Pharmacological Activity and Mechanisms of Action of Terpenoids from Laurus nobilis L.

Article ID: e081222211792 Pages: 18

  • * (Excluding Mailing and Handling)

Abstract

Native to the Southern Mediterranean region, Laurus nobilis L. (Family Lauraceae) is an evergreen shrub or tree found in warm climate regions with high rainfall. The leaves and essential oil of this plant have been widely used as condiments, spices, and flavoring agents in the culinary and food industries. The whole plant is also used for the traditional treatment of various diseases, including cough, asthma, hemorrhoids, rheumatic pain, diarrhea, intestinal, and cardiac diseases. Previous phytochemical investigation of this plant demonstrated the presence of a variety of secondary metabolites, especially terpenoids. The present study aims to critically analyze comprehensive literature on the pharmacological activity and mechanisms of action of terpenoids from Laurus nobilis L. The available information on the pharmacological activity of terpenoids from L. nobilis L. was obtained from textbooks, theses, as well as published articles through a variety of libraries and electronic databases. The present study demonstrated that L. nobilis is rich in terpenoids, with more than 200 entities identified in reported studies. Terpenoids from L. nobilis have shown a wide range of pharmacological activities, including anti-inflammatory, antidiabetic, antifungal, antibacterial, immunomodulatory, anticonvulsant, antioxidant and cytotoxic activities. The mechanisms of action of most of these terpenoids included the imbalance of the ionic permeability of the cell membrane (anti- inflammatory and antimicrobial activities), modulation of the effects of gamma-aminobutyric acid (GABA) nergic neurotransmission (anticonvulsant activity), and the inhibition of inflammatory responses, prevention of metastasis, and induction of apoptosis (cytotoxic effect), among others. Referring to in vitro studies, terpenoids of L. nobilis L. have shown a variety of biological activities. However, more cytotoxic and in vivo studies and detailed mechanisms of action of the bioactive terpenoids are recommended.

Graphical Abstract

[1]
Hogg, J.W.; Terhune, S.J.; Lawrence, B.M. Dehydro-1,8-cineole: A new monoterpene oxide in Laurus noblis oil. Phytochemistry, 1974, 13(5), 868-869.
[http://dx.doi.org/10.1016/S0031-9422(00)91156-7]
[2]
Di Leo Lira, P.; Retta, D.; Tkacik, E.; Ringuelet, J.; Coussio, J.D.; van Baren, C.; Bandoni, A.L. Essential oil and by-products of distillation of bay leaves (Laurus nobilis L.) from Argentina. Ind. Crops Prod., 2009, 30(2), 259-264.
[http://dx.doi.org/10.1016/j.indcrop.2009.04.005]
[3]
Santoyo, S.; Lloría, R.; Jaime, L.; Ibañez, E.; Señoráns, F.J.; Reglero, G. Supercritical fluid extraction of antioxidant and antimicrobial compounds from Laurus nobilis L. Chemical and functional characterization. Eur. Food Res. Technol., 2006, 222(5-6), 565-571.
[http://dx.doi.org/10.1007/s00217-005-0027-9]
[4]
Akcan, T.; Estévez, M.; Serdaroğlu, M. Antioxidant protection of cooked meatballs during frozen storage by whey protein edible films with phytochemicals from Laurus nobilis L. and Salvia officinalis. Lebensm. Wiss. Technol., 2017, 77, 323-331.
[http://dx.doi.org/10.1016/j.lwt.2016.11.051]
[5]
Mohammed, R.R.; Omer, A.K.; Yener, Z.; Uyar, A.; Ahmed, A.K. Biomedical effects of Laurus nobilis L. leaf extract on vital organs in streptozotocin-induced diabetic rats: Experimental research. Ann. Med. Surg. (Lond.), 2021, 61, 188-197.
[http://dx.doi.org/10.1016/j.amsu.2020.11.051] [PMID: 33520200]
[6]
Afifi, F.U.; Khalil, E.; Tamimi, S.O.; Disi, A. Evaluation of the gastroprotective effect of Laurus nobilis seeds on ethanol induced gastric ulcer in rats. J. Ethnopharmacol., 1997, 58(1), 9-14.
[http://dx.doi.org/10.1016/S0378-8741(97)00070-6] [PMID: 9323999]
[7]
Hafizoglu, H.; Reunanen, M. Studies on the components of Laurus nobilis from Turkey with special reference to laurel berry fat. Eur. J. Lipid Sci. Technol., 1993, 95(8), 304-308.
[8]
Snuossi, M.; Trabelsi, N.; Ben Taleb, S.; Dehmeni, A.; Flamini, G.; De Feo, V. Laurus nobilis, Zingiber officinale and Anethum graveolens essential oils: Composition, antioxidant and antibacterial activities against bacteria isolated from fish and shellfish. Molecules, 2016, 21(10), 1414.
[http://dx.doi.org/10.3390/molecules21101414] [PMID: 27782086]
[9]
Peixoto, L.R.; Rosalen, P.L.; Ferreira, G.L.S.; Freires, I.A.; de Carvalho, F.G.; Castellano, L.R.; de Castro, R.D. Antifungal activity, mode of action and anti-biofilm effects of Laurus nobilis Linnaeus essential oil against Candida spp. Arch. Oral Biol., 2017, 73, 179-185.
[http://dx.doi.org/10.1016/j.archoralbio.2016.10.013] [PMID: 27771586]
[10]
Al-Kalaldeh, J.Z.; Abu-Dahab, R.; Afifi, F.U. Volatile oil composition and antiproliferative activity of Laurus nobilis, Origanum syriacum, Origanum vulgare, and Salvia triloba against human breast adenocarcinoma cells. Nutr. Res., 2010, 30(4), 271-278.
[http://dx.doi.org/10.1016/j.nutres.2010.04.001] [PMID: 20534330]
[11]
Fang, F.; Sang, S.; Chen, K.Y.; Gosslau, A.; Ho, C.T.; Rosen, R.T. Isolation and identification of cytotoxic compounds from Bay leaf (Laurus nobilis). Food Chem., 2005, 93(3), 497-501.
[http://dx.doi.org/10.1016/j.foodchem.2004.10.029]
[12]
Turk, A.; Ahn, J.H.; Jo, Y.H.; Song, J.Y.; Khalife, H.K.; GaliMuhtasib, H.; Kim, Y.; Hwang, B.Y.; Lee, M.K. NF-κB inhibitory sesquiterpene lactones from Lebanese Laurus nobilis. Phytochem. Lett., 2019, 30, 120-123.
[http://dx.doi.org/10.1016/j.phytol.2019.02.003]
[13]
Boulila, A.; Hassen, I.; Haouari, L.; Mejri, F.; Amor, I.B.; Casabianca, H.; Hosni, K. Enzyme-assisted extraction of bioactive compounds from bay leaves (Laurus nobilis L.). Ind. Crops Prod., 2015, 74, 485-493.
[http://dx.doi.org/10.1016/j.indcrop.2015.05.050]
[14]
Sayyah, M.; Valizadeh, J.; Kamalinejad, M. Anticonvulsant activity of the leaf essential oil of Laurus nobilis against pentylenetetrazole and maximal electroshock-induced seizures. Phytomedicine, 2002, 9(3), 212-216.
[http://dx.doi.org/10.1078/0944-7113-00113] [PMID: 12046861]
[15]
Lee, E.H.; Shin, J.H.; Kim, S.S.; Joo, J.H.; Choi, E.; Seo, S.R. Suppression of Propionibacterium acnes-induced skin inflammation by Laurus nobilis extract and its major constituent eucalyptol. Int. J. Mol. Sci., 2019, 20(14), 3510.
[http://dx.doi.org/10.3390/ijms20143510] [PMID: 31319552]
[16]
Batiha, G.E.S.; Beshbishy, A.M.; Alkazmi, L.; Adeyemi, O.S.; Nadwa, E.; Rashwan, E.; El-Mleeh, A.; Igarashi, I. Gas chromatography-mass spectrometry analysis, phytochemical screening and antiprotozoal effects of the methanolic Viola tricolor and acetonic Laurus nobilis extracts. BMC Complementary Medicine and Therapies, 2020, 20(1), 87.
[http://dx.doi.org/10.1186/s12906-020-2848-2] [PMID: 32183812]
[17]
Afzal, A.; Oriqat, G.; Khan, M.A.; Jose, J.; Afzal, M. Chemistry and biochemistry of terpenoids from curcuma and related species. J. Biol. Act. Prod. Nat., 2013, 3(1), 1-55.
[18]
Li, Z.J.; Wang, Y.Z.; Wang, L.R.; Shi, T.Q.; Sun, X.M.; Huang, H. Advanced strategies for the synthesis of terpenoids in Yarrowia lipolytica. J. Agric. Food Chem., 2021, 69(8), 2367-2381.
[http://dx.doi.org/10.1021/acs.jafc.1c00350] [PMID: 33595318]
[19]
Ajikumar, P.K.; Xiao, W.H.; Tyo, K.E.J.; Wang, Y.; Simeon, F.; Leonard, E.; Mucha, O.; Phon, T.H.; Pfeifer, B.; Stephanopoulos, G. Isoprenoid pathway optimization for Taxol precursor overproduction in Escherichia coli. Science, 2010, 330(6000), 70-74.
[http://dx.doi.org/10.1126/science.1191652] [PMID: 20929806]
[20]
Paddon, C.J.; Westfall, P.J.; Pitera, D.J.; Benjamin, K.; Fisher, K.; McPhee, D.; Leavell, M.D.; Tai, A.; Main, A.; Eng, D.; Polichuk, D.R.; Teoh, K.H.; Reed, D.W.; Treynor, T.; Lenihan, J.; Jiang, H.; Fleck, M.; Bajad, S.; Dang, G.; Dengrove, D.; Diola, D.; Dorin, G.; Ellens, K.W.; Fickes, S.; Galazzo, J.; Gaucher, S.P.; Geistlinger, T.; Henry, R.; Hepp, M.; Horning, T.; Iqbal, T.; Kizer, L.; Lieu, B.; Melis, D.; Moss, N.; Regentin, R.; Secrest, S.; Tsuruta, H.; Vazquez, R.; Westblade, L.F.; Xu, L.; Yu, M.; Zhang, Y.; Zhao, L.; Lievense, J.; Covello, P.S.; Keasling, J.D.; Reiling, K.K.; Renninger, N.S.; Newman, J.D. High-level semi-synthetic production of the potent antimalarial artemisinin. Nature, 2013, 496(7446), 528-532.
[http://dx.doi.org/10.1038/nature12051] [PMID: 23575629]
[21]
Ye, X.; Al-Babili, S.; Klöti, A.; Zhang, J.; Lucca, P.; Beyer, P.; Potrykus, I. Engineering the provitamin A (β-carotene) biosynthetic pathway into (carotenoid-free) rice endosperm. Science, 2000, 287(5451), 303-305.
[http://dx.doi.org/10.1126/science.287.5451.303] [PMID: 10634784]
[22]
Higuera-Ciapara, I.; Félix-Valenzuela, L.; Goycoolea, F.M. Astaxanthin: a review of its chemistry and applications. Crit. Rev. Food Sci. Nutr., 2006, 46(2), 185-196.
[http://dx.doi.org/10.1080/10408690590957188] [PMID: 16431409]
[23]
Müller, L.; Caris-Veyrat, C.; Lowe, G.; Böhm, V. Lycopene and its antioxidant role in the prevention of cardiovascular diseases: A critical review. Crit. Rev. Food Sci. Nutr., 2016, 56(11), 1868-1879.
[http://dx.doi.org/10.1080/10408398.2013.801827] [PMID: 25675359]
[24]
Luo, Y.; Li, B.Z.; Liu, D.; Zhang, L.; Chen, Y.; Jia, B.; Zeng, B.X.; Zhao, H.; Yuan, Y.J. Engineered biosynthesis of natural products in heterologous hosts. Chem. Soc. Rev., 2015, 44(15), 5265-5290.
[http://dx.doi.org/10.1039/C5CS00025D] [PMID: 25960127]
[25]
Loi, M.C.; Poli, F.; Sacchetti, G.; Selenu, M.B.; Ballero, M. Ethnopharmacology of ogliastra (villagrande strisaili, sardinia, Italy). Fitoterapia, 2004, 75(3-4), 277-295.
[http://dx.doi.org/10.1016/j.fitote.2004.01.008] [PMID: 15158984]
[26]
Dall’Acqua, S.; Viola, G.; Giorgetti, M.; Loi, M.C.; Innocenti, G. Two new sesquiterpene lactones from the leaves of Laurus nobilis. Chem. Pharm. Bull., 2006, 54(8), 1187-1189.
[http://dx.doi.org/10.1248/cpb.54.1187] [PMID: 16880666]
[27]
Bruni, A.; Ballero, M.; Poli, F. Quantitative ethnopharmacological study of the Campidano Valley and Urzulei district, Sardinia, Italy. J. Ethnopharmacol., 1997, 57(2), 97-124.
[http://dx.doi.org/10.1016/S0378-8741(97)00055-X] [PMID: 9254113]
[28]
Lev, E.; Amar, Z. Ethnopharmacological survey of traditional drugs sold in Israel at the end of the 20th century. J. Ethnopharmacol., 2000, 72(1-2), 191-205.
[http://dx.doi.org/10.1016/S0378-8741(00)00230-0] [PMID: 10967472]
[29]
Pieroni, A.; Quave, C.L.; Villanelli, M.L.; Mangino, P.; Sabbatini, G.; Santini, L.; Boccetti, T.; Profili, M.; Ciccioli, T.; Rampa, L.G.; Antonini, G.; Girolamini, C.; Cecchi, M.; Tomasi, M. Ethnopharmacognostic survey on the natural ingredients used in folk cosmetics, cosmeceuticals and remedies for healing skin diseases in the inland Marches, Central-Eastern Italy. J. Ethnopharmacol., 2004, 91(2-3), 331-344.
[http://dx.doi.org/10.1016/j.jep.2004.01.015] [PMID: 15120458]
[30]
Qnais, E.Y.; Abdulla, F.A.; Kaddumi, E.G.; Abdalla, S.S. Antidiarrheal activity of Laurus nobilis L. leaf extract in rats. J. Med. Food, 2012, 15(1), 51-57.
[http://dx.doi.org/10.1089/jmf.2011.1707] [PMID: 22082096]
[31]
Caputo, L.; Nazzaro, F.; Souza, L.; Aliberti, L.; De Martino, L.; Fratianni, F.; Coppola, R.; De Feo, V. Laurus nobilis: Composition of essential oil and its biological activities. Molecules, 2017, 22(6), 930.
[http://dx.doi.org/10.3390/molecules22060930] [PMID: 28587201]
[32]
Zargari, A. Medicinal Plants; Tehran University Press: Tehran, Iran, 1990, Vol. 4, pp. 325-328.
[33]
Aqili Khorasani, M.S. Collection of Drugs (Materia Media); Enqelab-e-Eslami Publishing and Educational Organization: Teheran, Iran, 1992, pp. 624-630.
[34]
Patrakar, R.; Mansuriya, M.; Patil, P. Phytochemical and pharmacological review on Laurus nobilis. Int. J. Pharm. Chem. Sci., 2012, 1(2), 595-602.
[35]
Abu-Dahab, R.; Kasabri, V.; Afifi, F.U. Evaluation of the volatile oil composition and antiproliferative activity of Laurus nobilis L. (Lauraceae) on breast cancer cell line models. Rec. Nat. Prod., 2014, 8(2), 136-147.
[36]
Cazzola, R.; Cestaro, B. Antioxidant spices and herbs used in diabetes.Diabetes oxidative stress and dietary antioxidants; , 2014, pp. 89-97.
[37]
T.S. (Tua Saude). 2021. Available from: https://www.tuasaude.com/louro/
[38]
Kilic, A.; Hafizoglu, H.; Kollmannsberger, H.; Nitz, S. Volatile constituents and key odorants in leaves, buds, flowers, and fruits of Laurus nobilis L. J. Agric. Food Chem., 2004, 52(6), 1601-1606.
[http://dx.doi.org/10.1021/jf0306237] [PMID: 15030218]
[39]
Baytop, T. Therapy with Medicinal Plants in Turkey (Past and Present); Nobel Tıp Kitabevleri: İstanbul, 1985, p. 194.
[40]
Elmastaş, M.; Gülçin, İ.; Işildak, Ö.; Küfrevioğlu, Ö.İ.; İbaoğlu, K.; Aboul-Enein, H.Y. Radical scavenging activity and antioxidant capacity of bay leaf extracts. J. Indian Chem. Soc., 2006, 3(3), 258-266.
[http://dx.doi.org/10.1007/BF03247217]
[41]
Gülçin, I. Antioxidant activity of caffeic acid (3,4-dihydroxycinnamic acid). Toxicology, 2006, 217(2-3), 213-220.
[http://dx.doi.org/10.1016/j.tox.2005.09.011] [PMID: 16243424]
[42]
Duke, J.A. The green pharmacy: New discoveries in herbal remedies for common diseases and conditions from the world’s foremost authority on healing herbs; Rodale Press, 1997, pp. 240-241.
[43]
Joly, A.B. Botânica: Introdução à taxonomia vegetal; Editora Nacional: São Paulo, 1993.
[44]
Marques, C.A. Importância da família Lauraceae. Floresta Ambient., 2001, 8(1), 195-206.
[45]
Lorenzi, H.; Matos, F.J.A. Plantas Medicinais no Brasil Nativas e Exóticas, 2nd ed; Instituto Plantarum: São Paulo, 2008.
[46]
Peris, I.; Blázquez, M.A. Comparative GC-MS analysis of Bay leaf (Laurus nobilis L.) essential oils in commercial samples. Int. J. Food Prop., 2015, 18(4), 757-762.
[http://dx.doi.org/10.1080/10942912.2014.906451]
[47]
Carla, M.M.F-A.; Maurício, F.R.; Édela, B.; Fabiana, B.; Camila, C.I.; José, E.G.; Diógenes, A.G.C.; Cleide, V.B.M.; Giani, A.L.; Márcia, R.S.; Viviane, S.L.; Zilda, C.G. Chemical composition and antifungal activity of essential oil and fractions extracted from the leaves of Laurus nobilis L. cultivated in Southern Brazil. J. Med. Plants Res., 2016, 10(48), 865-871.
[http://dx.doi.org/10.5897/JMPR2016.6291]
[48]
Kosar, M.; Tunalier, Z.; Özek, T.; Kürkcüoglu, M.; Can Baser, K.H. A simple method to obtain essential oils from Salvia triloba L. and Laurus nobilis L. by using microwave-assisted hydrodistillation. Z. Naturforsch. C J. Biosci., 2005, 60(5-6), 501-504.
[http://dx.doi.org/10.1515/znc-2005-5-620] [PMID: 16047413]
[49]
ITIS (Integrated Taxonomy Information System). 2021. Available from: https://www.itis.gov/servlet/SingleRpt/SingleRpt?search_topic=TSN&search_value=503343#null
[50]
WFO (World Flora Online). 2021. Available from: http://www.wordfloraonline.org/taxon/wfo-0000364153
[51]
Tutin, T.G. Laurus nobilis L. Flora Europaea; Tutin, T.G.; Burges, N.A.; Chater, A.O.; Edmondson, J.R.; Heywood, V.H.; Moore, D.M.; Valentine, D.H.; Walters, S.M.; Webb, D.A., Eds.; Cambridge University Press: Cambridge, UK, 1993, pp. 296-297.
[52]
Litz, R.E.; Raharjo, S.H.T.; Lim, M.A.G. Avocado. Biotechnology in Agriculture Forest; Chong, P.E.; Davey, M.R., Eds.; Springer: Berlin, 2007, Vol. 60, pp. 167-187.
[53]
Bian, G.; Deng, Z.; Liu, T. Strategies for terpenoid overproduction and new terpenoid discovery. Curr. Opin. Biotechnol., 2017, 48, 234-241.
[http://dx.doi.org/10.1016/j.copbio.2017.07.002] [PMID: 28779606]
[54]
Wang, C.; Liwei, M.; Park, J.B.; Jeong, S.H.; Wei, G.; Wang, Y.; Kim, S.W. Microbial platform for terpenoid production: Escherichia coli and yeast. Front. Microbiol., 2018, 9, 2460.
[http://dx.doi.org/10.3389/fmicb.2018.02460] [PMID: 30369922]
[55]
Habtemariam, S. Medicinal foods as potential therapies for type-2 diabetes and associated diseases. In: Introduction to plant secondary metabolites-From biosynthesis to chemistry and antidiabetic action, 1st ed; Elsevier: Amsterdam, 2019; pp. 109-132.
[56]
Pattanaik, B.; Lindberg, P. Terpenoids and their biosynthesis in cyanobacteria. Life, 2015, 5(1), 269-293.
[http://dx.doi.org/10.3390/life5010269] [PMID: 25615610]
[57]
Bacher, A.; Chen, F.; Eisenreich, W. Decoding biosynthetic pathways in plants by pulse-chase strategies using 13CO2. Metabolites, 2016, 6(3), 21.
[http://dx.doi.org/10.3390/metabo6030021] [PMID: 27429012]
[58]
Cornish, K.; Xie, W. Biosynthesis in plants. Rubber transferase. Chapter 4: Natural rubber. Methods Enzymol., 2012, 515, 63-82.
[http://dx.doi.org/10.1016/B978-0-12-394290-6.00004-5] [PMID: 22999170]
[59]
Quílez del Moral, J.F.; Pérez, Á.; Herrador, M.M.; Barrero, A.F. Access to natural valparanes and daucanes: Enantioselective synthesis of (-)-valpara-2,15-diene and (+)-isodaucene. J. Nat. Prod., 2019, 82(1), 9-15.
[http://dx.doi.org/10.1021/acs.jnatprod.8b00129] [PMID: 30601659]
[60]
Chen, C.C.; Malwal, S.R.; Han, X.; Liu, W.; Ma, L.; Zhai, C.; Dai, L.; Huang, J.W.; Shillo, A.; Desai, J.; Ma, X.; Zhang, Y.; Guo, R.T.; Oldfield, E. Terpene cyclases and prenyltransferases: Structures and mechanisms of action. ACS Catal., 2021, 11(1), 290-303.
[http://dx.doi.org/10.1021/acscatal.0c04710]
[61]
Chemler, J.A.; Koffas, M.A.G. Metabolic engineering for plant natural product biosynthesis in microbes. Curr. Opin. Biotechnol., 2008, 19(6), 597-605.
[http://dx.doi.org/10.1016/j.copbio.2008.10.011] [PMID: 18992815]
[62]
Martin, V.J.J.; Pitera, D.J.; Withers, S.T.; Newman, J.D.; Keasling, J.D. Engineering a mevalonate pathway in Escherichia coli for production of terpenoids. Nat. Biotechnol., 2003, 21(7), 796-802.
[http://dx.doi.org/10.1038/nbt833] [PMID: 12778056]
[63]
Chang, M.C.Y.; Eachus, R.A.; Trieu, W.; Ro, D.K.; Keasling, J.D. Engineering Escherichia coli for production of functionalized terpenoids using plant P450s. Nat. Chem. Biol., 2007, 3(5), 274-277.
[http://dx.doi.org/10.1038/nchembio875] [PMID: 17438551]
[64]
Kirby, J.; Keasling, J.D. Metabolic engineering of microorganisms for isoprenoid production. Nat. Prod. Rep., 2008, 25(4), 656-661.
[http://dx.doi.org/10.1039/b802939c] [PMID: 18663389]
[65]
Gruchattka, E.; Hädicke, O.; Klamt, S.; Schütz, V.; Kayser, O. In silico profiling of Escherichia coli and Saccharomyces cerevisiae as terpenoid factories. Microb. Cell Fact., 2013, 12(1), 84.
[http://dx.doi.org/10.1186/1475-2859-12-84] [PMID: 24059635]
[66]
Hall, I.H.; Starnes, C.O. Jr.; Lee, K.H.; Waddell, T.G. Mode of action of sesquiterpenes lactones as anti-inflammatory agents. J. Pharm. Sci., 1979, 69(5), 537-543.
[http://dx.doi.org/10.1002/jps.2600690516] [PMID: 6247478]
[67]
Hall, I.H.; Lee, K.H.; Mar, E.C.; Starnes, C.O.; Waddell, T.G. Antitumor agents. 21. A proposed mechanism for inhibition of cancer growth by tenulin and helenalin and related cyclopentenones. J. Med. Chem., 1977, 20(3), 333-337.
[http://dx.doi.org/10.1021/jm00213a003] [PMID: 845864]
[68]
Sahin Basak, S.; Candan, F. Effect of Laurus nobilis L. essential oil and its main components on α-glucosidase and reactive oxygen species scavenging activity. Iran. J. Pharm. Res., 2013, 12(2), 367-379.
[PMID: 24250611]
[69]
Merghni, A.; Marzouki, H.; Hentati, H.; Aouni, M.; Mastouri, M. Antibacterial and antibiofilm activities of Laurus nobilis L. essential oil against Staphylococcus aureus strains associated with oral infections. Pathol. Biol., 2015, 64(1), 29-34.
[PMID: 26657812]
[70]
da Silveira, S.M.; Luciano, F.B.; Fronza, N.; Cunha, A., Jr; Scheuermann, G.N.; Vieira, C.R.W. Chemical composition and antibacterial activity of Laurus nobilis essential oil towards foodborne pathogens and its application in fresh Tuscan sausage stored at 7°C. Lebensm. Wiss. Technol., 2014, 59(1), 86-93.
[http://dx.doi.org/10.1016/j.lwt.2014.05.032]
[71]
Rafiq, R.; Hayek, S.; Anyanwu, U.; Hardy, B.; Giddings, V.; Ibrahim, S.; Tahergorabi, R.; Kang, H. Antibacterial and antioxidant activities of essential oils from Artemisia herba-alba Asso., Pelargonium capitatum radens and Laurus nobilis L. Foods, 2016, 5(4), 28.
[http://dx.doi.org/10.3390/foods5020028] [PMID: 28231123]
[72]
Dammak, I.; Hamdi, Z.; Kammoun El Euch, S.; Zemni, H.; Mliki, A.; Hassouna, M.; Lasram, S. Evaluation of antifungal and antiochratoxigenic activities of Salvia officinalis, Lavandula dentata and Laurus nobilis essential oils and a major monoterpene constituent 1,8-cineole against Aspergillus carbonarius. Ind. Crops Prod., 2019, 128, 85-93.
[http://dx.doi.org/10.1016/j.indcrop.2018.11.006]
[73]
Belasli, A.; Ben Miri, Y.; Aboudaou, M.; Aït Ouahioune, L.; Montañes, L.; Ariño, A.; Djenane, D. Antifungal, antitoxigenic, and antioxidant activities of the essential oil from laurel (Laurus nobilis L.): Potential use as wheat preservative. Food Sci. Nutr., 2020, 8(9), 4717-4729.
[http://dx.doi.org/10.1002/fsn3.1650] [PMID: 32994933]
[74]
Trombetta, D.; Castelli, F.; Sarpietro, M.G.; Venuti, V.; Cristani, M.; Daniele, C.; Saija, A.; Mazzanti, G.; Bisignano, G. Mechanisms of antibacterial action of three monoterpenes. Antimicrob. Agents Chemother., 2005, 49(6), 2474-2478.
[http://dx.doi.org/10.1128/AAC.49.6.2474-2478.2005] [PMID: 15917549]
[75]
Lee, T.; Lee, S.; Ho Kim, K.; Oh, K.B.; Shin, J.; Mar, W. Effects of magnolialide isolated from the leaves of Laurus nobilis L. (Lauraceae) on immunoglobulin E-mediated type I hypersensitivity in vitro. J. Ethnopharmacol., 2013, 149(2), 550-556.
[http://dx.doi.org/10.1016/j.jep.2013.07.015] [PMID: 23891890]
[76]
Manayi, A.; Nabavi, S.M.; Daglia, M.; Jafari, S. Natural terpenoids as a promising source for modulation of GABAergic system and treatment of neurological diseases. Pharmacol. Rep., 2016, 68(4), 671-679.
[http://dx.doi.org/10.1016/j.pharep.2016.03.014] [PMID: 27110875]
[77]
Barla, A.; Topçu, G.; Öksüz, S.; Tümen, G.; Kingston, D. Identification of cytotoxic sesquiterpenes from Laurus nobilis L. Food Chem., 2007, 104(4), 1478-1484.
[http://dx.doi.org/10.1016/j.foodchem.2007.02.019]
[78]
Julianti, E.; Jang, K.H.; Lee, S.; Lee, D.; Mar, W.; Oh, K.B.; Shin, J. Sesquiterpenes from the leaves of Laurus nobilis L. Phytochemistry, 2012, 80, 70-76.
[http://dx.doi.org/10.1016/j.phytochem.2012.05.013] [PMID: 22683316]
[79]
Gach, K.; Janecka, A. α-Methylene-γ-lactones as a novel class of anti-leukemic agents. Anticancer. Agents Med. Chem., 2014, 14(5), 688-694.
[http://dx.doi.org/10.2174/1871520614666140313095010] [PMID: 24628266]
[80]
Quintana, J.; Estévez, F. Recent advances on cytotoxic sesquiterpene lactones. Curr. Pharm. Des., 2019, 24(36), 4355-4361.
[http://dx.doi.org/10.2174/1381612825666190119114323] [PMID: 30659534]
[81]
Zhang, S.; Won, Y.K.; Ong, C.N.; Shen, H.M. Anti-cancer potential of sesquiterpene lactones: Bioactivity and molecular mechanisms. Curr. Med. Chem. Anticancer Agents, 2005, 5(3), 239-249.
[http://dx.doi.org/10.2174/1568011053765976] [PMID: 15992352]
[82]
Yoshikawa, M.; Shimoda, H.; Uemura, T.; Morikawa, T.; Kawahara, Y.; Matsuda, H. Alcohol absorption inhibitors from bay leaf (Laurus nobilis): Structure-requirements of sesquiterpenes for the activity. Bioorg. Med. Chem., 2000, 8(8), 2071-2077.
[http://dx.doi.org/10.1016/S0968-0896(00)00127-9] [PMID: 11003152]
[83]
Mediouni Ben Jemâa, J.; Tersim, N.; Toudert, K.T.; Khouja, M.L. Insecticidal activities of essential oils from leaves of Laurus nobilis L. from Tunisia, Algeria and Morocco, and comparative chemical composition. J. Stored Prod. Res., 2012, 48, 97-104.
[http://dx.doi.org/10.1016/j.jspr.2011.10.003]
[84]
Silva, M.C.; Matos, A.F.; Santos, H.L.C.; Gomes, J.V.; Pastura, D.G.N.; Pereira, G.L.; Rocha, E.B.; Larangeira, M.J.C.; Alves, R.S.; Bastos, L.O.; Borba, H.R.; Lima, V.M. Laurus nobilis L.: Assessment of the cytotoxic and genotoxic potential of aqueous extracts by micronucleus and Allium cepa assays. Braz. J. Pharm. Sci., 2020, 56, e18302.
[http://dx.doi.org/10.1590/s2175-97902019000318302]