Anti-Inflammatory & Anti-Allergy Agents in Medicinal Chemistry

Author(s): Mohamed Sofiane Merakeb, Noureddine Bribi*, Riad Ferhat, Meriem Aziez and Betitera Yanat

DOI: 10.2174/1871523022666221212121621

Alkaloids Extract from Linum usitatissimum Attenuates 12-OTetradecanoylphorbol- 13-Acetate (TPA)-induced Inflammation and Oxidative Stress in Mouse Skin

Page: [179 - 187] Pages: 9

  • * (Excluding Mailing and Handling)

Abstract

Background: In traditional medicine, Linum usitatissimum treats inflammatory, gastrointestinal, and cardiovascular diseases.

Objectives: The present study aims to assess the anti-inflammatory and anti-oxidant effects of total alkaloid extract from Linum usitatissimum seeds (ALU) on the ear histological integrity and oxidant- antioxidant status in a mice model of a sub-chronic inflammation induced by multiapplication of TPA.

Methods: Topical TPA treatment induced various inflammatory changes, including edema formation, epidermal thickness, and the excess production of reactive oxygen species. Tissue samples were used for the measurement of reduced glutathione (GSH) and nitric oxide (NO) levels and Myeloperoxidase (MPO) and Catalase (CAT) activities.

Results: Oral administration of ALU (50, 100, and 200 mg/kg) produced anti-inflammatory and anti-oxidant effects. Also, ALU significantly reduced ear edema and inflammatory cell infiltration and restored the integrity of the ear.

Conclusion: These findings suggest that the total alkaloid extract from Linum usitatissimum seeds presents significant anti-inflammatory and anti-oxidant effects on TPA-induced sub-chronic inflammation model in NMRI mice and can be used as an anti-inflammatory and anti-oxidant agent for the therapeutic management of inflammatory disorders.

Graphical Abstract

[1]
Egger, G. In search of a germ theory equivalent for chronic disease. Prev. Chronic Dis., 2012, 9(5), E95.
[http://dx.doi.org/10.5888/pcd9.110301] [PMID: 22575080]
[2]
Bagad, A.S.; Joseph, J.A.; Bhaskaran, N.; Agarwal, A. Comparative evaluation of anti-inflammatory activity of curcuminoids, turmerones, and aqueous extract of curcuma longa. Adv. Pharmacol. Sci., 2013, 2013, 805756.
[http://dx.doi.org/10.1155/2013/805756] [PMID: 24454348]
[3]
Khan, A.Q.; Khan, R.; Qamar, W.; Lateef, A.; Rehman, M.U.; Tahir, M.; Ali, F.; Hamiza, O.O.; Hasan, S.K.; Sultana, S. Geraniol attenuates 12-O-tetradecanoylphorbol-13-acetate (TPA)-induced oxidative stress and inflammation in mouse skin: Possible role of p38 MAP Kinase and NF-κ. B. Exp. Mol. Pathol., 2013, 94(3), 419-429.
[http://dx.doi.org/10.1016/j.yexmp.2013.01.006] [PMID: 23399806]
[4]
CIHR. Inflammation in chronic disease phase 1 - CIHR; Canadian Institutes of Health Research, 2012.
[5]
Medzhitov, R. Origin and physiological roles of inflammation. Nature, 2008, 454(7203), 428-435.
[http://dx.doi.org/10.1038/nature07201] [PMID: 18650913]
[6]
Mizuno, Y.; Jacob, R.F.; Mason, R.P. Inflammation and the development of atherosclerosis. J. Atheroscler. Thromb., 2011, 18(5), 351-358.
[http://dx.doi.org/10.5551/jat.7591] [PMID: 21427505]
[7]
Daachi, F.; Adi-Bessalem, S.; Megdad-Lamraoui, A.; Laraba-Djebari, F. Immune-toxicity effects of scorpion venom on the hypothalamic pituitary adrenal axis during rest and activity phases in a rodent model. Comp. Biochem. Physiol. C Toxicol. Pharmacol., 2020, 235, 108787.
[http://dx.doi.org/10.1016/j.cbpc.2020.108787] [PMID: 32380264]
[8]
Su, S.; Wang, T.; Duan, J.A.; Zhou, W.; Hua, Y.Q.; Tang, Y.P.; Yu, L.; Qian, D.W. Anti-inflammatory and analgesic activity of different extracts of Commiphora myrrha. J. Ethnopharmacol., 2011, 134(2), 251-258.
[http://dx.doi.org/10.1016/j.jep.2010.12.003] [PMID: 21167270]
[9]
Laine, L.; Smith, R.; Min, K.; Chen, C.; Dubois, R.W. Systematic review: The lower gastrointestinal adverse effects of non-steroidal anti-inflammatory drugs. Aliment. Pharmacol. Ther., 2006, 24(5), 751-767.
[http://dx.doi.org/10.1111/j.1365-2036.2006.03043.x] [PMID: 16918879]
[10]
Rodrigo, L.; Francisco, R.D.; Pérez-Pariente, J.M.; Cadahía, V.; Tojo, R.; Rodriguez, M.; Lucena, M.I.; Andrade, R.J. Nimesulide-induced severe hemolytic anemia and acute liver failure leading to liver transplantation. Scand. J. Gastroenterol., 2002, 37(11), 1341-1343.
[http://dx.doi.org/10.1080/003655202761020650] [PMID: 12465736]
[11]
Rainsford, K.D. Anti-inflammatory drugs in the 21st century. Subcell. Biochem., 2007, 42, 3-27.
[http://dx.doi.org/10.1007/1-4020-5688-5_1] [PMID: 17612044]
[12]
Tag, H.; Das, A.K.; Loyi, H. Anti-inflammatory plants used by the Khamti tribe of Lohit district in Eastern Arunachal Pradesh, India. Nat. Prod. Radiance, 2007, 6(4), 334-340.
[13]
Yatoo, M.I.; Gopalakrishnan, A.; Saxena, A.; Parray, O.R.; Tufani, N.A.; Chakraborty, S.; Tiwari, R.; Dhama, K.; Iqbal, H.M.N. Anti-Inflammatory Drugs and Herbs with Special Emphasis on Herbal medicines for countering inflammatory diseases and disorders - A Review. Recent Pat. Inflamm. Allergy Drug Discov., 2018, 12(1), 39-58.
[http://dx.doi.org/10.2174/1872213X12666180115153635] [PMID: 29336271]
[14]
He, L.; Kim, J.A.; Whistler, J.L. Biomarkers of morphine tolerance and dependence are prevented by morphine‐induced endocytosis of a mutant μ‐opioid receptor. FASEB J., 2009, 23(12), 4327-4334.
[http://dx.doi.org/10.1096/fj.09-133223] [PMID: 19679639]
[15]
Bribi, N.; Rodríguez-Nogales, A.; Vezza, T.; Algieri, F.; Rodriguez-Cabezas, M.E.; Garrido-Mesa, J.; Gálvez, J. Intestinal anti-inflammatory activity of the total alkaloid fraction from Fumaria capreolata in the DSS model of colitis in mice. Bioorg. Med. Chem. Lett., 2020, 30(18), 127414.
[http://dx.doi.org/10.1016/j.bmcl.2020.127414] [PMID: 32717615]
[16]
Thawabteh, A.; Juma, S.; Bader, M.; Karaman, D.; Scrano, L.; Bufo, S.; Karaman, R. The biological activity of natural alkaloids against herbivores, cancerous cells and pathogens. Toxins, 2019, 11(11), 656.
[http://dx.doi.org/10.3390/toxins11110656] [PMID: 31717922]
[17]
Singh, K.K.; Mridula, D.; Rehal, J.; Barnwal, P. Flaxseed: A potential source of food, feed and fiber. Crit. Rev. Food Sci. Nutr., 2011, 51(3), 210-222.
[http://dx.doi.org/10.1080/10408390903537241] [PMID: 21390942]
[18]
Touré, A.; Xueming, X. Flaxseed lignans: Source, biosynthesis, metabolism, antioxidant activity, bio-active components, and health benefits. Compr. Rev. Food Sci. Food Saf., 2010, 9(3), 261-269.
[http://dx.doi.org/10.1111/j.1541-4337.2009.00105.x] [PMID: 33467817]
[19]
Zarepoor, L.; Lu, J.T.; Zhang, C.; Wu, W.; Lepp, D.; Robinson, L.; Wanasundara, J.; Cui, S.; Villeneuve, S.; Fofana, B.; Tsao, R.; Wood, G.A.; Power, K.A. Dietary flaxseed intake exacerbates acute colonic mucosal injury and inflammation induced by dextran sodium sulfate. Am. J. Physiol. Gastrointest. Liver Physiol., 2014, 306(12), G1042-G1055.
[http://dx.doi.org/10.1152/ajpgi.00253.2013] [PMID: 24763556]
[20]
Shim, Y.Y.; Gui, B.; Arnison, P.G.; Wang, Y.; Reaney, M.J.T. Flaxseed (Linum usitatissimum L.) bioactive compounds and peptide nomenclature: A review. Trends Food Sci. Technol., 2014, 38(1), 5-20.
[http://dx.doi.org/10.1016/j.tifs.2014.03.011]
[21]
Bhatty, R.S.; Cherdkiatgumchai, P. Compositional analysis of laboratory-prepared and commercial samples of linseed meal and of hull isolated from flax. J. Am. Oil Chem. Soc., 1990, 67(2), 79-84.
[http://dx.doi.org/10.1007/BF02540631]
[22]
Matsumoto, T.; Shishido, A.; Morita, H.; Itokawa, H.; Takeya, K. Cyclolinopeptides F–I, cyclic peptides from linseed. Phytochemistry, 2001, 57(2), 251-260.
[http://dx.doi.org/10.1016/S0031-9422(00)00442-8] [PMID: 11382241]
[23]
Oomah, B.D. Flaxseed as a functional food source. J. Sci. Food Agric., 2001, 81(9), 889-894.
[http://dx.doi.org/10.1002/jsfa.898]
[24]
Rajesha, J.; Murthy, K.N.C.; Kumar, M.K.; Madhusudhan, B.; Ravishankar, G.A. Antioxidant potentials of flaxseed by in vivo model. J. Agric. Food Chem., 2006, 54(11), 3794-3799.
[http://dx.doi.org/10.1021/jf053048a] [PMID: 16719498]
[25]
Chen, J.; Stavro, P.M.; Thompson, L.U. Dietary flaxseed inhibits human breast cancer growth and metastasis and downregulates expression of insulin-like growth factor and epidermal growth factor receptor. Nutr. Cancer, 2002, 43(2), 187-192.
[http://dx.doi.org/10.1207/S15327914NC432_9] [PMID: 12588699]
[26]
Prasad, K. Dietary flax seed in prevention of hypercholesterolemic atherosclerosis. Atherosclerosis, 1997, 132(1), 69-76.
[http://dx.doi.org/10.1016/S0021-9150(97)06110-8] [PMID: 9247361]
[27]
Kinniry, P.; Amrani, Y.; Vachani, A.; Solomides, C.C.; Arguiri, E.; Workman, A.; Carter, J.; Christofidou-Solomidou, M. Dietary flaxseed supplementation ameliorates inflammation and oxidative tissue damage in experimental models of acute lung injury in mice. J. Nutr., 2006, 136(6), 1545-1551.
[http://dx.doi.org/10.1093/jn/136.6.1545] [PMID: 16702319]
[28]
Palla, A.H.; Iqbal, N.T.; Minhas, K.; Gilani, A.H. Flaxseed extract exhibits mucosal protective effect in acetic acid induced colitis in mice by modulating cytokines, antioxidant and antiinflammatory mechanisms. Int. Immunopharmacol., 2016, 38, 153-166.
[http://dx.doi.org/10.1016/j.intimp.2016.04.043] [PMID: 27280586]
[29]
Thamilmarai, S.B.; Sathammai, P.N.; Steffi, P.F.; Priyadarshni, S. Phytochemical evaluation, gc-ms analysis of phytoactive compounds, and antibacterial activity studies from Linum usitatissimum. Asian J. Pharm. Clin. Res., 2019, 12(8), 141-149.
[http://dx.doi.org/10.22159/ajpcr.2019.v12i18.34126]
[30]
Zimmermann, M. Ethical guidelines for investigations of experimental pain in conscious animals. Pain, 1983, 16(2), 109-110.
[http://dx.doi.org/10.1016/0304-3959(83)90201-4] [PMID: 6877845]
[31]
Soušek, J.; Guédon, D.; Adam, T.; Bochořáková, H.; Táborská, E.; Válka, I.; Šimánek, V. Alkaloids and organic acids content of eight fumaria species. Phytochem. Anal., 1999, 10(1), 6-11.
[http://dx.doi.org/10.1002/(SICI)1099-1565(199901/02)10:1<6::AID-PCA431>3.0.CO;2-0]
[32]
Erkmen, O. Bacterial inactivation mechanism of SC-CD and TEO combinations in watermelon and melon juices. Food Sci. Technol. 2022, 42, 62520.
[http://dx.doi.org/10.1590/fst.62520]
[33]
Aykut, B.; Osman, E. Antimicrobial activity of a novel biodegradable edible film produced from Pistacia vera resin and origanum vulgare essential oil. Res. J. Biotechnol., 2017, 12(9), 15-21.
[34]
Stanley, P.L.; Steiner, S.; Havens, M.; Tramposch, K.M. Mouse skin inflammation induced by multiple topical applications of 12-O-tetradecanoylphorbol-13-acetate. Skin Pharmacol. Physiol., 1991, 4(4), 262-271.
[http://dx.doi.org/10.1159/000210960] [PMID: 1789987]
[35]
Bribi, N. Anti-nociceptive and anti-inflammatory effects of paeonia mascula extract. J. Pharm. Pharmacogn. Res., 2018, 6(2), 81-88.
[36]
Giner, R.M.; Villalba, M.L.; Recio, M.C.; Máñez, S.; Cerdá-Nicolás, M.; Ríos, J.L. Anti-inflammatory glycoterpenoids from scrophularia auriculata. Eur. J. Pharmacol., 2000, 389(2-3), 243-252.
[http://dx.doi.org/10.1016/S0014-2999(99)00846-8] [PMID: 10688990]
[37]
Suzuki, K.; Ota, H.; Sasagawa, S.; Sakatani, T.; Fujikura, T. Assay method for myeloperoxidase in human polymorphonuclear leukocytes. Anal. Biochem., 1983, 132(2), 345-352.
[http://dx.doi.org/10.1016/0003-2697(83)90019-2] [PMID: 6312841]
[38]
Young, L.M.; Kheifets, J.B.; Ballaron, S.J.; Young, J.M. Edema and cell infiltration in the phorbol ester-treated mouse ear are temporally separate and can be differentially modulated by pharmacologic agents. Agents Actions, 1989, 26(3-4), 335-341.
[http://dx.doi.org/10.1007/BF01967298] [PMID: 2567568]
[39]
Park, B.K.; Heo, M.Y.; Park, H.; Kim, H.P. Inhibition of TPA-induced cyclooxygenase-2 expression and skin inflammation in mice by wogonin, a plant flavone from Scutellaria radix. Eur. J. Pharmacol., 2001, 425(2), 153-157.
[http://dx.doi.org/10.1016/S0014-2999(01)01187-6] [PMID: 11502282]
[40]
Patriarca, P.; Cramer, R.; Marussi, M.; Rossi, F.; Romeo, D. Mode of activation of granule-bound NADPH oxidase in leucocytes during phagocytosis. Biochim. Biophys. Acta, Gen. Subj., 1971, 237(2), 335-338.
[http://dx.doi.org/10.1016/0304-4165(71)90327-8] [PMID: 4398347]
[41]
Schultz, J.; Kaminker, K. Myeloperoxidase of the leucocyte of normal human blood. I. content and localization. Arch. Biochem. Biophys., 1962, 96(3), 465-467.
[http://dx.doi.org/10.1016/0003-9861(62)90321-1] [PMID: 13909511]
[42]
Krawisz, J.E.; Sharon, P.; Stenson, W.F. Quantitative assay for acute intestinal inflammation based on myeloperoxidase activity. Gastroenterology, 1984, 87(6), 1344-1350.
[http://dx.doi.org/10.1016/0016-5085(84)90202-6] [PMID: 6092199]
[43]
Renlund, D.G.; Macfarlane, J.L.; Christensen, R.D.; Lynch, R.E.; Rothstein, G. Quantitative and sensitive method for the measurement of myeloperoxidase (MPO). In: Clinical Research; SLACK INC 6900 GROVE RD, THOROFARE, NJ 08086, 1980, 28, pp. A75- A75.
[44]
Bradford, M.M. A rapid and sensitive method for the quantitation of microgram quantities of protein utilizing the principle of protein-dye binding. Anal. Biochem., 1976, 72(1-2), 248-254.
[http://dx.doi.org/10.1016/0003-2697(76)90527-3] [PMID: 942051]
[45]
Haj-Mirzaian, A.; Amiri, S.; Amini-Khoei, H.; Hosseini, M.J.; Haj-Mirzaian, A.; Momeny, M.; Rahimi-Balaei, M.; Dehpour, A.R. Anxiety- and depressive-like behaviors are associated with altered hippocampal energy and inflammatory status in a mouse model of crohn’s disease. Neuroscience, 2017, 366, 124-137.
[http://dx.doi.org/10.1016/j.neuroscience.2017.10.023] [PMID: 29080717]
[46]
Sun, J.; Zhang, X.; Broderick, M.; Fein, H. Measurement of nitric oxide production in biological systems by using griess reaction assay. Sensors, 2003, 3(8), 276-284.
[http://dx.doi.org/10.3390/s30800276]
[47]
Jollow, D.J.; Mitchell, J.R.; Zampaglione, N.; Gillette, J.R. Bromobenzene-induced liver necrosis. protective role of glutathione and evidence for 3,4-bromobenzene oxide as the hepatotoxic metabolite. Pharmacology, 1974, 11(3), 151-169.
[http://dx.doi.org/10.1159/000136485] [PMID: 4831804]
[48]
Ansari, M.N.; Rehman, N.U.; Karim, A.; Soliman, G.A.; Ganaie, M.A.; Raish, M.; Hamad, A.M. Role of oxidative stress and inflammatory cytokines ( TNF- α and IL-6 ) in acetic acid-induced ulcerative colitis in rats : Ameliorated by Otostegia fruticosa. Life, 2021.
[49]
Ellman, G.L. Tissue sulfhydryl groups. Arch. Biochem. Biophys., 1959, 82(1), 70-77.
[50]
Claiborne, A.L. Catalase activity.In: CRC Handbook of Methods for Oxygen Radical Research; CRC Press: Boca Raton, 1985, p. 1.
[51]
Trouba, K.J.; Hamadeh, H.K.; Amin, R.P.; Germolec, D.R. Oxidative stress and its role in skin disease. Antioxid. Redox Signal., 2002, 4(4), 665-673.
[http://dx.doi.org/10.1089/15230860260220175] [PMID: 12230879]
[52]
Ha, H.Y.; Kim, Y.; Ryoo, Z.Y.; Kim, T.Y. Inhibition of the TPA-induced cutaneous inflammation and hyperplasia by EC-SOD. Biochem. Biophys. Res. Commun., 2006, 348(2), 450-458.
[http://dx.doi.org/10.1016/j.bbrc.2006.07.079] [PMID: 16890203]
[53]
Steiling, H.; Munz, B.; Werner, S.; Brauchle, M. Different types of ROS-scavenging enzymes are expressed during cutaneous wound repair. Exp. Cell Res., 1999, 247(2), 484-494.
[http://dx.doi.org/10.1006/excr.1998.4366] [PMID: 10066376]
[54]
Clark, S.D.; Wilhelm, S.M.; Stricklin, G.P.; Welgus, H.G. Coregulation of collagenase and collagenase inhibitor production by phorbol myristate acetate in human skin fibroblasts. Arch. Biochem. Biophys., 1985, 241(1), 36-44.
[http://dx.doi.org/10.1016/0003-9861(85)90358-3] [PMID: 2992392]
[55]
Alford, J.G.; Stanley, P.L.; Todderud, G.; Tramposch, K.M. Temporal infiltration of leukocyte subsets into mouse skin inflamed with phorbol ester. Agents Actions, 1992, 37(3-4), 260-267.
[http://dx.doi.org/10.1007/BF02028118] [PMID: 1338267]
[56]
Seo, H.J.; Park, K.K.; Han, S.S.; Chung, W.Y.; Son, M.W.; Kim, W.B.; Surh, Y.J. Inhibitory effects of the standardized extract (DA-9601) of artemisia asiatica nakai on phorbol ester-induced ornithine decarboxylase activity, papilloma formation, cyclooxygenase-2 expression, inducible nitric oxide synthase expression and nuclear transcription factor? b activation in mouse skin. Int. J. Cancer, 2002, 100(4), 456-462.
[http://dx.doi.org/10.1002/ijc.10489] [PMID: 12115530]
[57]
Kim, S.H.; Kim, S.A.; Park, M.K.; Kim, S.H.; Park, Y.D.; Na, H.J.; Kim, H.M.; Shin, M.K.; Ahn, K.S. Paeonol inhibits anaphylactic reaction by regulating histamine and TNF-α. Int. Immunopharmacol., 2004, 4(2), 279-287.
[http://dx.doi.org/10.1016/j.intimp.2003.12.013] [PMID: 14996419]
[58]
Baxter, C.S.; Chalfin, K.; Andringa, A.; Miller, M.L. Qualitative and quantitative effects on epidermal langerhans (ia+) and thy-1+ dendritic cells following topical application of phorbol diesters and mezerein. Carcinogenesis, 1988, 9(9), 1563-1568.
[http://dx.doi.org/10.1093/carcin/9.9.1563] [PMID: 2900701]
[59]
Ferhat, R.; Bribi, N.; Merakeb, M.S.; Betitra, Y. Anti-inflammatory and analgesic effect of an alkaloid-fixed oil mix from Linumusitatisimum seeds in vivo. GABJ, 2021, 5(2), 68-76.
[http://dx.doi.org/10.46325/gabj.v5i2.73]
[60]
Merakeb, M.S.; Bribi, N.; Ferhat, R.; Yanat, B. Inhibitory effects of Linum usitatissimum alkaloid on inflammatory and nociceptive responses in mice. Curr. Bioact. Compd., 2022, 18, 1.
[http://dx.doi.org/10.2174/1573407218666220427114432]
[61]
Bradley, P.P.; Priebat, D.A.; Christensen, R.D.; Rothstein, G. Measurement of cutaneous inflammation: Estimation of neutrophil content with an enzyme marker. J. Invest. Dermatol., 1982, 78(3), 206-209.
[http://dx.doi.org/10.1111/1523-1747.ep12506462] [PMID: 6276474]
[62]
Maitra, D.; Byun, J.; Andreana, P.R.; Abdulhamid, I.; Diamond, M.P.; Saed, G.M.; Pennathur, S.; Abu-Soud, H.M. Reaction of hemoglobin with HOCl: Mechanism of heme destruction and free iron release. Free Radic. Biol. Med., 2011, 51(2), 374-386.
[http://dx.doi.org/10.1016/j.freeradbiomed.2011.04.011] [PMID: 21549834]
[63]
Aruoma, O.I.; Halliwell, B. Action of hypochlorous acid on the antioxidant protective enzymes superoxide dismutase, catalase and glutathione peroxidase. Biochem. J., 1987, 248(3), 973-976.
[http://dx.doi.org/10.1042/bj2480973] [PMID: 2829848]
[64]
Souza, C.E.A.; Maitra, D.; Saed, G.M.; Diamond, M.P.; Moura, A.A.; Pennathur, S.; Abu-Soud, H.M. Hypochlorous acid-induced heme degradation from lactoperoxidase as a novel mechanism of free iron release and tissue injury in inflammatory diseases. PLoS One, 2011, 6(11), e27641.
[http://dx.doi.org/10.1371/journal.pone.0027641] [PMID: 22132121]
[65]
Hutzinger, O. The Handbook of Environmental Chemistry; Part A. Reactions and Processes; Springer, 1980, Vol. 2, .
[66]
Ali, I.; Khan, S.N.; Chatzicharalampous, C.; Bai, D.; Abu-Soud, H.M. Catalase prevents myeloperoxidase self-destruction in response to oxidative stress. J. Inorg. Biochem., 2019, 197(197), 110706.
[http://dx.doi.org/10.1016/j.jinorgbio.2019.110706] [PMID: 31103890]
[67]
Cuzzocrea, S.; Costantino, G.; Zingarelli, B.; Mazzon, E.; Micali, A.; Caputi, A.P. The protective role of endogenous glutathione in carrageenan-induced pleurisy in the rat. Eur. J. Pharmacol., 1999, 372(2), 187-197.
[http://dx.doi.org/10.1016/S0014-2999(99)00200-9] [PMID: 10395099]
[68]
Erden Inal, M.; Akgün, A.; Kahraman, A. The effects of exogenous glutathione on reduced glutathione level, glutathione peroxidase and glutathione reductase activities of rats with different ages and gender after whole-body Γ-irradiation. Age, 2003, 26(3-4), 55-58.
[http://dx.doi.org/10.1007/s11357-003-0005-8] [PMID: 23604917]
[69]
El-Shitany, N.A.; El-Masry, S.A.; El-Ghareib, M.A.; El-Desoky, K. Thioctic acid protects against carrageenan-induced acute inflammation in rats by reduction in oxidative stress, downregulation of COX-2 mRNA and enhancement of IL-10 mRNA. Fundam. Clin. Pharmacol., 2010, 24(1), 91-99.
[http://dx.doi.org/10.1111/j.1472-8206.2009.00744.x] [PMID: 19735303]
[70]
Cox, A.G.; Winterbourn, C.C.; Hampton, M.B. Mitochondrial peroxiredoxin involvement in antioxidant defence and redox signalling. Biochem. J., 2010, 425(2), 313-325.
[http://dx.doi.org/10.1042/BJ20091541] [PMID: 20025614]
[71]
Powers, S.K.; Deruisseau, K.C.; Quindry, J.; Hamilton, K.L. Dietary antioxidants and exercise. J. Sports Sci., 2004, 22(1), 81-94.
[http://dx.doi.org/10.1080/0264041031000140563] [PMID: 14971435]
[72]
Moncada, S.; Higgs, E.A.; Wellcome, T. endogenous nitric oxide: physiology, pathology and clinical relevance. Eur. J. Clin. Invest., 1991, 21(4), 361-374.
[73]
Reif, D.W.; Simmons, R.D. Nitric oxide mediates iron release from ferritin. Arch. Biochem. Biophys., 1990, 283(2), 537-541.
[http://dx.doi.org/10.1016/0003-9861(90)90680-W] [PMID: 2177332]
[74]
Hausladen, A.; Stamler, J.S. Nitrosative stress. Methods Enzymol., 1999, 300, 389-395.
[http://dx.doi.org/10.1016/S0076-6879(99)00143-3] [PMID: 9919539]
[75]
Murphy, M.P. Nitric oxide and cell death. Biochim. Biophys. Acta Bioenerg., 1999, 1411(2-3), 401-414.
[http://dx.doi.org/10.1016/S0005-2728(99)00029-8] [PMID: 10320672]
[76]
Pacheco, N.R.; Pinto, N.C.C.; Mello da Silva, J.; Mendes, R.F.; Costa, J.C.; Aragão, D.M.O.; Castañon, M.C.M.N.; Scio, E. Cecropia pachystachya: A species with expressive in vivo topical anti-inflammatory and in vitro antioxidant effects. BioMed Res. Int., 2014, 2014, 1-10.
[http://dx.doi.org/10.1155/2014/301294] [PMID: 24877079]
[77]
Palla, A.H.; Gilani, A.H.; Bashir, S.; Ur Rehman, N. Multiple mechanisms of flaxseed: Effectiveness in inflammatory bowel disease. Evid. Based Complement. Alternat. Med., 2020, 2020, 7974835.
[http://dx.doi.org/10.1155/2020/7974835] [PMID: 32765633]
[78]
Khan, Z.J.; Khan, N.A.; Naseem, I.; Nami, S.A.A. Exploration of physicochemical and phytochemical potential of Linum usitatissmum Linn (Tukhm-e-Katan). Asian J. Pharm. Pharmacol., 2019, 5(3), 551-558.
[http://dx.doi.org/10.31024/ajpp.2019.5.3.17]
[79]
Goyal, M.; Ghosh, M.; Nagori, B.P.; Sasmal, D. Analgesic and anti-inflammatory studies of cyclopeptide alkaloid fraction of leaves of ziziyphus nummularia. Saudi J. Biol. Sci., 2013, 20(4), 365-371.
[http://dx.doi.org/10.1016/j.sjbs.2013.04.003] [PMID: 24235873]
[80]
Dahiya, R.; Dahiya, S. Natural bioeffective cyclooligopeptides from plant seeds of annona genus. Eur. J. Med. Chem., 2021, 214, 113221.
[http://dx.doi.org/10.1016/j.ejmech.2021.113221] [PMID: 33540356]
[81]
Shaukat, B.; Mehmood, M.H. Shahid Shah; Anwar, H. Ziziphus Oxyphylla hydro-methanolic extract ameliorates hypertension in L-NAME induced hypertensive rats through NO/cGMP pathway and suppression of oxidative stress related inflammatory biomarkers. J. Ethnopharmacol., 2022, 285, 114825.
[http://dx.doi.org/10.1016/j.jep.2021.114825] [PMID: 34774683]
[82]
Boller, S.; Soldi, C.; Marques, M.C.A.; Santos, E.P.; Cabrini, D.A.; Pizzolatti, M.G.; Zampronio, A.R.; Otuki, M.F. Anti-inflammatory effect of crude extract and isolated compounds from Baccharis illinita DC in acute skin inflammation. J. Ethnopharmacol., 2010, 130(2), 262-266.
[http://dx.doi.org/10.1016/j.jep.2010.05.001] [PMID: 20452414]