Modified Polysaccharides and their Biomedical Applications: Advancement and Strategies

Page: [316 - 351] Pages: 36

  • * (Excluding Mailing and Handling)

Abstract

Background: Polysaccharides are a type of natural macromolecular polymer that can be found in plants, animals, fungi, algae, and marine organisms. Its activities have piqued the interest of researchers. The internal structure, as well as their chemical and physical properties, dictate how they work. Polysaccharide functionalities are progressively being chemically changed. Using this approach, polysaccharides' structural, physicochemical, and biological properties can all be altered.

Aim and Methods: The review sought to provide an overview of polysaccharide modification but also biological use. Recent research has shown that chemically modifying polysaccharides may increase their immunological function as well as their antiviral, antibacterial, antioxidant, as well as other characteristics. There are several chemical modifications, including sulfation, carboxymethylation, acetylation, phosphorylation, and others. Modified polysaccharide recent developments are reviewed.

Discussion and Results: Polysaccharide physiochemical properties and biological activity can change as their structural properties change. The structural modifications that occur depend on the source of the polysaccharides. Chemical modification has enormous promise for enhancing biomedical applications. These modified polysaccharides have made significant contributions to tissue engineering and drug delivery applications. Modification of polysaccharides induces therapeutic benefits. The immunomodulation of polysaccharides and their derivatives, as well as their chemical modification, has been studied and discussed.

Conclusion: These modified polysaccharides have the potential to be used for wound dressing, gene delivery, drug delivery, etc.

Graphical Abstract

[1]
Yu Y, Shen M, Song Q, Xie J. Biological activities and pharmaceutical applications of polysaccharide from natural resources: A review. Carbohydr Polym 2018; 183: 91-101.
[http://dx.doi.org/10.1016/j.carbpol.2017.12.009] [PMID: 29352896]
[2]
Sinha Mahapatra S, Mohanta S, Kumar Nayak A. Preliminary investigation of the angiogenic potential of Ziziphus oenoplia root ethanolic extract using the chorioallantoic membrane model. Sci Asia 2011; 37(1): 72-4.
[http://dx.doi.org/10.2306/scienceasia1513-1874.2011.37.072]
[3]
Hasnain MS, Nayak AK, Singh R, Ahmad F. Emerging trends of natural-based polymeric systems for drug delivery in tissue engineering applications. Sci J UBU 2010; 1(2): 1-3.
[4]
Jena BK, Ratha B, Kar S, Mohanta S, Nayak AK. Antibacterial activity of the ethanol extract of Ziziphus xylopyrus willd. (Rhamnaceae). J Drug Deliv Ther 2012; 2(6): 46-50.
[http://dx.doi.org/10.22270/jddt.v2i6.316]
[5]
Jena BK, Ratha B, Kar S, Mohanta S, Tripathy M, Nayak AK. Wound healing potential of Ziziphus xylopyrus willd. (Rhamnaceae) stem bark ethanol extract using in vitro and in vivo model. J Drug Deliv Ther 2012; 2(6): 41-6.
[http://dx.doi.org/10.22270/jddt.v2i6.316]
[6]
Hati M, Jena BK, Kar S, Nayak AK. Evaluation of anti-inflammatory and anti-pyretic activity of Carissa carandas L. Leaf extract in rats. J Pharm Chem Biol Sci 2014; 1(1): 18-25.
[7]
Hasnain MS, Ahmad SA, Chaudhary N, Hoda MN, Nayak AK. Biodegradable polymer matrix nanocomposites for bone tissue engineering. In: Applications of nanocomposite materials in orthopedics. 2019; pp. 1-37.
[8]
Saini P, Sharma N. Natural polymers used in fast disintegrating tablets: A review. Int J Drug Dev Res 2012; 4(4): 18-27.
[9]
Malviya R, Sharma PK, Dubey SK. Modification of polysaccharides: Pharmaceutical and tissue engineering applications with commercial utility (patents). Mater Sci Eng C 2016; 68: 929-38.
[http://dx.doi.org/10.1016/j.msec.2016.06.093] [PMID: 27524095]
[10]
Nayak AK, Pal D, Pradhan J, Hasnain MS. Fenugreek seed mucilagealginate mucoadhesive beads of metformin HCl: Design, optimization and evaluation. Int J Biol Macromol 2013; 54: 144-54.
[http://dx.doi.org/10.1016/j.ijbiomac.2012.12.008] [PMID: 23246901]
[11]
Nayak AK, Pal D. Natural starches‐blended ionotropically gelled microparticles/beads for sustained drug release. In: Handbook of composites from renewable materials. 2017; pp. 527-59.
[12]
Pal D, Nayak AK, Saha S. Interpenetrating polymer network hydrogels of chitosan: Applications in controlling drug release. In: Mondal IH, Ed. Cellulose-based superabsorbent hydrogels, polymers and polymeric composites: A reference series. Cham: Springer 2018; pp. 1-41.
[http://dx.doi.org/10.1007/978-3-319-76573-0_57-1]
[13]
Nayak AK, Pal D, Santra K. Screening of polysaccharides from tamarind, fenugreek and jackfruit seeds as pharmaceutical excipients. Int J Biol Macromol 2015; 79: 756-60.
[http://dx.doi.org/10.1016/j.ijbiomac.2015.05.018] [PMID: 26007663]
[14]
Mozammil Hasnain SM, Hasnain MS, Nayak AK. Natural polysaccharides. In: Natural Polysaccharides in Drug Delivery and Biomedical Applications. Academic Press 2019; pp. 1-14.
[15]
Wang H, Liu Y, Qi Z, et al. An overview on natural polysaccharides with antioxidant properties. Curr Med Chem 2013; 20(23): 2899-913.
[http://dx.doi.org/10.2174/0929867311320230006] [PMID: 23627941]
[16]
Esko J, Doering T. Essentials of glycobiology. (2nd ed.), New York: Cold Spring Harbor Laboratory Press 2009.
[17]
Xie L, Shen M, Hong Y, Ye H, Huang L, Xie J. Chemical modifications of polysaccharides and their anti-tumor activities. Carbohydr Polym 2020; 229: 115436.
[http://dx.doi.org/10.1016/j.carbpol.2019.115436] [PMID: 31826393]
[18]
Sharon N, Lis H. Carbohydrates in cell recognition. Sci Am 1993; 268(1): 82-9.
[http://dx.doi.org/10.1038/scientificamerican0193-82] [PMID: 7678182]
[19]
Nayak AK, Pal D. Functionalization of tamarind gum for drug delivery. Functional biopolymers 2018; 25-56.
[20]
Hasnain MS, Nayak AK. Chitosan as responsive polymer for drug delivery applications. In: Stimuli Responsive Polymeric Nanocarriers for Drug Delivery Applications. Elsevier 2018; 1: pp. 581-605.
[http://dx.doi.org/10.1016/B978-0-08-101997-9.00025-4]
[21]
Malviya R, Sharma PK, Dubey SK. Characterization of neem (Azadirachita indica) gum exudates using analytical tools and pharmaceutical approaches. Curr Nutr Food Sci 2019; 15(6): 588-99.
[http://dx.doi.org/10.2174/1573401314666180821150254]
[22]
Xie JH, Jin ML, Morris GA, Zha XQ, Chen HQ, Yi Y. Advances on bioactive polysaccharides from medicinal plants. Crit Rev Food Sci Nutr 2016; 56(S1): 60-84.
[http://dx.doi.org/10.1080/10408398.2015.1069255]
[23]
Prajapati VD, Jani GK, Moradiya NG, Randeria NP. Pharmaceutical applications of various natural gums, mucilages and their modified forms. Carbohydr Polym 2013; 92(2): 1685-99.
[http://dx.doi.org/10.1016/j.carbpol.2012.11.021] [PMID: 23399207]
[24]
Gupta N, Malviya R. Delivery of genetic materials for the management of biological disorders: Advancement and roles of polysaccharides and their derivatives. Curr Drug Deliv 2022; 19.
[http://dx.doi.org/10.2174/1567201819666220422154504] [PMID: 35466875]
[25]
Malviya R, Sharma PK, Dubey SK. Microwave facilitated green synthesis and characterization of acrylamide grafted copolymer of Kheri (Acacia chundra) gum polysaccharide. Nat Prod J 2020; 10(4): 467-87.
[http://dx.doi.org/10.2174/2210315509666190515112704]
[26]
Nayak AK, Pal D. Chitosan-based interpenetrating polymeric network systems for sustained drug release. In: Ashutosh T, Hirak KP, Jeong-Woo C, Eds. Advanced Theranostic Materials. John Wiley & Sons 2015; pp. 183-208.
[27]
Jana S, Saha A, Nayak AK, Sen KK, Basu SK. Aceclofenac-loaded chitosan-tamarind seed polysaccharide interpenetrating polymeric network microparticles. Colloids Surf B Biointerfaces 2013; 105: 303-9.
[http://dx.doi.org/10.1016/j.colsurfb.2013.01.013] [PMID: 23399430]
[28]
Garcia-Valdez O, Champagne P, Cunningham MF. Graft modification of natural polysaccharides via reversible deactivation radical polymerization. Prog Polym Sci 2018; 76: 151-73.
[http://dx.doi.org/10.1016/j.progpolymsci.2017.08.001]
[29]
Miao T, Wang J, Zeng Y, Liu G, Chen X. Polysaccharide-based controlled release systems for therapeutics delivery and tissue engineering: From bench to bedside. Adv Sci 2018; 5(4): 1700513.
[http://dx.doi.org/10.1002/advs.201700513] [PMID: 29721408]
[30]
Shi L. Bioactivities, isolation and purification methods of polysaccharides from natural products: A review. Int J Biol Macromol 2016; 92: 37-48.
[http://dx.doi.org/10.1016/j.ijbiomac.2016.06.100] [PMID: 27377457]
[31]
Stiger-Pouvreau V, Bourgougnon N, Deslandes E. Carbohydrates From Seaweeds. Seaweed in health and disease prevention. 2016; pp. 223-74.
[32]
Singha AS, Thakur VK. Mechanical properties of natural fibre reinforced polymer composites. Bull Mater Sci 2008; 31(5): 791-9.
[http://dx.doi.org/10.1007/s12034-008-0126-x]
[33]
Sun Y, Jing X, Ma X, Feng Y, Hu H. Versatile types of polysaccharide-based drug delivery systems: From strategic design to cancer therapy. Int J Mol Sci 2020; 21(23): 9159.
[http://dx.doi.org/10.3390/ijms21239159] [PMID: 33271967]
[34]
Shariatinia Z. Pharmaceutical applications of natural polysaccharides. Natural polysaccharides in drug delivery and biomedical applications. 2019; pp. 15-57.
[http://dx.doi.org/10.1016/B978-0-12-817055-7.00002-9]
[35]
Luo M, Zhang X, Wu J, Zhao J. Modifications of polysaccharide-based biomaterials under structure-property relationship for biomedical applications. Carbohydr Polym 2021; 266: 118097.
[http://dx.doi.org/10.1016/j.carbpol.2021.118097] [PMID: 34044964]
[36]
You Q, Yin X, Zhang S, Jiang Z. Extraction, purification, and antioxidant activities of polysaccharides from Tricholoma mongolicum Imai. Carbohydr Polym 2014; 99: 1-10.
[http://dx.doi.org/10.1016/j.carbpol.2013.07.088] [PMID: 24274473]
[37]
Natural polysaccharide nanomaterials: An overview of their immunological properties. Int J Mol Sci 2019; 20(20): 5092.
[http://dx.doi.org/10.3390/ijms20205092]
[38]
Nayak AK, Pal D. Natural polysaccharides for drug delivery in tissue engineering. Everyman’s Sci 2012; 46: 347-52.
[39]
Maji B. Introduction to natural polysaccharides. Functional Polysaccharides for Biomedical Applications. 2019; 1: pp. 1-31.
[40]
Doppalapudi S, Katiyar S, Domb AJ, Khan W. Biodegradable Natural Polymers. In: Francesco P, Ed. Advanced Polymers in Medicine. Springer International Publishing Switzerland 2015; pp. 33-66.
[41]
Mohammed ASA, Naveed M, Jost N. Polysaccharides; classification, chemical properties, and future perspective applications in fields of pharmacology and biological medicine (a review of current applications and upcoming potentialities). J Polym Environ 2021; 29: 2359-71.
[42]
Xiao Z, Zhou W, Zhang Y. Fungal polysaccharides. Adv Pharmacol 2020; 87: 277-99.
[http://dx.doi.org/10.1016/bs.apha.2019.08.003] [PMID: 32089236]
[43]
Sutapa BM, Dhruti A, Gopa RB. Pharmacological, pharmaceutical, cosmetic and diagnostic applications of sulfated polysaccharides from marine algae and bacteria. Afr J Pharm Pharmacol 2017; 11(5): 68-77.
[http://dx.doi.org/10.5897/AJPP2016.4695]
[44]
Kumar SSD, Rajendran NK, Houreld NN, Abrahamse H. Recent advances on silver nanoparticle and biopolymerbased biomaterials for wound healing applications. Int J Biol Macromol 2018; 115: 165-75.
[http://dx.doi.org/10.1016/j.ijbiomac.2018.04.003] [PMID: 29627463]
[45]
Jiang Y, Wang H, Lü L, Tian GY. Chemistry of polysaccharide Lzps-1 from Ganoderma lucidum spore and anti-tumor activity of its total polysaccharides. Yao Xue Xue Bao 2005; 40(4): 347-50.
[PMID: 16011264]
[46]
Shelke NB, James R, Laurencin CT, Kumbar SG. Polysaccharide biomaterials for drug delivery and regenerative engineering. Polym Adv Technol 2014; 25(5): 448-60.
[http://dx.doi.org/10.1002/pat.3266]
[47]
Liu Z, Jiao Y, Wang Y, Zhou C, Zhang Z. Polysaccharides-based nanoparticles as drug delivery systems. Adv Drug Deliv Rev 2008; 60(15): 1650-62.
[http://dx.doi.org/10.1016/j.addr.2008.09.001] [PMID: 18848591]
[48]
Juan M. Biopolymers for Medical Applications 2017.
[49]
García-González CA, Alnaief M, Smirnova I. Polysaccharide-based aerogels—Promising biodegradable carriers for drug delivery systems. Carbohydr Polym 2011; 86(4): 1425-38.
[http://dx.doi.org/10.1016/j.carbpol.2011.06.066]
[50]
Muthukumar J, Chidambaram R, Sukumaran S. Sulfated polysaccharides and its commercial applications in food industries-A review. J Food Sci Technol 2021; 58(7): 2453-66.
[http://dx.doi.org/10.1007/s13197-020-04837-0] [PMID: 34194082]
[51]
Yu Y, Shen M, Wang Z, Wang Y, Xie M, Xie J. Sulfated polysaccharide from Cyclocarya paliurus enhances the immunomodulatory activity of macrophages. Carbohydr Polym 2017; 174: 669-76.
[http://dx.doi.org/10.1016/j.carbpol.2017.07.009] [PMID: 28821118]
[52]
Liang L, Ao L, Ma T, et al. Sulfated modification and anticoagulant activity of pumpkin (Cucurbita pepo, Lady Godiva) polysaccharide. Int J Biol Macromol 2018; 106: 447-55.
[http://dx.doi.org/10.1016/j.ijbiomac.2017.08.035] [PMID: 28797813]
[53]
Wang X, Zhang Z, Yao Q, Zhao M, Qi H. Phosphorylation of low-molecular-weight polysaccharide from Enteromorpha linza with antioxidant activity. Carbohydr Polym 2013; 96(2): 371-5.
[http://dx.doi.org/10.1016/j.carbpol.2013.04.029] [PMID: 23768575]
[54]
Shi X, Li O, Yin J, Nie S. Structure identification of α-glucans from Dictyophora echinovolvata by methylation and 1D/2D NMR spectroscopy. Food Chem 2019; 271: 338-44.
[http://dx.doi.org/10.1016/j.foodchem.2018.07.160] [PMID: 30236685]
[55]
Tao Y, Zhang R, Yang W, Liu H, Yang H, Zhao Q. Carboxymethylated hyperbranched polysaccharide: Synthesis, solution properties, and fabrication of hydrogel. Carbohydr Polym 2015; 128: 179-87.
[http://dx.doi.org/10.1016/j.carbpol.2015.04.012] [PMID: 26005154]
[56]
Xie JH, Zhang F, Wang ZJ, Shen MY, Nie SP, Xie MY. Preparation, characterization and antioxidant activities of acetylated polysaccharides from Cyclocarya paliurus leaves. Carbohydr Polym 2015; 133: 596-604.
[http://dx.doi.org/10.1016/j.carbpol.2015.07.031] [PMID: 26344318]
[57]
Liu W, Xu J, Jing P, Yao W, Gao X, Yu LL. Preparation of a hydroxypropyl Ganoderma lucidum polysaccharide and its physicochemical properties. Food Chem 2010; 122(4): 965-71.
[http://dx.doi.org/10.1016/j.foodchem.2009.11.087]
[58]
Wang J, Yang X, Bao A, et al. Microwave-assisted synthesis, structure and anti-tumor activity of selenized Artemisia sphaerocephala polysaccharide. Int J Biol Macromol 2017; 95: 1108-18.
[http://dx.doi.org/10.1016/j.ijbiomac.2016.10.101] [PMID: 27810352]
[59]
Meng X, Edgar KJ. “Click” reactions in polysaccharide modification. Prog Polym Sci 2016; 53: 52-85.
[http://dx.doi.org/10.1016/j.progpolymsci.2015.07.006]
[60]
Bishnoi M, Jain A, Hurkat P, Jain SK. Chondroitin sulphate: A focus on osteoarthritis. Glycoconj J 2016; 33(5): 693-705.
[http://dx.doi.org/10.1007/s10719-016-9665-3] [PMID: 27194526]
[61]
Chakka VP, Zhou T. Carboxymethylation of polysaccharides: Synthesis and bioactivities. Int J Biol Macromol 2020; 165(Pt B): 2425-31.
[http://dx.doi.org/10.1016/j.ijbiomac.2020.10.178] [PMID: 33132131]
[62]
Chen F, Huang G. Preparation and immunological activity of polysaccharides and their derivatives. Int J Biol Macromol 2018; 112: 211-6.
[http://dx.doi.org/10.1016/j.ijbiomac.2018.01.169] [PMID: 29382579]
[63]
Chen Y, Yao F, Ming K, Wang D, Hu Y, Liu J. Polysaccharides from traditional chinese medicines: Extraction, purification, modification, and biological activity. Mol 2016; 21(12): 1705.
[64]
Jiang J, Meng FY, He Z, et al. Sulfated modification of longan polysaccharide and its immunomodulatory and anti-tumor activity in vitro. Int J Biol Macromol 2014; 67: 323-9.
[http://dx.doi.org/10.1016/j.ijbiomac.2014.03.030] [PMID: 24680807]
[65]
Ma L, Chen H, Zhang Y, Zhang N, Fu L. Chemical modification and antioxidant activities of polysaccharide from mushroom Inonotus obliquus. Carbohydr Polym 2012; 89(2): 371-8.
[http://dx.doi.org/10.1016/j.carbpol.2012.03.016] [PMID: 24750732]
[66]
Wang J, Yang T, Tian J, et al. Synthesis and characterization of phosphorylated galactomannan: The effect of DS on solution conformation and antioxidant activities. Carbohydr Polym 2014; 113: 325-35.
[http://dx.doi.org/10.1016/j.carbpol.2014.07.028] [PMID: 25256491]
[67]
Deng C, Fu H, Xu J, Shang J, Cheng Y. Physiochemical and biological properties of phosphorylated polysaccharides from Dictyophora indusiata. Int J Biol Macromol 2015; 72: 894-9.
[http://dx.doi.org/10.1016/j.ijbiomac.2014.09.053] [PMID: 25316421]
[68]
Wang J, Bao A, Meng X, et al. An efficient approach to prepare sulfated polysaccharide and evaluation of anti-tumor activities in vitro. Carbohydr Polym 2018; 184: 366-75.
[http://dx.doi.org/10.1016/j.carbpol.2017.12.065] [PMID: 29352930]
[69]
Liu Y, Tang Q, Duan X, et al. Antioxidant and anticoagulant activities of mycelia polysaccharides from Catathelasma ventricosum after sulfated modification. Ind Crops Prod 2018; 112: 53-60.
[http://dx.doi.org/10.1016/j.indcrop.2017.10.064]
[70]
Xu Y, Wu Y, Sun P, Zhang F, Linhardt RJ, Zhang A. Chemically modified polysaccharides: Synthesis, characterization, structure activity relationships of action. Int J Biol Macromol 2019; 132: 970-7.
[http://dx.doi.org/10.1016/j.ijbiomac.2019.03.213] [PMID: 30965077]
[71]
Aumeerun S, Soulange-Govinden J, Driver MF, Rao AR, Ravishankar GA, Neetoo H. 19 Macroalgae and Microalgae. Handbook of Algal Technologies and Phytochemicals. 2019.
[72]
Choi DS, Athukorala Y, Jeon YJ, Senevirathne M, Cho KR, Kim SH. Antioxidant activity of sulfated polysaccharides isolated from Sargassum fulvellum. Prev Nutr Food Sci 2007; 12(2): 65-73.
[http://dx.doi.org/10.3746/jfn.2007.12.2.065]
[73]
Hentati F, Tounsi L, Djomdi D, et al. Bioactive polysaccharides from seaweeds. Molecules 2020; 25(14): 3152.
[http://dx.doi.org/10.3390/molecules25143152] [PMID: 32660153]
[74]
Huang G, Chen X, Huang H. Chemical modifications and biological activities of polysaccharides. Curr Drug Targets 2016; 17(15): 1799-803.
[http://dx.doi.org/10.2174/1389450117666160502151004] [PMID: 27138762]
[75]
Research progress of phosphorylated polysaccharides. Chin Bull Life Sci 2013; 3: 262-8.
[76]
Chen L, Huang G. The antiviral activity of polysaccharides and their derivatives. Int J Biol Macromol 2018; 115: 77-82.
[http://dx.doi.org/10.1016/j.ijbiomac.2018.04.056] [PMID: 29654857]
[77]
Xiong W, Ma X, Wu Y, et al. Determine the structure of phosphorylated modification of icariin and its antiviral activity against duck hepatitis virus A. BMC Vet Res 2015; 11(1): 205.
[http://dx.doi.org/10.1186/s12917-015-0459-9] [PMID: 26272639]
[78]
Ming K, Chen Y, Yao F, et al. Phosphorylated Codonopsis pilosula polysaccharide could inhibit the virulence of duck hepatitis A virus compared with Codonopsis pilosula polysaccharide. Int J Biol Macromol 2017; 94(Pt A): 28-35.
[http://dx.doi.org/10.1016/j.ijbiomac.2016.10.002] [PMID: 27713010]
[79]
Chen Y, Zhang H, Wang Y, Nie S, Li C, Xie M. Acetylation and carboxymethylation of the polysaccharide from Ganoderma atrum and their antioxidant and immunomodulating activities. Food Chem 2014; 156: 279-88.
[http://dx.doi.org/10.1016/j.foodchem.2014.01.111] [PMID: 24629969]
[80]
Qiu S, Chen J, Qin T, et al. Effects of selenylation modification on immune-enhancing activity of garlic polysaccharide. PLoS One 2014; 9(1): e86377.
[http://dx.doi.org/10.1371/journal.pone.0086377] [PMID: 24497946]
[81]
Qin T, Chen J, Wang D, et al. Selenylation modification can enhance immune-enhancing activity of Chinese angelica polysaccharide. Carbohydr Polym 2013; 95(1): 183-7.
[http://dx.doi.org/10.1016/j.carbpol.2013.02.072] [PMID: 23618257]
[82]
Liu Y, You Y, Li Y, et al. The characterization, selenylation and antidiabetic activity of mycelial polysaccharides from Catathelasma ventricosum. Carbohydr Polym 2017; 174(174): 72-81.
[http://dx.doi.org/10.1016/j.carbpol.2017.06.050] [PMID: 28821124]
[83]
Huang Q, Zhang L. Preparation, chain conformation and anti-tumor activities of water-soluble phosphated (1→3)-αd-glucan from Poria cocos mycelia. Carbohydr Polym 2011; 83(3): 1363-9.
[http://dx.doi.org/10.1016/j.carbpol.2010.09.057]
[84]
Feng H, Fan J, Yang S, Zhao X, Yi X. Antiviral activity of phosphorylated Radix Cyathulae officinalis polysaccharide against Canine Parvovirus in vitro. Int J Biol Macromol 2017; 99: 511-8.
[http://dx.doi.org/10.1016/j.ijbiomac.2017.02.085] [PMID: 28238913]
[85]
Shi MJ, Wei X, Xu J, et al. Carboxymethylated degraded polysaccharides from Enteromorpha prolifera: Preparation and in vitro antioxidant activity. Food Chem 2017; 215: 76-83.
[http://dx.doi.org/10.1016/j.foodchem.2016.07.151] [PMID: 27542452]
[86]
Hou R, Chen J, Yue C, et al. Modification of lily polysaccharide by selenylation and the immune-enhancing activity. Carbohydr Polym 2016; 142: 73-81.
[http://dx.doi.org/10.1016/j.carbpol.2016.01.032] [PMID: 26917376]
[87]
Liu X, Xie J, Jia S, et al. Immunomodulatory effects of an acetylated Cyclocarya paliurus polysaccharide on murine macrophages RAW264.7. Int J Biol Macromol 2017; 98: 576-81.
[http://dx.doi.org/10.1016/j.ijbiomac.2017.02.028] [PMID: 28192134]
[88]
Namazi H, Fathi F, Heydari A. Nanoparticles based on modified polysaccharides. The delivery of nanoparticles. 2012; pp. 149-84.
[89]
Garcia MAVT, Garcia CF, Faraco AAG. Pharmaceutical and biomedical applications of native and modified starch: A review. Stärke 2020; 72(7-8): 1900270.
[http://dx.doi.org/10.1002/star.201900270]
[90]
Lawal MV. Modified starches as direct compression excipients–effect of physical and chemical modifications on tablet properties: A review. Stärke 2019; 71(1-2): 1800040.
[http://dx.doi.org/10.1002/star.201800040]
[91]
Karthik V. Excipients used in the formulation of tablets. J Chem 2016; 5(2): 143-54.
[92]
Singh RS, Kaur N, Rana V, et al. Carbamoylethyl locust bean gum: Synthesis, characterization and evaluation of its film forming potential. Int J Biol Macromol 2020; 149: 348-58.
[http://dx.doi.org/10.1016/j.ijbiomac.2020.01.261] [PMID: 32004597]
[93]
Dey P, Sa B, Maiti S. Carboxymethyl ethers of locust bean guma review. Int J Pharm Pharm Sci 2011; 3(2): 4-7.
[94]
Soma PK, Williams PD, Lo YM. Advancements in nonstarch polysaccharides research for frozen foods and microencapsulation of probiotics. Front Chem Eng China 2009; 3(4): 413-26.
[http://dx.doi.org/10.1007/s11705-009-0254-x]
[95]
Prajapati VD, Jani GK, Moradiya NG, Randeria NP, Nagar BJ. Locust bean gum: A versatile biopolymer. Carbohydr Polym 2013; 94(2): 814-21.
[http://dx.doi.org/10.1016/j.carbpol.2013.01.086] [PMID: 23544637]
[96]
Mohan N, Nair PD. Novel porous, polysaccharide scaffolds for tissue engineering applications. Trends Biomater Artif Organs 2005; 18(2): 219-25.
[97]
Chakravorty A, Barman G, Mukherjee S, Sa B. Effect of carboxymethylation on rheological and drug release characteristics of locust bean gum matrix tablets. Carbohydr Polym 2016; 144: 50-8.
[http://dx.doi.org/10.1016/j.carbpol.2016.02.010] [PMID: 27083792]
[98]
Braz L, Grenha A, Corvo MC, et al. Synthesis and characterization of Locust Bean Gum derivatives and their application in the production of nanoparticles. Carbohydr Polym 2018; 181: 974-85.
[http://dx.doi.org/10.1016/j.carbpol.2017.11.052] [PMID: 29254062]
[99]
Singh RS, Kaur N, Sharma R, Rana V. Carbamoylethyl pullulan: QbD based synthesis, characterization and corneal wound healing potential. Int J Biol Macromol 2018; 118(Pt B): 2245-55.
[http://dx.doi.org/10.1016/j.ijbiomac.2018.07.107] [PMID: 30031076]
[100]
Fan Z, Qin Y, Liu S, et al. Synthesis, characterization, and antifungal evaluation of diethoxyphosphoryl polyaminoethyl chitosan derivatives. Carbohydr Polym 2018; 190: 1-11.
[http://dx.doi.org/10.1016/j.carbpol.2018.02.056] [PMID: 29628225]
[101]
Moreno JAS, Mendes AC, Stephansen K, et al. Development of electrosprayed mucoadhesive chitosan microparticles. Carbohydr Polym 2018; 190: 240-7.
[http://dx.doi.org/10.1016/j.carbpol.2018.02.062] [PMID: 29628244]
[102]
Ma Z, Garrido-Maestu A, Jeong KC. Application, mode of action, and in vivo activity of chitosan and its micro- and nanoparticles as antimicrobial agents: A review. Carbohydr Polym 2017; 176: 257-65.
[http://dx.doi.org/10.1016/j.carbpol.2017.08.082] [PMID: 28927606]
[103]
Shariatinia Z. Pharmaceutical applications of chitosan. Adv Colloid Interface Sci 2019; 263: 131-94.
[http://dx.doi.org/10.1016/j.cis.2018.11.008] [PMID: 30530176]
[104]
Janes KA, Calvo P, Alonso MJ. Polysaccharide colloidal particles as delivery systems for macromolecules. Adv Drug Deliv Rev 2001; 47(1): 83-97.
[http://dx.doi.org/10.1016/S0169-409X(00)00123-X] [PMID: 11251247]
[105]
Kean T, Thanou M. Biodegradation, biodistribution and toxicity of chitosan. Adv Drug Deliv Rev 2010; 62(1): 3-11.
[http://dx.doi.org/10.1016/j.addr.2009.09.004] [PMID: 19800377]
[106]
Bhattarai N, Gunn J, Zhang M. Chitosan-based hydrogels for controlled, localized drug delivery. Adv Drug Deliv Rev 2010; 62(1): 83-99.
[http://dx.doi.org/10.1016/j.addr.2009.07.019] [PMID: 19799949]
[107]
Kim S. Competitive biological activities of chitosan and its derivatives: Antimicrobial, antioxidant, anticancer, and anti-inflammatory activities. Int J Polym Sci 2018; 2018: 1-13.
[http://dx.doi.org/10.1155/2018/1708172]
[108]
Ways M. Chitosan and its derivatives for application in mucoadhesive drug delivery systems. Polymer 2018; 10(3): 1-37.
[109]
Yuan Y, Chesnutt BM, Haggard WO, Bumgardner JD. Deacetylation of chitosan: Material characterization and in vitro evaluation via albumin adsorption and preosteoblastic cell cultures. Materials 2011; 4(8): 1399-416.
[http://dx.doi.org/10.3390/ma4081399] [PMID: 28824150]
[110]
Cheung R, Ng T, Wong J, Chan W. Chitosan: An update on potential biomedical and pharmaceutical applications. Mar Drugs 2015; 13(8): 5156-86.
[http://dx.doi.org/10.3390/md13085156] [PMID: 26287217]
[111]
Zhang M, Li XH, Gong YD, Zhao NM, Zhang XF. Properties and biocompatibility of chitosan films modified by blending with PEG. Biomaterials 2002; 23(13): 2641-8.
[http://dx.doi.org/10.1016/S0142-9612(01)00403-3] [PMID: 12059013]
[112]
Ahmed S. Chitosan based scaffolds and their applications in wound healing. Achiev Life Sci 2016; 10(1): 27-37.
[113]
Zhang Y, Sun T, Jiang C. Biomacromolecules as carriers in drug delivery and tissue engineering. Acta Pharm Sin B 2018; 8(1): 34-50.
[http://dx.doi.org/10.1016/j.apsb.2017.11.005] [PMID: 29872621]
[114]
Bakar LM, Abdullah MZ, Doolaanea AA, Ichwan SJA. PLGA-Chitosan nanoparticlemediated gene delivery for oral cancer treatment: A brief review. J Phys Conf Ser 2017; 884(1): 012117.
[http://dx.doi.org/10.1088/1742-6596/884/1/012117]
[115]
Desbrieres J, Peptu CA, Savin CL, Popa M. Chemically modified polysaccharides with applications in nanomedicine. In: Valentin P, Irina V, Eds. Biomass as Renewable Raw Material to Obtain Bioproducts of High-Tech Value. Elsevier 2018; pp. 351-99.
[http://dx.doi.org/10.1016/B978-0-444-63774-1.00010-7]
[116]
Layek B, Mandal S. Natural polysaccharides for controlled delivery of oral therapeutics: A recent update. Carbohydr Polym 2020; 230: 115617.
[http://dx.doi.org/10.1016/j.carbpol.2019.115617] [PMID: 31887888]
[117]
Khan W, Abtew E, Modani S, Domb AJ. Polysaccharide based nanoparticles. Isr J Chem 2018; 58(12): 1315-29.
[http://dx.doi.org/10.1002/ijch.201800051]
[118]
Li J, Qiao M, Ji Y, Lin L, Zhang X, Linhardt RJ. Chemical, enzymatic and biological synthesis of hyaluronic acids. Int J Biol Macromol 2020; 152: 199-206.
[http://dx.doi.org/10.1016/j.ijbiomac.2020.02.214] [PMID: 32088231]
[119]
Guadagna S, Barattini DF, Pricop M, Rosu S. Oral hyaluronan for the treatment of knee osteoarthritis: A systematic review. Prog Nutr 2018; 20: 537-44.
[120]
Bukhari SNA, Roswandi NL, Waqas M, et al. Hyaluronic acid, a promising skin rejuvenating biomedicine: A review of recent updates and pre-clinical and clinical investigations on cosmetic and nutricosmetic effects. Int J Biol Macromol 2018; 120(Pt B): 1682-95.
[http://dx.doi.org/10.1016/j.ijbiomac.2018.09.188] [PMID: 30287361]
[121]
Oe M, Sakai S, Yoshida H, et al. Oral hyaluronan relieves wrinkles: A double-blinded, placebo-controlled study over a 12-week period. Clin Cosmet Investig Dermatol 2017; 10: 267-73.
[http://dx.doi.org/10.2147/CCID.S141845] [PMID: 28761365]
[122]
Oe M, Tashiro T, Yoshida H, et al. Oral hyaluronan relieves knee pain: A review. Nutr J 2015; 15(1): 11.
[http://dx.doi.org/10.1186/s12937-016-0128-2] [PMID: 26818459]
[123]
Rayahin JE, Buhrman JS, Zhang Y, Koh TJ, Gemeinhart RA. High and low molecular weight hyaluronic acid differentially influence macrophage activation. ACS Biomater Sci Eng 2015; 1(7): 481-93.
[http://dx.doi.org/10.1021/acsbiomaterials.5b00181] [PMID: 26280020]
[124]
Mansouri Y, Goldenberg G. Update on hyaluronic acid fillers for facial rejuvenation. Cutis 2015; 96(2): 85-8.
[PMID: 26367746]
[125]
Liu Y, Sun Y, Huang G. Preparation and antioxidant activities of important traditional plant polysaccharides. Int J Biol Macromol 2018; 111: 780-6.
[http://dx.doi.org/10.1016/j.ijbiomac.2018.01.086] [PMID: 29355627]
[126]
Chan M, Brooks H, Moratti S, Hanton L, Cabral J. Reducing the oxidation level of dextran aldehyde in a chitosan/dextran -based surgical hydrogel increases biocompatibility and decreases antimicrobial efficacy. Int J Mol Sci 2015; 16(12): 13798-814.
[http://dx.doi.org/10.3390/ijms160613798] [PMID: 26086827]
[127]
Chen F, Huang G, Huang H. Preparation and application of dextran and its derivatives as carriers. Int J Biol Macromol 2020; 145: 827-34.
[http://dx.doi.org/10.1016/j.ijbiomac.2019.11.151] [PMID: 31756474]
[128]
Yu L, Cai L, Hu H, Zhang Y. Experiments and synthesis of bone-targeting epirubicin with the water-soluble macromolecular drug delivery systems of oxidized-dextran. J Drug Target 2014; 22(4): 343-51.
[http://dx.doi.org/10.3109/1061186X.2013.877467] [PMID: 24405056]
[129]
Du YZ, Weng Q, Yuan H, Hu FQ. Synthesis and anti-tumor activity of stearateg-dextran micelles for intracellular doxorubicin delivery. ACS Nano 2010; 4(11): 6894-902.
[http://dx.doi.org/10.1021/nn100927t] [PMID: 20939508]
[130]
Thambi T, You DG, Han HS, et al. Bioreducible carboxymethyl dextran nanoparticles for tumor-targeted drug delivery. Adv Healthc Mater 2014; 3(11): 1829-38.
[http://dx.doi.org/10.1002/adhm.201300691] [PMID: 24753360]
[131]
Silva AS, Tavares MT, Aguiar-Ricardo A. Sustainable strategies for nano-in-micro particle engineering for pulmonary delivery. J Nanopart Res 2014; 16(11): 2602.
[http://dx.doi.org/10.1007/s11051-014-2602-0]
[132]
Hu Y, He L, Ding J, Sun D, Chen L, Chen X. One-pot synthesis of dextran decorated reduced graphene oxide nanoparticles for targeted photo-chemotherapy. Carbohydr Polym 2016; 144: 223-9.
[http://dx.doi.org/10.1016/j.carbpol.2016.02.062] [PMID: 27083812]
[133]
Ahmad NH, Mustafa S, Che Man YB. Microbial polysaccharides and their modification approaches: A review. Int J Food Prop 2015; 18(2): 332-47.
[http://dx.doi.org/10.1080/10942912.2012.693561]
[134]
Ahuja M, Kumar A, Singh K. Synthesis, characterization and in vitro release behavior of carboxymethyl xanthan. Int J Biol Macromol 2012; 51(5): 1086-90.
[http://dx.doi.org/10.1016/j.ijbiomac.2012.08.023] [PMID: 22947448]
[135]
Alle MGB, Kim TH, Park SH, Lee SH, Kim JC. Doxorubicin-carboxymethyl xanthan gum capped gold nanoparticles: Microwave synthesis, characterization, and anticancer activity. Carbohydr Polym 2020; 229: 115511.
[http://dx.doi.org/10.1016/j.carbpol.2019.115511] [PMID: 31826400]
[136]
Badwaik H, Sakure K, Nakhate K, Dhongde H, Kashayap P, Tripathi D. Microwave assisted ecofriendly synthesis, characterization and in vitro release behavior of carboxymethyl xanthan gum. Curr Microw Chem 2016; 3(3): 203-11.
[http://dx.doi.org/10.2174/2213335602666151022203648]
[137]
Cai X, Du X, Cui D, Wang X, Yang Z, Zhu G. Improvement of stability of blueberry anthocyanins by carboxymethyl starch/xanthan gum combinations microencapsulation. Food Hydrocoll 2019; 91: 238-45.
[http://dx.doi.org/10.1016/j.foodhyd.2019.01.034]
[138]
Grigoras AG. Drug delivery systems using pullulan, a biocompatible polysaccharide produced by fungal fermentation of starch. Environ Chem Lett 2019; 17(3): 1209-23.
[http://dx.doi.org/10.1007/s10311-019-00862-4]
[139]
Prajapati VD, Jani GK, Khanda SM. Pullulan: An exopolysaccharide and its various applications. Carbohydr Polym 2013; 95(1): 540-9.
[http://dx.doi.org/10.1016/j.carbpol.2013.02.082] [PMID: 23618305]
[140]
Singh RS, Kaur N, Kennedy JF. Pullulan and pullulan derivatives as promising biomolecules for drug and gene targeting. Carbohydr Polym 2015; 123: 190-207.
[http://dx.doi.org/10.1016/j.carbpol.2015.01.032] [PMID: 25843851]
[141]
Rekha MR, Sharma CP. Pullulan as a promising biomaterial for biomedical applications: A perspective. Trends Biomater Artif Organs 2007; 20(2): 116-21.
[142]
Heinze T, Liebert T, Koschella A. Esterification of Polysaccharides. Springer 2006; p. 41.
[143]
Bishwambhar M, Suneetha V, Kalyani R. The role of microbial pullulan, a biopolymer in pharmaceutical approaches: A review. J Appl Pharm Sci 2011; 1(6): 45-50.
[144]
Wang J, Dou B, Bao Y. Efficient targeted pDNA/siRNA delivery with folate–low-molecular-weight polyethyleneimine-modified pullulan as non-viral carrier. Mater Sci Eng C 2014; 34: 98-109.
[http://dx.doi.org/10.1016/j.msec.2013.08.035] [PMID: 24268238]
[145]
Vijayendra SVN, Shamala TR. Film forming microbial biopolymers for commercial applications-A review. Crit Rev Biotechnol 2014; 34(4): 338-57.
[http://dx.doi.org/10.3109/07388551.2013.798254] [PMID: 23919238]
[146]
Yang XC, Niu YL, Zhao NN, Mao C, Xu FJ. A biocleavable pullulan-based vector via ATRP for liver cell-targeting gene delivery. Biomaterials 2014; 35(12): 3873-84.
[http://dx.doi.org/10.1016/j.biomaterials.2014.01.036] [PMID: 24485791]
[147]
Yuan R, Zheng F, Zhong S, et al. Self-assembled nanoparticles of glycyrrhetic acid-modified pullulan as a novel carrier of curcumin. Molecules 2014; 19(9): 13305-18.
[http://dx.doi.org/10.3390/molecules190913305] [PMID: 25170951]
[148]
Singh RS, Kaur N, Rana V, Kennedy JF. Pullulan: A novel molecule for biomedical applications. Carbohydr Polym 2017; 171: 102-21.
[http://dx.doi.org/10.1016/j.carbpol.2017.04.089] [PMID: 28578944]
[149]
Singh RS, Kaur N, Hassan M, Kennedy JF. Pullulan in biomedical research and development - A review. Int J Biol Macromol 2021; 166: 694-706.
[http://dx.doi.org/10.1016/j.ijbiomac.2020.10.227] [PMID: 33137388]
[150]
Suginoshita Y, Tabata Y, Matsumura T, et al. Liver targeting of human interferon-β with pullulan based on metal coordination. J Control Release 2002; 83(1): 75-88.
[http://dx.doi.org/10.1016/S0168-3659(02)00197-9] [PMID: 12220840]
[151]
Masuda K, Sakagami M, Horie K, Nogusa H, Hamana H, Hirano K. Evaluation of carboxymethylpullulan as a novel carrier for targeting immune tissues. Pharm Res 2001; 18(2): 217-23.
[http://dx.doi.org/10.1023/A:1011040703915] [PMID: 11405294]
[152]
Bevilacqua MP, Nelson RM, Mannori G, Cecconi O. Endothelial-leukocyte adhesion molecules in human disease. Annu Rev Med 1994; 45(1): 361-78.
[http://dx.doi.org/10.1146/annurev.med.45.1.361] [PMID: 7515220]
[153]
Satoh K, Chen F, Aoyama A, Date H, Akiyoshi K. Nanoparticle of cholesterol-bearing pullulan as a carrier of anticancer drugs. Eur J Cancer, Suppl 2008; 6(9): 139.
[http://dx.doi.org/10.1016/S1359-6349(08)71707-5]
[154]
Constantin M, Fundueanu G, Bortolotti F, Cortesi R, Ascenzi P, Menegatti E. A novel multicompartimental system based on aminated poly(vinyl alcohol) microspheres/succinoylated pullulan microspheres for oral delivery of anionic drugs. Int J Pharm 2007; 330(1-2): 129-37.
[http://dx.doi.org/10.1016/j.ijpharm.2006.09.005] [PMID: 17027206]
[155]
Laha B, Maiti S. Design of core-shell stearyl pullulan nanostructures for drug delivery. Mater Today Proc 2019; 11: 620-7.
[http://dx.doi.org/10.1016/j.matpr.2019.03.019]
[156]
Lin K, Yi J, Mao X, Wu H, Zhang LM, Yang L. Glucosesensitive hydrogels from covalently modified carboxylated pullulan and concanavalin A for smart controlled release of insulin. React Funct Polym 2019; 139: 112-9.
[http://dx.doi.org/10.1016/j.reactfunctpolym.2019.01.016]
[157]
Liang Y, Zhao X, Ma PX, Guo B, Du Y, Han X. pH-responsive injectable hydrogels with mucosal adhesiveness based on chitosan-grafted-dihydrocaffeic acid and oxidized pullulan for localized drug delivery. J Colloid Interface Sci 2019; 536: 224-34.
[http://dx.doi.org/10.1016/j.jcis.2018.10.056] [PMID: 30368094]
[158]
Li H, Yu C, Zhang J, et al. pH-sensitive pullulandoxorubicin nanoparticles loaded with 1,1,2-trichlorotrifluoroethane as a novel synergist for high intensity focused ultrasound mediated tumor ablation. Int J Pharm 2019; 556: 226-35.
[http://dx.doi.org/10.1016/j.ijpharm.2018.12.006] [PMID: 30543892]
[159]
Li S, Dai W, Yin ZZ, Gao J, Wu D, Kong Y. Synthesis of oxidized pullulan coated mesoporous silica for pH-sensitive drug delivery. Eur Polym J 2020; 122: 109399.
[http://dx.doi.org/10.1016/j.eurpolymj.2019.109399]
[160]
Zheng Y, Lv X, Xu Y, Cheng X, Wang X, Tang R. pH-sensitive and pluronic-modified pullulan nanogels for greatly improved anti-tumor in vivo. Int J Biol Macromol 2019; 139: 277-89.
[http://dx.doi.org/10.1016/j.ijbiomac.2019.07.220] [PMID: 31377289]
[161]
Asmarandei I, Fundueanu G, Cristea M, Harabagiu V, Constantin M. Thermo and pH-sensitive interpenetrating poly(N-isopropylacrylamide)/carboxymethyl pullulan network for drug delivery. J Polym Res 2013; 20(11): 293.
[http://dx.doi.org/10.1007/s10965-013-0293-3]
[162]
Constantin M, Mihalcea I, Oanea I, Harabagiu V, Fundueanu G. Studies on graft copolymerization of 3-acrylamidopropyl trimethylammonium chloride on pullulan. Carbohydr Polym 2011; 84(3): 926-32.
[http://dx.doi.org/10.1016/j.carbpol.2010.12.043]
[163]
Chu L, Park SH, Yamaguchi T, Nakao SI. Preparation of thermo-responsive core-shell microcapsules with a porous membrane and poly(N-isopropylacrylamide) gates. J Membr Sci 2001; 192(1-2): 27-39.
[http://dx.doi.org/10.1016/S0376-7388(01)00464-1]
[164]
Ding Z, Fong RB, Long CJ, Stayton PS, Hoffman AS. Sizedependent control of the binding of biotinylated proteins to streptavidin using a polymer shield. Nature 2001; 411(6833): 59-62.
[http://dx.doi.org/10.1038/35075028] [PMID: 11333975]
[165]
Fundueanu G, Constantin M, Oanea I, Harabagiu V, Ascenzi P, Simionescu BC. Entrapment and release of drugs by a strict “on-off” mechanism in pullulan microspheres with pendant thermosensitive groups. Biomaterials 2010; 31(36): 9544-53.
[http://dx.doi.org/10.1016/j.biomaterials.2010.08.062] [PMID: 20943266]
[166]
Lu D, Wen X, Liang J, Gu Z, Zhang X, Fan Y. A pH‐sensitive nano drug delivery system derived from pullulan/doxorubicin conjugate. J Biomed Mater Res 2009; 89(1): 177-83.
[167]
Maeda H, Wu J, Sawa T, Matsumura Y, Hori K. Tumor vascular permeability and the EPR effect in macromolecular therapeutics: A review. J Control Release 2000; 65(1-2): 271-84.
[http://dx.doi.org/10.1016/S0168-3659(99)00248-5] [PMID: 10699287]
[168]
Mocanu G, Mihai D, Dulong V, Picton L, Lecerf D. New anionic amphiphilic thermosensitive pullulan derivatives. Carbohydr Polym 2011; 84(1): 276-81.
[http://dx.doi.org/10.1016/j.carbpol.2010.11.034]
[169]
Zhang C, An T, Wang D, et al. Stepwise pH-responsive nanoparticles containing chargereversible pullulanbased shells and poly(β-amino ester)/poly(lacticcoglycolic acid) cores as carriers of anticancer drugs for combination therapy on hepatocellular carcinoma. J Control Release 2016; 226: 193-204.
[http://dx.doi.org/10.1016/j.jconrel.2016.02.030] [PMID: 26896737]
[170]
Blakemore WR, Harpell AR. Carrageenan. Food Stabilisers. Thickeners and Gelling Agents 2010; pp. 73-94.
[171]
Venkatesan J, Anil S, Kim SK, Eds. Seaweed Polysaccharides: Isolation, biological and biomedical applications. Elsevier 2017.
[172]
Qureshi D, Nayak SK, Maji S, Kim D, Banerjee I, Pal K. Carrageenan: A wonder polymer from marine algae for potential drug delivery applications. Curr Pharm Des 2019; 25(11): 1172-86.
[http://dx.doi.org/10.2174/1381612825666190425190754] [PMID: 31465278]
[173]
Chakraborty S. Carrageenan for encapsulation and immobilization of flavor, fragrance, probiotics, and enzymes: A review. J Carbohydr Chem 2017; 36(1): 1-19.
[http://dx.doi.org/10.1080/07328303.2017.1347668]
[174]
Kalsoom Khan A, Saba AU, Nawazish S, et al. Carrageenan based bionanocomposites as drug delivery tool with special emphasis on the influence of ferromagnetic nanoparticles. Oxid Med Cell Longev 2017; 2017: 1-13.
[http://dx.doi.org/10.1155/2017/8158315] [PMID: 28303171]
[175]
Severino P, da Silva CF, Andrade LN, de Lima Oliveira D, Campos J, Souto EB. Alginate nanoparticles for drug delivery and targeting. Curr Pharm Des 2019; 25(11): 1312-34.
[http://dx.doi.org/10.2174/1381612825666190425163424] [PMID: 31465282]
[176]
Liu L, Jiang L, Xu GK, Ma C, Yang XG, Yao JM. Potential of alginate fibers incorporated with drugloaded nanocapsules as drug delivery systems. J Mater Chem B Mater Biol Med 2014; 2(43): 7596-604.
[http://dx.doi.org/10.1039/C4TB01392A] [PMID: 32261897]
[177]
Barros NR, Ahadian S, Tebon P, Rudge MVC, Barbosa AMP, Herculano RD. Highly absorptive dressing composed of natural latex loaded with alginate for exudate control and healing of diabetic wounds. Mater Sci Eng C 2021; 119: 111589.
[http://dx.doi.org/10.1016/j.msec.2020.111589] [PMID: 33321634]
[178]
Chitrambalam TG, Christopher PJ, Sundaraj J, Paladugu R, Selvamuthukumaran S. Comparison of efficacy of alginate filler dressings with conventional saline dressings for cavity wounds in diabetic foot ulcer - A prospective cohort study. J Clin Diag 2020; 14(11): 1-4.
[179]
Gullón B, Gagaoua M, Barba FJ, Gullón P, Zhang W, Lorenzo JM. Seaweeds as promising resource of bioactive compounds: Overview of novel extraction strategies and design of tailored meat products. Trends Food Sci Technol 2020; 100: 1-18.
[http://dx.doi.org/10.1016/j.tifs.2020.03.039]
[180]
Hentati F, Delattre C, Ursu AV, et al. Structural characterization and antioxidant activity of water-soluble polysaccharides from the Tunisian brown seaweed Cystoseira compressa. Carbohydr Polym 2018; 198: 589-600.
[http://dx.doi.org/10.1016/j.carbpol.2018.06.098] [PMID: 30093038]
[181]
Hentati F, Delattre C, Gardarin C, et al. Structural features and rheological properties of a sulfated xylogalactanrich fraction isolated from Tunisian Red Seaweed Jania adhaerens. Appl Sci 2020; 10(5): 1655.
[http://dx.doi.org/10.3390/app10051655]
[182]
Isaka S, Cho K, Nakazono S, et al. Antioxidant and anti-inflammatory activities of porphyran isolated from discolored nori (Porphyra yezoensis). Int J Biol Macromol 2015; 74: 68-75.
[http://dx.doi.org/10.1016/j.ijbiomac.2014.11.043] [PMID: 25499893]
[183]
Unnikrishnan PS, Suthindhiran K, Jayasri MA. Antidiabetic potential of marine algae by inhibiting key metabolic enzymes. Front Life Sci 2015; 8(2): 148-59.
[http://dx.doi.org/10.1080/21553769.2015.1005244]
[184]
Nakazono S, Cho K, Isaka S, et al. Antiobesity effects of enzymaticallydigested alginate oligomer in mice model fed a highfatdiet. Bioactive Carbohydrates and Dietary Fibre 2016; 7(2): 1-8.
[http://dx.doi.org/10.1016/j.bcdf.2016.02.001]
[185]
Wang X, Li W, Xiao L, Liu C, Qi H, Zhang Z. In vivo antihyperlipidemic and antioxidant activity of porphyran in hyperlipidemic mice. Carbohydr Polym 2017; 174: 417-20.
[http://dx.doi.org/10.1016/j.carbpol.2017.06.040] [PMID: 28821087]
[186]
Liu Y, Deng Z, Geng L, Wang J, Zhang Q. In vitro evaluation of the neuroprotective effect of oligoporphyran from Porphyra yezoensis in PC12 cells. J Appl Phycol 2019; 31(4): 2559-71.
[http://dx.doi.org/10.1007/s10811-018-1713-x]
[187]
Kadam SU, Tiwari BK, Smyth TJ, O’Donnell CP. Optimization of ultrasound assisted extraction of bioactive components from brown seaweed Ascophyllum nodosum using response surface methodology. Ultrason Sonochem 2015; 23: 308-16.
[http://dx.doi.org/10.1016/j.ultsonch.2014.10.007] [PMID: 25453215]
[188]
Hadj Ammar H, Lajili S, Ben Said R, Le Cerf D, Bouraoui A, Majdoub H. Physicochemical characterization and pharmacological evaluation of sulfated polysaccharides from three species of Mediterranean brown algae of the genus Cystoseira. Daru 2015; 23(1): 1.
[http://dx.doi.org/10.1186/s40199-015-0089-6] [PMID: 25582169]
[189]
Laurienzo P. Marine polysaccharides in pharmaceutical applications: An overview. Mar Drugs 2010; 8(9): 2435-65.
[http://dx.doi.org/10.3390/md8092435] [PMID: 20948899]
[190]
Senni K, Pereira J, Gueniche F, et al. Marine polysaccharides: A source of bioactive molecules for cell therapy and tissue engineering. Mar Drugs 2011; 9(9): 1664-81.
[http://dx.doi.org/10.3390/md9091664] [PMID: 22131964]
[191]
Ngo DH, Kim SK. Sulfated polysaccharides as bioactive agents from marine algae. Int J Biol Macromol 2013; 62: 70-5.
[http://dx.doi.org/10.1016/j.ijbiomac.2013.08.036] [PMID: 23994790]
[192]
Costa LS, Fidelis GP, Cordeiro SL, et al. Biological activities of sulfated polysaccharides from tropical seaweeds. Biomed Pharmacother 2010; 64(1): 21-8.
[http://dx.doi.org/10.1016/j.biopha.2009.03.005] [PMID: 19766438]
[193]
Cardoso M, Costa R, Mano J. Marine origin polysaccharides in drug delivery systems. Mar Drugs 2016; 14(2): 34.
[http://dx.doi.org/10.3390/md14020034] [PMID: 26861358]
[194]
Lee KY, Mooney DJ. Alginate: Properties and biomedical applications. Prog Polym Sci 2012; 37(1): 106-26.
[http://dx.doi.org/10.1016/j.progpolymsci.2011.06.003] [PMID: 22125349]
[195]
Khan F, Ahmad SR. Polysaccharides and their derivatives for versatile tissue engineering application. Macromol Biosci 2013; 13(4): 395-421.
[http://dx.doi.org/10.1002/mabi.201200409] [PMID: 23512290]
[196]
Argyropoulos DS. Materials, Chemicals, and Energy from Forest Biomass. In: Amit N, Saquib H, Tejraj A, Eds. Hydrogels from Polysaccharides for Biomedical Applications. Academic Press 2007.
[197]
Klein S. Polysaccharides in oral drug delivery - recent applications and future perspectives. In: Kevin JE, Thomas H, Charles MB, Eds. Polysaccharide Materials: Performance by Design. ACS Publications, Washington DC 2009; pp. 13-30.
[198]
Liu J, Willför S, Xu C. A review of bioactive plant polysaccharides: Biological activities, functionalization, and biomedical applications. Bioactive Carbohydr Dietary Fibre 2015; 5(1): 31-61.
[http://dx.doi.org/10.1016/j.bcdf.2014.12.001]
[199]
Dheer D, Arora D, Jaglan S, Rawal RK, Shankar R. Polysaccharides based nanomaterials for targeted anticancer drug delivery. J Drug Target 2017; 25(1): 1-16.
[http://dx.doi.org/10.3109/1061186X.2016.1172589] [PMID: 27030377]
[200]
Posocco B, Dreussi E, de Santa J, et al. Polysaccharides for the delivery of antitumor drugs. Materials 2015; 8(5): 2569-615.
[http://dx.doi.org/10.3390/ma8052569]
[201]
Shariatinia Z, Mohammadi-Denyani A. Advances in polymers for drug delivery and wound healing applications. In: Bhuvanesh G, Deepak P, Eds. Advances in Polymers for Biomedical applications. 2018; pp. 85-141.
[202]
Shariatinia Z. Carboxymethyl chitosan: Properties and biomedical applications. Int J Biol Macromol 2018; 120(Pt B): 1406-19.
[http://dx.doi.org/10.1016/j.ijbiomac.2018.09.131] [PMID: 30267813]
[203]
Fazli Y, Shariatinia Z, Kohsari I, Azadmehr A, Pourmortazavi SM. A novel chitosan-polyethylene oxide nanofibrous mat designed for controlled co-release of hydrocortisone and imipenem/cilastatin drugs. Int J Pharm 2016; 513(1-2): 636-47.
[http://dx.doi.org/10.1016/j.ijpharm.2016.09.078] [PMID: 27693735]
[204]
Kumar D, Pandey J, Raj V, Kumar P. A review on the modification of polysaccharide through graft copolymerization for various potential applications. Open Med Chem J 2017; 11(1): 109-26.
[http://dx.doi.org/10.2174/1874104501711010109] [PMID: 29151987]
[205]
Zhang L, Sang Y, Feng J, Li Z, Zhao A. Polysaccharide-based micro/nanocarriers for oral colontargeted drug delivery. J Drug Target 2016; 24(7): 579-89.
[http://dx.doi.org/10.3109/1061186X.2015.1128941] [PMID: 26766303]
[206]
Khare T, Palakurthi SS, Shah BM, Palakurthi S, Khare S. Natural product-based nanomedicine in treatment of inflammatory bowel disease. Int J Mol Sci 2020; 21(11): 3956.
[http://dx.doi.org/10.3390/ijms21113956] [PMID: 32486445]
[207]
Pandey S, Malviya R, Sharma PK. Applicability, commercial utility and recent patents on starch and starch derivative as pharmaceutical drug delivery carrier. Recent Pat Drug Deliv Formul 2015; 9(3): 249-56.
[PMID: 26205680]
[208]
Wang J, Jin W, Zhang W, Hou Y, Zhang H, Zhang Q. Hypoglycemic property of acidic polysaccharide extracted from Saccharina japonica and its potential mechanism. Carbohydr Polym 2013; 95(1): 143-7.
[http://dx.doi.org/10.1016/j.carbpol.2013.02.076] [PMID: 23618250]
[209]
Jeszka-Skowron M, Flaczyk E, Jeszka J, Krejpcio Z, Król E, Buchowski MS. Mulberry leaf extract intake reduces hyperglycaemia in streptozotocin (STZ)-induced diabetic rats fed high-fat diet. J Funct Foods 2014; 8: 9-17.
[http://dx.doi.org/10.1016/j.jff.2014.02.018]
[210]
Huang M, Wang F, Zhou X, Yang H, Wang Y. Hypoglycemic and hypolipidemic properties of polysaccharides from Enterobacter cloacae Z0206 in KKAy mice. Carbohydr Polym 2015; 117: 91-8.
[http://dx.doi.org/10.1016/j.carbpol.2014.09.008] [PMID: 25498613]
[211]
Jiang S, Du P, An L, Yuan G, Sun Z. Anti-diabetic effect of Coptis Chinensis polysaccharide in high-fat diet with STZ-induced diabetic mice. Int J Biol Macromol 2013; 55: 118-22.
[http://dx.doi.org/10.1016/j.ijbiomac.2012.12.035] [PMID: 23295205]
[212]
Chen C, You LJ, Abbasi AM, Fu X, Liu RH, Li C. Characterization of polysaccharide fractions in mulberry fruit and assessment of their antioxidant and hypoglycemic activities in vitro. Food Funct 2016; 7(1): 530-9.
[http://dx.doi.org/10.1039/C5FO01114K] [PMID: 26569512]
[213]
Bray F, Ferlay J, Soerjomataram I, Siegel RL, Torre LA, Jemal A. Global cancer statistics 2018: GLOBOCAN estimates of incidence and mortality worldwide for 36 cancers in 185 countries. CA Cancer J Clin 2018; 68(6): 394-424.
[http://dx.doi.org/10.3322/caac.21492] [PMID: 30207593]
[214]
Ruijun W, Shi W, Yijun X, Mengwuliji T, Lijuan Z, Yumin W. Anti-tumor effects and immune regulation activities of a purified polysaccharide extracted from Juglan regia. Int J Biol Macromol 2015; 72: 771-5.
[http://dx.doi.org/10.1016/j.ijbiomac.2014.09.026] [PMID: 25265339]
[215]
Lyu F, Xu X, Zhang L. Natural polysaccharides with different conformations: Extraction, structure and anti-tumor activity. J Mater Chem B Mater Biol Med 2020; 8(42): 9652-67.
[http://dx.doi.org/10.1039/D0TB01713B] [PMID: 32986063]
[216]
Wang X, Chen Y, Wang J, Liu Z, Zhao S. Anti-tumor activity of a sulfated polysaccharide from Enteromorpha intestinalis targeted against hepatoma through mitochondrial pathway. Tumour Biol 2014; 35(2): 1641-7.
[http://dx.doi.org/10.1007/s13277-013-1226-9] [PMID: 24197975]
[217]
Wang J, Zhang L, Yu Y, Cheung PCK. Enhancement of anti-tumor activities in sulfated and carboxymethylated polysaccharides of Ganoderma lucidum. J Agric Food Chem 2009; 57(22): 10565-72.
[http://dx.doi.org/10.1021/jf902597w] [PMID: 19863048]
[218]
Cael JJ, Winter WT, Arnott S. Calcium chondroitin 4-sulfate: Molecular conformation and organization of polysaccharide chains in a proteoglycan. J Mol Biol 1978; 125(1): 21-42.
[http://dx.doi.org/10.1016/0022-2836(78)90252-8] [PMID: 712856]
[219]
Matsuda-Minehata F, Inoue N, Goto Y, Manabe N. The regulation of ovarian granulosa cell death by pro- and antiapoptotic molecules. J Reprod Dev 2006; 52(6): 695-705.
[http://dx.doi.org/10.1262/jrd.18069] [PMID: 16926526]
[220]
Sun Z, He Y, Liang Z, Zhou W, Niu T. Sulfation of (1→3)-β-dglucan from the fruiting bodies of Russula virescens and anti-tumor activities of the modifiers. Carbohydr Polym 2009; 77(3): 628-33.
[http://dx.doi.org/10.1016/j.carbpol.2009.02.001]
[221]
Zhang J, Liu Y, Park H, Xia Y, Kim G. Anti-tumor activity of sulfated extracellular polysaccharides of Ganoderma lucidum from the submerged fermentation broth. Carbohydr Polym 2012; 87(2): 1539-44.
[http://dx.doi.org/10.1016/j.carbpol.2011.09.051] [PMID: 23399186]
[222]
Huang G, Huang H. The derivatization and anti-tumor mechanisms of polysaccharides. Future Med Chem 2017; 9(16): 1931-8.
[http://dx.doi.org/10.4155/fmc-2017-0132] [PMID: 29076350]
[223]
Jeong YIL, Kang DH, Chung CW, et al. Doxorubicinincorporated polymeric micelles composed of dextran-bpoly(DL-lactidecoglycolide) copolymer. Int J Nanomedicine 2011; 6: 1415-27.
[http://dx.doi.org/10.2147/IJN.S19491] [PMID: 21796244]
[224]
Jeong YIL, Chung KD, Choi KC. Doxorubicin release from selfassembled nanoparticles of deoxycholic acidconjugated dextran. Arch Pharm Res 2011; 34(1): 159-67.
[http://dx.doi.org/10.1007/s12272-011-0119-y] [PMID: 21468928]
[225]
Porfire AS, Zabaleta V, Gamazo C, Leucuta SE, Irache JM. Influence of dextran on the bioadhesive properties of poly (anhydride) nanoparticles. Int J Pharm 2010; 390(1): 37-44.
[226]
Jung SW, Jeong YI, Kim YH, Choi KC, Kim SH. Drug release from core-shell type nanoparticles of poly(DL -lactidecoglycolide)-grafted dextran. J Microencapsul 2005; 22(8): 901-11.
[http://dx.doi.org/10.1080/02652040500286060] [PMID: 16423761]
[227]
Han HS, Lee M, An JY, et al. A pH-responsive carboxymethyl dextranbased conjugate as a carrier of docetaxel for cancer therapy. J Biomed Mater Res B Appl Biomater 2016; 104(4): 789-96.
[http://dx.doi.org/10.1002/jbm.b.33581] [PMID: 26687579]
[228]
Tchobanian A. Polysaccharides for tissue engineering: Current landscape and future prospec ts. Carbohydr Polym 2019; 205: 601-25.
[http://dx.doi.org/10.1016/j.carbpol.2018.10.039] [PMID: 30446147]
[229]
Oliveira JT, Reis RL. Polysaccharide-based materials for cartilage tissue engineering applications. J Tissue Eng Regen Med 2011; 5(6): 421-36.
[http://dx.doi.org/10.1002/term.335] [PMID: 20740689]
[230]
Wan ACA, Tai BCU. CHITIN - A promising biomaterial for tissue engineering and stem cell technologies. Biotechnol Adv 2013; 31(8): 1776-85.
[http://dx.doi.org/10.1016/j.biotechadv.2013.09.007] [PMID: 24080076]
[231]
Al QA. The therapeutic potential of bioactive polysaccharides in tissue repairing and wound healing. Syst Rev Pharm 2021; 12(1): 470-9.
[232]
Crowder SW, Leonardo V, Whittaker T, Papathanasiou P, Stevens MM. Material cues as potent regulators of epigenetics and stem cell function. Cell Stem Cell 2016; 18(1): 39-52.
[http://dx.doi.org/10.1016/j.stem.2015.12.012] [PMID: 26748755]
[233]
Curtis ASG, Dalby M, Gadegaard N. Cell signaling arising from nanotopography: Implications for nanomedical devices. Nanomedicine 2006; 1(1): 67-72.
[http://dx.doi.org/10.2217/17435889.1.1.67] [PMID: 17716210]
[234]
Hutmacher DW. Biomaterials offer cancer research the third dimension. Nat Mater 2010; 9(2): 90-3.
[http://dx.doi.org/10.1038/nmat2619] [PMID: 20094076]
[235]
O’Brien FJ. Biomaterials & scaffolds for tissue engineering. Mater Today 2011; 14(3): 88-95.
[http://dx.doi.org/10.1016/S1369-7021(11)70058-X]
[236]
Malviya R, Sharma PK, Dubey SK. Microwaveassisted preparation of biodegradable, hemocompatible, and antimicrobial neem gum–grafted poly (acrylamide) hydrogel using (3)2 factorial design. Emergent Materials 2019; 2(1): 95-112.
[http://dx.doi.org/10.1007/s42247-019-00022-y]
[237]
Hynes RO. The extracellular matrix: Not just pretty fibrils. Science 2009; 326(5957): 1216-9.
[http://dx.doi.org/10.1126/science.1176009] [PMID: 19965464]
[238]
Naba A, Clauser KR, Ding H, Whittaker CA, Carr SA, Hynes RO. The extracellular matrix: Tools and insights for the “omics” era. Matrix Biol 2016; 49: 10-24.
[http://dx.doi.org/10.1016/j.matbio.2015.06.003] [PMID: 26163349]
[239]
Russo L, Cipolla L. Glycomics: New challenges and opportunities in regenerative medicine. Chemistry 2016; 22(38): 13380-8.
[http://dx.doi.org/10.1002/chem.201602156] [PMID: 27400428]
[240]
Vandghanooni S, Eskandani M. Electrically conductive biomaterials based on natural polysaccharides: Challenges and applications in tissue engineering. Int J Biol Macromol 2019; 141: 636-62.
[http://dx.doi.org/10.1016/j.ijbiomac.2019.09.020] [PMID: 31494165]
[241]
Pattanashetti NA, Torvi AI, Shettar AK, Gai PB, Kariduraganavar MY. Polysaccharides as novel materials for tissue engineering applications. In: Polysaccharides. 2021; pp. 301-24.
[http://dx.doi.org/10.1002/9781119711414.ch14]
[242]
Johnson AS, O’Sullivan E, D’Aoust LN, et al. Quantitative assessment of islets of Langerhans encapsulated in alginate. Tissue Eng Part C Methods 2011; 17(4): 435-49.
[http://dx.doi.org/10.1089/ten.tec.2009.0510] [PMID: 21067465]
[243]
Wan LQ, Jiang J, Miller DE, Guo XE, Mow VC, Lu HH. Matrix deposition modulates the viscoelastic shear properties of hydrogelbased cartilage grafts. Tissue Eng Part A 2011; 17(7-8): 1111-22.
[http://dx.doi.org/10.1089/ten.tea.2010.0379] [PMID: 21142626]
[244]
Renani HB, Ghorbani M, Beni BH, et al. Determination and comparison of specifics of nucleus pulposus cells of human intervertebral disc in alginate and chitosangelatin scaffolds. Adv Biomed Res 2012; 1: 81.
[PMID: 23326811]
[245]
Yamamoto M, James D, Li H, Butler J, Rafii S, Rabbany S. Generation of stable cocultures of vascular cells in a honeycomb alginate scaffold. Tissue Eng Part A 2010; 16(1): 299-308.
[http://dx.doi.org/10.1089/ten.tea.2009.0010] [PMID: 19705957]
[246]
Kavalkovich KW, Boynton R, Murphy JM, Barry F. Chondrogenic differentiation of human mesenchymal stem cells within an alginate layer culture system. In Vitro Cell Dev Biol Anim 2002; 38(8): 457-66.
[http://dx.doi.org/10.1290/1071-2690(2002)038<0457:CDOHMS>2.0.CO;2] [PMID: 12605540]
[247]
Paige KT, Cima LG, Yaremchuk MJ, Vacanti JP, Vacanti CA. Injectable cartilage. Plast Reconstr Surg 1995; 96(6): 1390-8.
[http://dx.doi.org/10.1097/00006534-199511000-00024] [PMID: 7480239]
[248]
Khanarian NT, Jiang J, Wan LQ, Mow VC, Lu HH. A hydrogelmineral composite scaffold for osteochondral interface tissue engineering. Tissue Eng Part A 2012; 18(5-6): 533-45.
[http://dx.doi.org/10.1089/ten.tea.2011.0279] [PMID: 21919797]
[249]
Nie H, He A, Zheng J, Xu S, Li J, Han CC. Effects of chain conformation and entanglement on the electrospinning of pure alginate. Biomacromolecules 2008; 9(5): 1362-5.
[http://dx.doi.org/10.1021/bm701349j] [PMID: 18433165]
[250]
Bhattarai N, Li Z, Edmondson D, Zhang M. Alginatebased nanofibrous scaffolds: Structural, mechanical, and biological properties. Adv Mater 2006; 18(11): 1463-7.
[http://dx.doi.org/10.1002/adma.200502537]
[251]
Pan T, Song W, Cao X, Wang Y. 3D Bioplotting of gelatin/alginate scaffolds for tissue engineering: Influence of crosslinking degree and pore architecture on physicochemical properties. J Mater Sci Technol 2016; 32(9): 889-900.
[http://dx.doi.org/10.1016/j.jmst.2016.01.007]
[252]
Re’em T, Tsur-Gang O, Cohen S. The effect of immobilized RGD peptide in macroporous alginate scaffolds on TGFβ1-induced chondrogenesis of human mesenchymal stem cells. Biomaterials 2010; 31(26): 6746-55.
[http://dx.doi.org/10.1016/j.biomaterials.2010.05.025] [PMID: 20542332]
[253]
Bian L, Zhai DY, Tous E, Rai R, Mauck RL, Burdick JA. Enhanced MSC chondrogenesis following delivery of TGF-β3 from alginate microspheres within hyaluronic acid hydrogels in vitro and in vivo. Biomaterials 2011; 32(27): 6425-34.
[http://dx.doi.org/10.1016/j.biomaterials.2011.05.033] [PMID: 21652067]
[254]
Jin HH, Kim DH, Kim TW, et al. In vivo evaluation of porous hydroxyapatite/chitosan–alginate composite scaffolds for bone tissue engineering. Int J Biol Macromol 2012; 51(5): 1079-85.
[http://dx.doi.org/10.1016/j.ijbiomac.2012.08.027] [PMID: 22959955]
[255]
Rubert M, Monjo M, Lyngstadaas SP, Ramis JM. Effect of alginate hydrogel containing polyprolinerich peptides on osteoblast differentiation. Biomed Mater 2012; 7(5): 055003.
[http://dx.doi.org/10.1088/1748-6041/7/5/055003] [PMID: 22782012]
[256]
Florczyk SJ, Leung M, Jana S, et al. Enhanced bone tissue formation by alginate gel‐assisted cell seeding in porous ceramic scaffolds and sustained release of growth factor. J Biomed Mater Res A 2012; 100A(12): 3408-15.
[http://dx.doi.org/10.1002/jbm.a.34288] [PMID: 22767533]
[257]
Tang M, Chen W, Weir MD, Thein-Han W, Xu HHK. Human embryonic stem cell encapsulation in alginate microbeads in macroporous calcium phosphate cement for bone tissue engineering. Acta Biomater 2012; 8(9): 3436-45.
[http://dx.doi.org/10.1016/j.actbio.2012.05.016] [PMID: 22633970]
[258]
Chen W, Zhou H, Weir MD, Bao C, Xu HHK. Umbilical cord stem cells released from alginate–fibrin microbeads inside macroporous and biofunctionalized calcium phosphate cement for bone regeneration. Acta Biomater 2012; 8(6): 2297-306.
[http://dx.doi.org/10.1016/j.actbio.2012.02.021] [PMID: 22391411]
[259]
Xia Y, Mei F, Duan Y, et al. Bone tissue engineering using bone marrow stromal cells and an injectable sodium alginate/gelatin scaffold. J Biomed Mater Res A 2012; 100A(4): 1044-50.
[http://dx.doi.org/10.1002/jbm.a.33232] [PMID: 22318897]
[260]
Rezaei FS, Sharifianjazi F, Esmaeilkhanian A, Salehi E. Chitosan films and scaffolds for regenerative medicine applications: A review. Carbohydr Polym 2021; 273: 118631.
[http://dx.doi.org/10.1016/j.carbpol.2021.118631] [PMID: 34561021]
[261]
Wang W, Xue C, Mao X. Chitosan: Structural modification, biological activity and application. Int J Biol Macromol 2020; 164: 4532-46.
[http://dx.doi.org/10.1016/j.ijbiomac.2020.09.042] [PMID: 32941908]
[262]
Ahmed R, Afreen A, Tariq M, et al. Bone marrow mesenchymal stem cells preconditioned with nitricoxidereleasing chitosan/PVA hydrogel accelerate diabetic wound healing in rabbits. Biomed Mater 2021; 16(3): 035014.
[http://dx.doi.org/10.1088/1748-605X/abc28b] [PMID: 33075764]
[263]
Fahimirad S, Abtahi H, Satei P, Ghaznavi-Rad E, Moslehi M, Ganji A. Wound healing performance of PCL/chitosan based electrospun nanofiber electrosprayed with curcumin loaded chitosan nanoparticles. Carbohydr Polym 2021; 259: 117640.
[http://dx.doi.org/10.1016/j.carbpol.2021.117640] [PMID: 33673981]
[264]
Moeini A, Pedram P, Makvandi P, Malinconico M, Gomez d’Ayala G. Wound healing and antimicrobial effect of active secondary metabolites in chitosan-based wound dressings: A review. Carbohydr Polym 2020; 233: 115839.
[http://dx.doi.org/10.1016/j.carbpol.2020.115839] [PMID: 32059889]
[265]
Qu J, Zhao X, Liang Y, Xu Y, Ma PX, Guo B. Degradable conductive injectable hydrogels as novel antibacterial, antioxidant wound dressings for wound healing. Chem Eng J 2019; 362: 548-60.
[http://dx.doi.org/10.1016/j.cej.2019.01.028]
[266]
Zhao X, Wu H, Guo B, Dong R, Qiu Y, Ma PX. Antibacterial anti-oxidant electroactive injectable hydrogel as selfhealing wound dressing with hemostasis and adhesiveness for cutaneous wound healing. Biomaterials 2017; 122: 34-47.
[http://dx.doi.org/10.1016/j.biomaterials.2017.01.011] [PMID: 28107663]
[267]
Zhao X, Guo B, Wu H, Liang Y, Ma PX. Injectable antibacterial conductive nanocomposite cryogels with rapid shape recovery for noncompressible hemorrhage and wound healing. Nat Commun 2018; 9(1): 2784.
[http://dx.doi.org/10.1038/s41467-018-04998-9] [PMID: 30018305]
[268]
Aramwit P. Introduction to biomaterials for wound healing. In: Wound Healing Biomaterials. 2016; pp. 3-38.
[269]
Sung YK, Kim SW. Recent advances in the development of gene delivery systems. Biomater Res 2019; 23(1): 8.
[http://dx.doi.org/10.1186/s40824-019-0156-z] [PMID: 30915230]
[270]
Lu C, Ma Y, Wang H. Protective effects and mechanism of Astragalus polysaccharides oninfluenza virus PR8-induced acute lung injury model. Mod Prev Med 2017; 11: 29.
[271]
Zhang P, Wang W, Li C, Guan H. Advances in antiviral mechanism of carrageenan. Chin J Mar Drugs 2012; 2: 52-7.
[272]
Carlucci MJ, Scolaro LA, Damonte EB. Herpes simplex virus type 1 variants arising after selection with an antiviral carrageenan: Lack of correlation between drug susceptibility and syn phenotype. J Med Virol 2002; 68(1): 92-8.
[http://dx.doi.org/10.1002/jmv.10174] [PMID: 12210435]
[273]
Zhang W, Liu H, Chang Y, Bi W, Yang G. Experimental study on antiviral effect of Acanthopanax giraldii harms polysaccharide. Chin J Basic Med Tradit Chin Med 1999; 3: 25-7.
[274]
Cen Y, Wang L, Ma X, Xu S, Zhang M, Wang Y. Antivirus effects of polysaccharides from Sargassum fusiforme in vitro. Chin J Pathophysiol 2004; Z1: 765-8.
[275]
Huang G, Huang H. Application of dextran as nanoscale drug carriers. Nanomedicine 2018; 13(24): 3149-58.
[http://dx.doi.org/10.2217/nnm-2018-0331] [PMID: 30516091]
[276]
O’Connor NA, Abugharbieh A, Yasmeen F, et al. The crosslinking of polysaccharides with polyamines and dextran–polyallylamine antibacterial hydrogels. Int J Biol Macromol 2015; 72: 88-93.
[http://dx.doi.org/10.1016/j.ijbiomac.2014.08.003] [PMID: 25128095]
[277]
Tuchilus CG, Nichifor M, Mocanu G, Stanciu MC. Antimicrobial activity of chemically modified dextran derivatives. Carbohydr Polym 2017; 161: 181-6.
[http://dx.doi.org/10.1016/j.carbpol.2017.01.006] [PMID: 28189227]
[278]
Amiri S, Ramezani R, Aminlari M. Antibacterial activity of dextran-conjugated lysozyme against Escherichia coli and Staphylococcus aureus in cheese curd. J Food Prot 2008; 71(2): 411-5.
[http://dx.doi.org/10.4315/0362-028X-71.2.411] [PMID: 18326197]
[279]
Hoque J, Haldar J. Direct synthesis of dextranbased antibacterial hydrogels for extended release of biocides and eradication of topical biofilms. ACS Appl Mater Interfaces 2017; 9(19): 15975-85.
[http://dx.doi.org/10.1021/acsami.7b03208] [PMID: 28422484]
[280]
Chen Y, Yu L, Zhang B, et al. Design and synthesis of biocompatible, hemocompatible, and highly selective antimicrobial cationic peptidopolysaccharides via click chemistry. Biomacromolecules 2019; 20(6): 2230-40.
[http://dx.doi.org/10.1021/acs.biomac.9b00179] [PMID: 31070896]
[281]
Lin Z, Wu T, Wang W, et al. Biofunctions of antimicrobial peptideconjugated alginate/hyaluronic acid/collagen wound dressings promote wound healing of a mixedbacteria-infected wound. Int J Biol Macromol 2019; 140: 330-42.
[http://dx.doi.org/10.1016/j.ijbiomac.2019.08.087] [PMID: 31421174]
[282]
Lequeux I, Ducasse E, Jouenne T, Thebault P. Addition of antimicrobial properties to hyaluronic acid by grafting of antimicrobial peptide. Eur Polym J 2014; 51: 182-90.
[http://dx.doi.org/10.1016/j.eurpolymj.2013.11.012]
[283]
Zhang L, Yan P, Li Y, He X, Dai Y, Tan Z. Preparation and antibacterial activity of a cellulose-based Schiff base derived from dialdehyde cellulose and L-lysine. Ind Crops Prod 2020; 145: 112126.
[http://dx.doi.org/10.1016/j.indcrop.2020.112126]
[284]
He X, Yang Y, Song H, Wang S, Zhao H, Wei D. Polyanionic composite membranes based on bacterial cellulose and amino acid for antimicrobial application. ACS Appl Mater Interfaces 2020; 12(13): 14784-96.
[http://dx.doi.org/10.1021/acsami.9b20733] [PMID: 32141282]
[285]
He W, Zhang Z, Zheng Y, et al. Preparation of aminoalkyl‐grafted bacterial cellulose membranes with improved antimicrobial properties for biomedical applications. J Biomed Mater Res A 2020; 108(5): 1086-98.
[http://dx.doi.org/10.1002/jbm.a.36884] [PMID: 31943702]
[286]
Wu Y, Li Q, Zhang X, Li Y, Li B, Liu S. Cellulose-based peptidopolysaccharides as cationic antimicrobial package films. Int J Biol Macromol 2019; 128: 673-80.
[http://dx.doi.org/10.1016/j.ijbiomac.2019.01.172] [PMID: 30708014]
[287]
Mohamed NA, Almehbad NY. Novel terephthaloyl thiourea crosslinked chitosan hydrogels as antibacterial and antifungal agents. Int J Biol Macromol 2013; 57: 111-7.
[http://dx.doi.org/10.1016/j.ijbiomac.2013.03.007] [PMID: 23500435]
[288]
Chen Y, Li J, Li Q, et al. Enhanced watersolubility, antibacterial activity and biocompatibility upon introducing sulfobetaine and quaternary ammonium to chitosan. Carbohydr Polym 2016; 143: 246-53.
[http://dx.doi.org/10.1016/j.carbpol.2016.01.073] [PMID: 27083366]
[289]
Tan H, Peng Z, Li Q, Xu X, Guo S, Tang T. The use of quaternised chitosanloaded PMMA to inhibit biofilm formation and downregulate the virulence-associated gene expression of antibioticresistant staphylococcus. Biomaterials 2012; 33(2): 365-77.
[http://dx.doi.org/10.1016/j.biomaterials.2011.09.084] [PMID: 22014946]
[290]
Sajomsang W, Gonil P, Saesoo S. Synthesis and antibacterial activity of methylated N-(4-N,N-dimethylaminocinnamyl) chitosan chloride. Eur Polym J 2009; 45(8): 2319-28.
[http://dx.doi.org/10.1016/j.eurpolymj.2009.05.009]
[291]
Sahariah P, Snorradóttir BS, Hjálmarsdóttir MÁ, Sigurjónsson ÓE, Másson M. Experimental design for determining quantitative structure activity relationship for antibacterial chitosan derivatives. J Mater Chem B Mater Biol Med 2016; 4(27): 4762-70.
[http://dx.doi.org/10.1039/C6TB00546B] [PMID: 32263250]
[292]
Feng T, Du Y, Li J, Wei Y, Yao P. Antioxidant activity of half N-acetylated water-soluble chitosan in vitro. Eur Food Res Technol 2007; 225(1): 133-8.
[http://dx.doi.org/10.1007/s00217-006-0391-0]
[293]
Kamil J, Jeon YJ, Shahidi F. Antioxidative activity of chitosans of different viscosity in cooked comminuted flesh of herring (Clupea harengus). Food Chem 2002; 79(1): 69-77.
[http://dx.doi.org/10.1016/S0308-8146(02)00180-2]
[294]
Kim KW, Thomas RL. Antioxidative activity of chitosans with varying molecular weights. Food Chem 2007; 101(1): 308-13.
[http://dx.doi.org/10.1016/j.foodchem.2006.01.038]
[295]
Park PJ, Je JY, Kim SK. Free radical scavenging activity of chitooligosaccharides by electron spin resonance spectrometry. J Agric Food Chem 2003; 51(16): 4624-7.
[http://dx.doi.org/10.1021/jf034039+] [PMID: 14705887]
[296]
Hou C, Chen L, Yang L, Ji X. An insight into anti-inflammatory effects of natural polysaccharides. Int J Biol Macromol 2020; 153: 248-55.
[http://dx.doi.org/10.1016/j.ijbiomac.2020.02.315] [PMID: 32114173]
[297]
Zhang W, Zhang X, Zou K, et al. Seabuckthorn berry polysaccharide protects against carbon tetrachloride-induced hepatotoxicity in mice via anti-oxidative and antiinflammatory activities. Food Funct 2017; 8(9): 3130-8.
[http://dx.doi.org/10.1039/C7FO00399D] [PMID: 28766672]
[298]
Wu GJ, Shiu SM, Hsieh MC, Tsai GJ. Anti-inflammatory activity of a sulfated polysaccharide from the brown alga Sargassum cristaefolium. Food Hydrocoll 2016; 53: 16-23.
[http://dx.doi.org/10.1016/j.foodhyd.2015.01.019]
[299]
Rajagopal HM, Manjegowda SB, Serkad C, Dharmesh SM. A modified pectic polysaccharide from turmeric (Curcuma longa) with antiulcer effects via anti–secretary, mucoprotective and IL–10 mediated anti–inflammatory mechanisms. Int J Biol Macromol 2018; 118(Pt A): 864-80.
[http://dx.doi.org/10.1016/j.ijbiomac.2018.06.053] [PMID: 29924982]
[300]
Lee JH, Lee YK, Choi YR, Park J, Jung SK, Chang YH. The characterization, selenylation and anti-inflammatory activity of pectic polysaccharides extracted from Ulmus pumila L. Int J Biol Macromol 2018; 111: 311-8.
[http://dx.doi.org/10.1016/j.ijbiomac.2018.01.005] [PMID: 29309871]
[301]
Yang Y, Chen J, Lei L, et al. Acetylation of polysaccharide from Morchella angusticeps peck enhances its immune activation and anti-inflammatory activities in macrophage RAW264.7 cells. Food Chem Toxicol 2019; 125: 38-45.
[http://dx.doi.org/10.1016/j.fct.2018.12.036] [PMID: 30590138]
[302]
Wang Z. Sulfated modification of polysaccharides: Synthesis, characterization and bioactivities. Trends Food Sci Technol 2018; 74: 147-57.
[303]
Zhang Y, Zhang M, Jiang Y, et al. Lentinan as an immunotherapeutic for treating lung cancer: A review of 12 years clinical studies in China. J Cancer Res Clin Oncol 2018; 144(11): 2177-86.
[http://dx.doi.org/10.1007/s00432-018-2718-1] [PMID: 30043277]
[304]
Bekkering S, Arts RJW, Novakovic B, et al. Metabolic induction of trained immunity through the mevalonate pathway. Cell 2018; 172(1-2): 135-146.e9.
[http://dx.doi.org/10.1016/j.cell.2017.11.025] [PMID: 29328908]
[305]
Jiang LM, Nie SP, Huang DF, Fu ZH, Xie MY. Acetylation modification improves immunoregulatory effect of polysaccharide from seeds of Plantago asiatica L. J Chem 2018; 2018: 1-10.
[http://dx.doi.org/10.1155/2018/3082026]
[306]
Li S, Bao F, Cui Y. Immunoregulatory activities of the selenylated polysaccharides of Lilium davidii var. unicolor Salisb in vitro and in vivo. Int Immunopharmacol 2021; 94: 107445.
[http://dx.doi.org/10.1016/j.intimp.2021.107445] [PMID: 33592405]
[307]
Zhan Q, Chen Y, Guo Y, Wang Q, Wu H, Zhao L. Effects of selenylation modification on the antioxidative and immunoregulatory activities of polysaccharides from the pulp of Rose laevigata Michx fruit. Int J Biol Macromol 2022; 206: 242-54.
[http://dx.doi.org/10.1016/j.ijbiomac.2022.02.149] [PMID: 35240204]
[308]
Yao L, Bai L, Tan Y, et al. The immunoregulatory effect of sulfated Echinacea purpurea polysaccharide on chicken bone marrow-derived dendritic cells. Int J Biol Macromol 2019; 139: 1123-32.
[http://dx.doi.org/10.1016/j.ijbiomac.2019.08.028] [PMID: 31394150]
[309]
Samrot AV, Sean TC, Kudaiyappan T, et al. Production, characterization and application of nanocarriers made of polysaccharides, proteins, biopolyesters and other biopolymers: A review. Int J Biol Macromol 2020; 165(Pt B): 3088-105.
[http://dx.doi.org/10.1016/j.ijbiomac.2020.10.104]
[310]
Li J, Shen B, Nie S, Duan Z, Chen K. A combination of selenium and polysaccharides: Promising therapeutic potential. Carbohydr Polym 2019; 206: 163-73.
[http://dx.doi.org/10.1016/j.carbpol.2018.10.088] [PMID: 30553309]
[311]
Kong M, Chen XG, Xing K, Park HJ. Antimicrobial properties of chitosan and mode of action: A state of the art review. Int J Food Microbiol 2010; 144(1): 51-63.
[http://dx.doi.org/10.1016/j.ijfoodmicro.2010.09.012] [PMID: 20951455]
[312]
Dholakia AB, Patel KH, Trivedi HC. Photoinduced graft copolymerization of acrylonitrile onto sodium salt of partially carboxymethylated Psyllium. Chem Sin 2011; 2: 106-16.
[313]
Sanmartín C, Plano D, Sharma AK, Palop JA. Selenium compounds, apoptosis and other types of cell death: An overview for cancer therapy. Int J Mol Sci 2012; 13(8): 9649-72.
[http://dx.doi.org/10.3390/ijms13089649] [PMID: 22949823]
[314]
Surhio MM, Wang Y, Xu P, Shah F, Li J, Ye M. Antihyperlipidemic and hepatoprotective properties of selenium modified polysaccharide from Lachnum sp. Int J Biol Macromol 2017; 99: 88-95.
[http://dx.doi.org/10.1016/j.ijbiomac.2017.01.148] [PMID: 28212936]
[315]
Liu Y, Zeng S, Liu Y, et al. Synthesis and antidiabetic activity of selenium nanoparticles in the presence of polysaccharides from Catathelasma ventricosum. Int J Biol Macromol 2018; 114: 632-9.
[http://dx.doi.org/10.1016/j.ijbiomac.2018.03.161] [PMID: 29601883]
[316]
Du B, Zeng H, Yang Y, Bian Z, Xu B. Anti-inflammatory activity of polysaccharide from Schizophyllum commune as affected by ultrasonication. Int J Biol Macromol 2016; 91: 100-5.
[http://dx.doi.org/10.1016/j.ijbiomac.2016.05.052] [PMID: 27189700]
[317]
Claus-Desbonnet H, Nikly E, Nalbantova V, et al. Polysaccharides and their derivatives as potential antiviral molecules. Viruses 2022; 14(2): 426.
[http://dx.doi.org/10.3390/v14020426] [PMID: 35216019]
[318]
Aravamudhan A, Ramos DM, Nada AA, Kumbar SG. Natural polymers: Polysaccharides and their derivatives for biomedical applications. In: Sangamesh GK, Cato TL, Meng D, Eds. Natural and synthetic biomedical polymers. Elsevier Science 2014; pp. 67-89.