Calcium and Sodium-mediated Dynamic Assembly of Intermediate Filament-like Protein FilP

Page: [154 - 161] Pages: 8

  • * (Excluding Mailing and Handling)

Abstract

Background: Cytoskeletal elements play key roles in cell morphology, cell division, cell mobility, and DNA partitioning in all domains of life. The IF-like protein FilP was discovered in Streptomyces coelicolor, and it was found to perform a structurally important cytoskeletal role by providing direct mechanical support for the cells.

Objective: This work investigated the factors influencing FilP polymerization under a variety of conditions.

Methods: DLS technique was applied to real-time monitor the in vitro assembly process of Streptomyces coelicolor FilP.

Results: The presence of small amounts of divalent cations, such as CaCl2 or MgCl2, enhanced the polymerization of FilP, while higher amounts suppressed its polymerization. Moreover, high concentrations of NaCl, KCl, NH4Cl, and KNO3 both suppressed the polymerization of FilP. EDTA was found to have a very prohibitive effect on FilP polymerization, and even the following addition of Ca2+ could not initiate the assembly of FilP. FilP polymerized under a range of pHs ranging from pH 6 to pH 8, while the polymerization degree was sensitive to pH. FilP formed network-like, striated filaments at neutral pH, while the filaments became more disordered or loosely packed at pH 8 and pH 6, respectively.

Conclusion: FilP assembly is calcium-mediated. Ca2+ is not only required for FilP polymerization, but also required for FilP to maintain the higher-order polymer structure. The accelerative effect of Ca2+ and the suppressive effect of Na+ persisted under a wide range of conditions, suggesting that FilP might use calcium and sodium ions as a general mechanism to mediate its polymerization process.

Graphical Abstract

[1]
Misteli, T.; Warren, G. 25 years of current opinion in cell biology. Curr. Opin. Cell Biol., 2013, 25(1), 1-2.
[http://dx.doi.org/10.1016/j.ceb.2013.01.005] [PMID: 23352256]
[2]
Celler, K.; Koning, R.I.; Koster, A.J.; van Wezel, G.P. Multidimensional view of the bacterial cytoskeleton. J. Bacteriol., 2013, 195(8), 1627-1636.
[http://dx.doi.org/10.1128/JB.02194-12] [PMID: 23417493]
[3]
Monterroso, B.; Ahijado-Guzmán, R.; Reija, B.; Alfonso, C.; Zorrilla, S.; Minton, A.P.; Rivas, G. Mg(2+)-linked self-assembly of FtsZ in the presence of GTP or a GTP analogue involves the concerted formation of a narrow size distribution of oligomeric species. Biochemistry, 2012, 51(22), 4541-4550.
[http://dx.doi.org/10.1021/bi300401b] [PMID: 22568594]
[4]
Cabeen, M.T.; Jacobs-Wagner, C. Skin and bones: The bacterial cytoskeleton, cell wall, and cell morphogenesis. J. Cell Biol., 2007, 179(3), 381-387.
[http://dx.doi.org/10.1083/jcb.200708001] [PMID: 17967949]
[5]
Esue, O.; Wirtz, D.; Tseng, Y. GTPase activity, structure, and mechanical properties of filaments assembled from bacterial cytoskeleton protein MreB. J. Bacteriol., 2006, 188(3), 968-976.
[http://dx.doi.org/10.1128/JB.188.3.968-976.2006] [PMID: 16428401]
[6]
Popp, D.; Robinson, R.C. Bacterial cytoskeleton suprastructures and their physical origin. Commun. Integr. Biol., 2010, 3(5), 451-453.
[http://dx.doi.org/10.4161/cib.3.5.12340] [PMID: 21057638]
[7]
Pollard, T.D. Actin cytoskeleton: Missing link for intracellular bacterial motility? Curr. Biol., 1995, 5(8), 837-840.
[http://dx.doi.org/10.1016/S0960-9822(95)00167-9] [PMID: 7583135]
[8]
Erickson, H.P.; Anderson, D.E.; Osawa, M. FtsZ in bacterial cytokinesis: Cytoskeleton and force generator all in one. Microbiol. Mol. Biol. Rev., 2010, 74(4), 504-528.
[http://dx.doi.org/10.1128/MMBR.00021-10] [PMID: 21119015]
[9]
Carballido-López, R. The bacterial actin-like cytoskeleton. Microbiol. Mol. Biol. Rev., 2007, 71(1), 254-254.
[http://dx.doi.org/10.1128/MMBR.00002-07] [PMID: 17158703]
[10]
Gitai, Z. Diversification and specialization of the bacterial cytoskeleton. Curr. Opin. Cell Biol., 2007, 19(1), 5-12.
[http://dx.doi.org/10.1016/j.ceb.2006.12.010] [PMID: 17178455]
[11]
Ingerson-Mahar, M.; Gitai, Z. A growing family: The expanding universe of the bacterial cytoskeleton. FEMS Microbiol. Rev., 2012, 36(1), 256-266.
[http://dx.doi.org/10.1111/j.1574-6976.2011.00316.x] [PMID: 22092065]
[12]
Lin, L.; Thanbichler, M. Nucleotide-independent cytoskeletal scaffolds in bacteria. Cytoskeleton, 2013, 70(8), 409-423.
[http://dx.doi.org/10.1002/cm.21126] [PMID: 23852773]
[13]
Sieger, B. Studies on polar cell wall growth and antibiotic susceptibility of Corynebacterium glutamicum. lmu, 2015.
[14]
Eun, Y.J.; Kapoor, M.; Hussain, S.; Garner, E.C. Bacterial filament systems: Toward understanding their emergent behavior and cellular functions. J. Biol. Chem., 2015, 290(28), 17181-17189.
[http://dx.doi.org/10.1074/jbc.R115.637876] [PMID: 25957405]
[15]
Charbon, G.; Cabeen, M.T.; Jacobs-Wagner, C. Bacterial intermediate filaments: In vivo assembly, organization, and dynamics of crescentin. Genes Dev., 2009, 23(9), 1131-1144.
[http://dx.doi.org/10.1101/gad.1795509] [PMID: 19417107]
[16]
Cabeen, M.T.; Herrmann, H.; Jacobs-Wagner, C. The domain organization of the bacterial intermediate filament‐like protein crescentin is important for assembly and function. Cytoskeleton, 2011, 68(4), 205-219.
[http://dx.doi.org/10.1002/cm.20505] [PMID: 21360832]
[17]
Cabeen, M.T.; Charbon, G.; Vollmer, W.; Born, P.; Ausmees, N.; Weibel, D.B.; Jacobs-Wagner, C. Bacterial cell curvature through mechanical control of cell growth. EMBO J., 2009, 28(9), 1208-1219.
[http://dx.doi.org/10.1038/emboj.2009.61] [PMID: 19279668]
[18]
Bagchi, S.; Tomenius, H.; Belova, L.M.; Ausmees, N. Intermediate filament-like proteins in bacteria and a cytoskeletal function in streptomyces. Mol. Microbiol., 2008, 70(4), 1037-1050.
[PMID: 18976278]
[19]
Philo, J. A critical review of methods for size characterization of non-particulate protein aggregates. Curr. Pharm. Biotechnol., 2009, 10(4), 359-372.
[http://dx.doi.org/10.2174/138920109788488815] [PMID: 19519411]
[20]
Monterroso, B.; Alfonso, C.; Zorrilla, S.; Rivas, G. Combined analytical ultracentrifugation, light scattering and fluorescence spectroscopy studies on the functional associations of the bacterial division FtsZ protein. Methods, 2013, 59(3), 349-362.
[http://dx.doi.org/10.1016/j.ymeth.2012.12.014] [PMID: 23296019]
[21]
Mukherjee, A.; Lutkenhaus, J. Analysis of FtsZ assembly by light scattering and determination of the role of divalent metal cations. J. Bacteriol., 1999, 181(3), 823-832.
[http://dx.doi.org/10.1128/JB.181.3.823-832.1999] [PMID: 9922245]
[22]
White, E.L.; Ross, L.J.; Reynolds, R.C.; Seitz, L.E.; Moore, G.D.; Borhani, D.W. Slow polymerization of Mycobacterium tuberculosis ftsZ. J. Bacteriol., 2000, 182(14), 4028-4034.
[http://dx.doi.org/10.1128/JB.182.14.4028-4034.2000] [PMID: 10869082]
[23]
Mingorance, J.; Rueda, S.; Gómez-Puertas, P.; Valencia, A.; Vicente, M. Escherichia coli FtsZ polymers contain mostly GTP and have a high nucleotide turnover. Mol. Microbiol., 2001, 41(1), 83-91.
[http://dx.doi.org/10.1046/j.1365-2958.2001.02498.x] [PMID: 11454202]
[24]
Small, E.; Addinall, S.G. Dynamic FtsZ polymerization is sensitive to the GTP to GDP ratio and can be maintained at steady state using a GTP-regeneration system. Microbiology, 2003, 149(8), 2235-2242.
[http://dx.doi.org/10.1099/mic.0.26126-0] [PMID: 12904563]
[25]
Oliva, M.A.; Huecas, S.; Palacios, J.M.; Martín-Benito, J.; Valpuesta, J.M.; Andreu, J.M. Assembly of archaeal cell division protein FtsZ and a GTPase-inactive mutant into double-stranded filaments. J. Biol. Chem., 2003, 278(35), 33562-33570.
[http://dx.doi.org/10.1074/jbc.M303798200] [PMID: 12807911]
[26]
Popp, D.; Iwasa, M.; Erickson, H.P.; Narita, A.; Maéda, Y.; Robinson, R.C. Suprastructures and dynamic properties of Mycobacterium tuberculosis FtsZ. J. Biol. Chem., 2010, 285(15), 11281-11289.
[http://dx.doi.org/10.1074/jbc.M109.084079] [PMID: 20139085]
[27]
Pacheco-Gómez, R.; Roper, D.I.; Dafforn, T.R.; Rodger, A. The pH dependence of polymerization and bundling by the essential bacterial cytoskeletal protein FtsZ. PLoS One, 2011, 6(6), e19369.
[http://dx.doi.org/10.1371/journal.pone.0019369] [PMID: 21738567]
[28]
Hou, S.; Wieczorek, S.A.; Kaminski, T.S.; Ziebacz, N.; Tabaka, M.; Sorto, N.A.; Foss, M.H.; Shaw, J.T.; Thanbichler, M.; Weibel, D.B.; Nieznanski, K.; Holyst, R.; Garstecki, P. Characterization of Caulobacter crescentus ftsz protein using dynamic light scattering. J. Biol. Chem., 2012, 287(28), 23878-23886.
[http://dx.doi.org/10.1074/jbc.M111.309492] [PMID: 22573335]
[29]
Milam, S.L.; Erickson, H.P. Rapid in vitro assembly of Caulobacter crescentus ftsz protein at pH 6.5 and 7.2. J. Biol. Chem., 2013, 288(33), 23675-23679.
[http://dx.doi.org/10.1074/jbc.M113.491845] [PMID: 23824192]
[30]
Bulmer, D.M.; Kharraz, L.; Grant, A.J.; Dean, P.; Morgan, F.J.E.; Karavolos, M.H.; Doble, A.C.; McGhie, E.J.; Koronakis, V.; Daniel, R.A.; Mastroeni, P.; Anjam Khan, C.M. The bacterial cytoskeleton modulates motility, type 3 secretion, and colonization in Salmonella. PLoS Pathog., 2012, 8(1), e1002500.
[http://dx.doi.org/10.1371/journal.ppat.1002500] [PMID: 22291596]
[31]
Tatkiewicz, W.; Elizondo, E.; Moreno, E.; Díez-Gil, C.; Ventosa, N.; Veciana, J.; Ratera, I. Methods for characterization of protein aggregates. In: Insoluble Proteins; Springer: Heidelberg, 2015; pp. 387-401.
[http://dx.doi.org/10.1007/978-1-4939-2205-5_22]