors for alzheimer’s disease. Arch Pharm (Weinheim) 2017; 350(11): 1700163.
[http://dx.doi.org/10.1002/ardp.201700163] [PMID: 28940630]
[76]
Bajda M. Jończyk J, Malawska B, et al. Synthesis, biological evaluation and molecular modeling of new tetrahydroacridine derivatives as potential multifunctional agents for the treatment of Alzheimer’s disease. Bioorg Med Chem 2015; 23(17): 5610-8.
[http://dx.doi.org/10.1016/j.bmc.2015.07.029] [PMID: 26242241]
[77]
Wang C, Wu Z, Cai H, et al. Design, synthesis, biological evaluation and docking study of 4-isochromanone hybrids bearing N-benzyl pyridinium moiety as dual binding site acetylcholinesterase inhibitors. Bioorg Med Chem Lett 2015; 25(22): 5212-6.
[http://dx.doi.org/10.1016/j.bmcl.2015.09.063] [PMID: 26454504]
[78]
Eghtedari M, Sarrafi Y, Nadri H, et al. New tacrine-derived AChE/BuChE inhibitors: Synthesis and biological evaluation of 5-amino-2-phenyl-4H-pyrano[2,3-b]quinoline-3-carboxylates. Eur J Med Chem 2017; 128: 237-46.
[http://dx.doi.org/10.1016/j.ejmech.2017.01.042] [PMID: 28189905]
[79]
Umar T, Shalini S, Raza MK, et al. A multifunctional therapeutic approach: Synthesis, biological evaluation, crystal structure and molecular docking of diversified 1H-pyrazolo[3,4-b]pyridine derivatives against Alzheimer’s disease. Eur J Med Chem 2019; 175: 2-19.
[http://dx.doi.org/10.1016/j.ejmech.2019.04.038] [PMID: 31055149]
[80]
Xu R, Xiao G, Li Y, et al. Multifunctional 5,6-dimethoxybenzo[d]isothiazol-3(2H)-one-N-alkylbenzylamine derivatives with acetylcholinesterase, monoamine oxidases and β-amyloid aggregation inhibitory activities as potential agents against Alzheimer’s disease. Bioorg Med Chem 2018; 26(8): 1885-95.
[http://dx.doi.org/10.1016/j.bmc.2018.02.037] [PMID: 29500132]
[81]
Xu Y, Jian MM, Han C, et al. Design, synthesis and evaluation of new 4-arylthiazole-2-amine derivatives as acetylcholinesterase inhibitors. Bioorg Med Chem Lett 2020; 30(6): 126985.
[http://dx.doi.org/10.1016/j.bmcl.2020.126985] [PMID: 32008906]
[82]
Shaik JB, Palaka BK, Penumala M, et al. Synthesis, biological evaluation, and molecular docking of 8-imino-2-oxo-2 H, 8 H -pyrano[2,3- f]chromene analogs: new dual AChE inhibitors as potential drugs for the treatment of Alzheimer’s disease. Chem Biol Drug Des 2016; 88(1): 43-53.
[http://dx.doi.org/10.1111/cbdd.12732] [PMID: 26833890]
[83]
Reis J, Cagide F, Valencia ME, et al. Multi-target-directed ligands for Alzheimer’s disease: discovery of chromone-based monoamine oxidase/cholinesterase inhibitors. Eur J Med Chem 2018; 158: 781-800.
[http://dx.doi.org/10.1016/j.ejmech.2018.07.056] [PMID: 30245401]
[84]
Polo E, Ibarra-Arellano N, Prent-Peñaloza L, et al. Ultrasound-assisted synthesis of novel chalcone, heterochalcone and bis-chalcone derivatives and the evaluation of their antioxidant properties and as acetylcholinesterase inhibitors. Bioorg Chem 2019; 90: 103034.
[http://dx.doi.org/10.1016/j.bioorg.2019.103034] [PMID: 31280015]
[85]
Tian C, Qiang X, Song Q, et al. Flurbiprofen-chalcone hybrid Mannich base derivatives as balanced multifunctional agents against Alzheimer’s disease: Design, synthesis and biological evaluation. Bioorg Chem 2020; 94: 103477.
[http://dx.doi.org/10.1016/j.bioorg.2019.103477] [PMID: 31818478]
[86]
Zheng Y, Qiang X, Xu R, et al. Design, synthesis and evaluation of pterostilbene β-amino alcohol derivatives as multifunctional agents for Alzheimer’s disease treatment. Bioorg Chem 2018; 78: 298-306.
[http://dx.doi.org/10.1016/j.bioorg.2018.03.016] [PMID: 29625269]
[87]
Luo L, Song Q, Li Y, et al. Design, synthesis and evaluation of phthalide alkyl tertiary amine derivatives as promising acetylcholinesterase inhibitors with high potency and selectivity against Alzheimer’s disease. Bioorg Med Chem 2020; 28(8): 115400.
[http://dx.doi.org/10.1016/j.bmc.2020.115400] [PMID: 32146060]
[88]
Pan W, Hu K, Bai P, et al. Design, synthesis and evaluation of novel ferulic acid-memoquin hybrids as potential multifunctional agents for the treatment of Alzheimer’s disease. Bioorg Med Chem Lett 2016; 26(10): 2539-43.
[http://dx.doi.org/10.1016/j.bmcl.2016.03.086] [PMID: 27072909]
[89]
Yang X, Qiang X, Li Y, et al. Pyridoxine-resveratrol hybrids Mannich base derivatives as novel dual inhibitors of AChE and MAO-B with antioxidant and metal-chelating properties for the treatment of Alzheimer’s disease. Bioorg Chem 2017; 71: 305-14.
[http://dx.doi.org/10.1016/j.bioorg.2017.02.016] [PMID: 28267984]
[90]
Cai P, Fang SQ, Yang XL, et al. Rational design and multibiological profiling of novel donepezil-trolox hybrids against Alzheimer’s disease, with cholinergic, antioxidant, neuroprotective, and cognition enhancing properties. ACS Chem Neurosci 2017; 8(11): 2496-511.
[http://dx.doi.org/10.1021/acschemneuro.7b00257] [PMID: 28806057]
[91]
Zhu G, Wang K, Shi J, et al. The development of 2-acetylphenol-donepezil hybrids as multifunctional agents for the treatment of Alzheimer’s disease. Bioorg Med Chem Lett 2019; 29(19): 126625.
[http://dx.doi.org/10.1016/j.bmcl.2019.126625] [PMID: 31444085]
[92]
Sang Z, Wang K, Wang H, et al. Design, synthesis and biological evaluation of phthalimide-alkylamine derivatives as balanced multifunctional cholinesterase and monoamine oxidase-B inhibitors for the treatment of Alzheimer’s disease. Bioorg Med Chem Lett 2017; 27(22): 5053-9.
[http://dx.doi.org/10.1016/j.bmcl.2017.09.055] [PMID: 29033232]
[93]
Song Q, Li Y, Cao Z, et al. Discovery of novel 2,5-dihydroxy-terephthalamide derivatives as multifunctional agents for the treatment of Alzheimer’s disease. Bioorg Med Chem 2018; 26(23-24): 6115-27.
[http://dx.doi.org/10.1016/j.bmc.2018.11.015] [PMID: 30470598]
[94]
Song Q, Li Y, Cao Z, Qiang X, Tan Z, Deng Y. Novel salicylamide derivatives as potent multifunctional agents for the treatment of Alzheimer’s disease: Design, synthesis and biological evaluation. Bioorg Chem 2019; 84: 137-49.
[http://dx.doi.org/10.1016/j.bioorg.2018.11.022] [PMID: 30500523]