Chemical Modifications of Pyridoxine for Biological Applications: An Overview

Page: [98 - 113] Pages: 16

  • * (Excluding Mailing and Handling)

Abstract

Pyridoxine and its derivatives, pyridoxamine, and pyridoxal have been recognized for more than 70 years and are known for regulating cellular biology and metabolism. During the past few decades, the anti-oxidant and anti-inflammatory properties of pyridoxine and its vitamers were explored. However, an interesting turnabout was observed in pyridoxine chemical modification in the last two decades. The various important pathophysiological aspects of pyridoxine and its derivatives on several cellular systems have been discovered by researchers. Recent findings have shown that many diseases, like cancer, diabetes, hypertension, tuberculosis, epilepsy, and neurodegenerative diseases are linked to the alteration of pyridoxine. Herein, our main focus is to review the importance of pyridoxine and its derivatives obtained by various chemical modifications, in various disease areas and to recognize important directions for future research.

Graphical Abstract

[1]
György, P.; Eckardt, R.E. Further investigations on vitamin B6 and related factors of the vitamin B2 complex in rats. Parts I and II. Biochem. J., 1940, 34(8-9), 1143-1154.
[http://dx.doi.org/10.1042/bj0341143] [PMID: 16747297]
[2]
György, P. Vitamin B2 and the Pellagra-like dermatitis in rats. Nature, 1934, 133(3361), 498-499.
[http://dx.doi.org/10.1038/133498a0]
[3]
Keresztesy, J.C.; Stevens, J.R. Vitamin B6. J. Am. Chem. Soc., 1938, 60(5), 1267-1268.
[http://dx.doi.org/10.1021/ja01272a507]
[4]
Harris, S.A.; Folkers, K. Synthesis of vitamin B 6. J. Am. Chem. Soc., 1939, 61(5), 1245-1247.
[http://dx.doi.org/10.1021/ja01874a069]
[5]
Snell, E.E. The vitamin activities of pyridoxal and pyridoxamine. J. Biol. Chem., 1944, 315, 313-315.
[6]
Shtyrlin, Y.G.; Petukhov, A.S.; Strelnik, A.D.; Shtyrlin, N.V.; Iksanova, A.G.; Pugachev, M.V.; Pavelyev, R.S.; Dzyurkevich, M.S.; Garipov, M.R.; Balakin, K.V. Chemistry of pyridoxine in drug design. Russ. Chem. Bull., 2019, 68(5), 911-945.
[http://dx.doi.org/10.1007/s11172-019-2504-5]
[7]
Rinehart, J.F.; Greenberg, L.D. Arteriosclerotic lesions in pyridoxine-deficient monkeys. Am. J. Pathol., 1949, 25(3), 481-491.
[PMID: 18127137]
[8]
Hunt, A.D., Jr; Stokes, J., Jr; McCrory, W.W.; Stroud, H.H. Pyridoxine dependency: Report of a case of intractable convulsions in an infant controlled by pyridoxine. Pediatrics, 1954, 13(2), 140-145.
[http://dx.doi.org/10.1542/peds.13.2.140] [PMID: 13133562]
[9]
Coursin, D.B. Vitamin B6 deficiency in infants; a follow-up study. AMA Am. J. Dis. Child., 1955, 90(3), 344-348.
[PMID: 13248235]
[10]
McCormick, D.B. Pyridoxine, Encycl, 3rd ed; Toxicol, 2014, pp. 1165-1166.
[11]
Parra, M.; Stahl, S.; Hellmann, H. Vitamin B6 and its role in cell metabolism and physiology. Cells, 2018, 7(7), 84.
[http://dx.doi.org/10.3390/cells7070084] [PMID: 30037155]
[12]
Cellini, B.; Montioli, R.; Oppici, E.; Astegno, A.; Borri Voltattorni, C. The chaperone role of the pyridoxal 5′-phosphate and its implications for rare diseases involving B6-dependent enzymes. Clin. Biochem., 2014, 47(3), 158-165.
[http://dx.doi.org/10.1016/j.clinbiochem.2013.11.021] [PMID: 24355692]
[13]
Cellini, B.; Bertoldi, M.; Montioli, R.; Laurents, D.V.; Paiardini, A.; Voltattorni, C.B. Dimerization and folding processes of Treponema denticola cystalysin: The role of pyridoxal 5′-phosphate. Biochemistry, 2006, 45(47), 14140-14154.
[http://dx.doi.org/10.1021/bi061496l] [PMID: 17115709]
[14]
Deu, E.; Kirsch, J.F. Cofactor-directed reversible denaturation pathways: The cofactor-stabilized Escherichia coli aspartate aminotransferase homodimer unfolds through a pathway that differs from that of the apoenzyme. Biochemistry, 2007, 46(19), 5819-5829.
[http://dx.doi.org/10.1021/bi602632d] [PMID: 17441730]
[15]
Bhatt, A.N.; Bhakuni, V. Characterization of pyridoxal 5′- phosphate-binding domain and folding intermediate of Bacillus subtilis serine hydroxymethyltransferase: An autonomous folding domain. J. Biochem., 2008, 144(3), 295-303.
[http://dx.doi.org/10.1093/jb/mvn067] [PMID: 18483062]
[16]
Mooney, S.; Hellmann, H. Vitamin B6: Killing two birds with one stone? Phytochemistry, 2010, 71(5-6), 495-501.
[http://dx.doi.org/10.1016/j.phytochem.2009.12.015] [PMID: 20089286]
[17]
Raschke, M.; Boycheva, S.; Crèvecoeur, M.; Nunes-Nesi, A.; Witt, S.; Fernie, A.R.; Amrhein, N.; Fitzpatrick, T.B. Enhanced levels of vitamin B6 increase aerial organ size and positively affect stress tolerance in Arabidopsis. Plant J., 2011, 66(3), 414-432.
[http://dx.doi.org/10.1111/j.1365-313X.2011.04499.x] [PMID: 21241390]
[18]
Kriechbaumer, V.; Botchway, S.W.; Hawes, C. Localization and interactions between Arabidopsis auxin biosynthetic enzymes in the TAA/YUC-dependent pathway. J. Exp. Bot., 2016, 67(14), 4195-4207.
[http://dx.doi.org/10.1093/jxb/erw195] [PMID: 27208541]
[19]
Fujino, A.; Ose, T.; Yao, M.; Tokiwano, T.; Honma, M.; Watanabe, N.; Tanaka, I. Structural and enzymatic properties of 1-aminocyclopropane-1-carboxylate deaminase homologue from Pyrococcus horikoshii. J. Mol. Biol., 2004, 341(4), 999-1013.
[http://dx.doi.org/10.1016/j.jmb.2004.06.062] [PMID: 15328614]
[20]
Boycheva, S.; Dominguez, A.; Rolcik, J.; Boller, T.; Fitzpatrick, T.B. Consequences of a deficit in vitamin B6 biosynthesis de novo for hormone homeostasis and root development in Arabidopsis. Plant Physiol., 2014, 167(1), 102-117.
[http://dx.doi.org/10.1104/pp.114.247767] [PMID: 25475669]
[21]
Immenschuh, S.; Vijayan, V.; Janciauskiene, S.; Gueler, F. Heme as a target for therapeutic interventions. Front. Pharmacol., 2017, 8, 146.
[http://dx.doi.org/10.3389/fphar.2017.00146] [PMID: 28420988]
[22]
Mahmood, L. The metabolic processes of folic acid and Vitamin B12 deficiency. J. Health Res. Rev., 2014, 1(1), 5.
[http://dx.doi.org/10.4103/2394-2010.143318]
[23]
Allakhverdiev, S.I.; Kreslavski, V.D.; Zharmukhamedov, S.K.; Voloshin, R.A.; Korol’kova, D.V.; Tomo, T.; Shen, J.R. Chlorophylls d and f and their role in primary photosynthetic processes of cyanobacteria. Biochemistry (Mosc.), 2016, 81(3), 201-212.
[http://dx.doi.org/10.1134/S0006297916030020] [PMID: 27262189]
[24]
Haust, H.L.; Poon, H.C.; Carson, R.; VanDeWetering, C.; Peter, F. Protoporphyrinaemia and decreased activities of 5-aminolevulinic acid dehydrase and uroporphyrinogen I synthetase in erythrocytes of a vitamin B6-deficient epileptic boy given valproic acid and carbamazepine. Clin. Biochem., 1989, 22(3), 201-211.
[http://dx.doi.org/10.1016/S0009-9120(89)80078-5] [PMID: 2500271]
[25]
Adeva-Andany, M.M.; González-Lucán, M.; Donapetry-García, C.; Fernández-Fernández, C.; Ameneiros-Rodríguez, E. Glycogen metabolism in humans. BBA Clin., 2016, 5, 85-100.
[http://dx.doi.org/10.1016/j.bbacli.2016.02.001] [PMID: 27051594]
[26]
Bahaji, A.; Li, J.; Sánchez-López, Á.M.; Baroja-Fernández, E.; Muñoz, F.J.; Ovecka, M.; Almagro, G.; Montero, M.; Ezquer, I.; Etxeberria, E.; Pozueta-Romero, J. Starch biosynthesis, its regulation and biotechnological approaches to improve crop yields. Biotechnol. Adv., 2014, 32(1), 87-106.
[http://dx.doi.org/10.1016/j.biotechadv.2013.06.006] [PMID: 23827783]
[27]
Kossmann, J.; Lloyd, J. Understanding and influencing starch biochemistry. Crit. Rev. Biochem. Mol. Biol., 2000, 35(3), 141-196.
[PMID: 10907795]
[28]
Davison, K.M.; Kaplan, B.J. Nutrient intakes are correlated with overall psychiatric functioning in adults with mood disorders. Can. J. Psychiatry, 2012, 57(2), 85-92.
[http://dx.doi.org/10.1177/070674371205700205] [PMID: 22340148]
[29]
Parletta, N.; Milte, C.M.; Meyer, B.J. Nutritional modulation of cognitive function and mental health. J. Nutr. Biochem., 2013, 24(5), 725-743.
[http://dx.doi.org/10.1016/j.jnutbio.2013.01.002] [PMID: 23517914]
[30]
Rechenberg, K. Nutritional interventions in clinical depression. Clin. Psychol. Sci., 2016, 4(1), 144-162.
[http://dx.doi.org/10.1177/2167702614566815]
[31]
Goldstein, D.S. Adrenal responses to stress. Cell. Mol. Neurobiol., 2010, 30(8), 1433-1440.
[http://dx.doi.org/10.1007/s10571-010-9606-9]
[32]
Purves-Tyson, T.D.; Owens, S.J.; Rothmond, D.A.; Halliday, G.M.; Double, K.L.; Stevens, J.; McCrossin, T.; Shannon Weickert, C. Putative presynaptic dopamine dysregulation in schizophrenia is supported by molecular evidence from post-mortem human midbrain. Transl. Psychiatry, 2017, 7(1), e1003.
[http://dx.doi.org/10.1038/tp.2016.257] [PMID: 28094812]
[33]
Weir, M.R.; Keniston, R.C.; Enriquez, J.I., Sr; McNamee, G.A. Depression of vitamin B6 levels due to dopamine. Vet. Hum. Toxicol., 1991, 33(2), 118-121.
[PMID: 2035239]
[34]
Rawson, K.S.; Dixon, D.; Nowotny, P.; Ricci, W.M.; Binder, E.F.; Rodebaugh, T.L.; Wendleton, L.; Doré, P.; Lenze, E.J. Association of functional polymorphisms from brain-derived neurotrophic factor and serotonin-related genes with depressive symptoms after a medical stressor in older adults. PLoS One, 2015, 10(3), e0120685.
[http://dx.doi.org/10.1371/journal.pone.0120685] [PMID: 25781924]
[35]
Bundeff, A.W.; Woodis, C.B. Selective serotonin reuptake inhibitors for the treatment of irritable bowel syndrome. Ann. Pharmacother., 2014, 48(6), 777-784.
[http://dx.doi.org/10.1177/1060028014528151] [PMID: 24651166]
[36]
Fox, E.; Ridgewell, A.; Ashwin, C. Looking on the bright side: Biased attention and the human serotonin transporter gene. Proc. R. Soc. B Biol. Sci., 2009, 276, 1747-1751.
[37]
Hughes, C.; Ward, M.; Tracey, F.; Hoey, L.; Molloy, A.; Pentieva, K.; McNulty, H. B-vitamin intake and biomarker status in relation to cognitive decline in healthy older adults in a 4-year follow-up study. Nutrients, 2017, 9(1), 53.
[http://dx.doi.org/10.3390/nu9010053] [PMID: 28075382]
[38]
Pan, W.H.; Chang, Y.P.; Yeh, W.T.; Guei, Y.S.; Lin, B.F.; Wei, I.L.; Yang, F.L.; Liaw, Y.P.; Chen, K.J.; Chen, W.J. Co-occurrence of anemia, marginal vitamin B6, and folate status and depressive symptoms in older adults. J. Geriatr. Psychiatry Neurol., 2012, 25(3), 170-178.
[http://dx.doi.org/10.1177/0891988712458365] [PMID: 23124011]
[39]
Abali, E.E.; Skacel, N.E.; Celikkaya, H.; Hsieh, Y.C. Regulation of human dihydrofolate reductase activity and expression. Vitam. Horm., 2008, 79, 267-292.
[40]
Cortese, C.; Motti, C. MTHFR gene polymorphism, homocysteine and cardiovascular disease. Public Health Nutr., 2001, 4(2b), 493-497.
[http://dx.doi.org/10.1079/PHN2001159] [PMID: 11683544]
[41]
Kamen, B. Folate and antifolate pharmacology. Semin. Oncol., 1997, 24(5 Suppl 18), S18-30-S18-39.
[42]
Brown, R.R.; Rose, D.P.; Leklem, J.E.; Linkswiler, H.M. Effects of oral contraceptives on tryptophan metabolism and vitamin B6 requirements in women. Acta Vitaminol. Enzymol., 1975, 29(1-6), 151-157.
[43]
William, F.S. Fundamental role of methylenetetrahydrofolate reductase 677 C → T genotype and flavin compounds in biochemical phenotypes for schizophrenia and schizoaffective psychosis. Front. Psychiatry, 2016, 7, 172.
[44]
Cavallaro, R.; Nicolia, V.; Fiorenza, M.; Scarpa, S.; Fuso, A. S-adenosylmethionine and superoxide dismutase 1 synergistically counteract alzheimer’s disease features progression in TgCRND8 mice. Antioxidants, 2017, 6(4), 76.
[http://dx.doi.org/10.3390/antiox6040076] [PMID: 28973985]
[45]
Bates, C.J.; Mansoor, M.A.; Pentieva, K.D.; Hamer, M.; Mishra, G.D. Biochemical risk indices, including plasma homocysteine, that prospectively predict mortality in older British people: The National Diet and Nutrition Survey of People Aged 65 Years and Over. Br. J. Nutr., 2010, 104(6), 893-899.
[http://dx.doi.org/10.1017/S0007114510001236] [PMID: 20398433]
[46]
Chiang, P.K.; Gordon, R.K.; Tal, J.; Zeng, G.C.; Doctor, B.P.; Pardhasaradhi, K.; McCann, P.P. S-Adenosylmethionine methylation. FASEB J., 1996, 10(4), 471-480.
[47]
Brocardo, P.S.; Budni, J.; Kaster, M.P.; Santos, A.R.S.; Rodrigues, A.L.S. Folic acid administration produces an antidepressant-like effect in mice: Evidence for the involvement of the serotonergic and noradrenergic systems. Neuropharmacology, 2008, 54(2), 464-473.
[http://dx.doi.org/10.1016/j.neuropharm.2007.10.016] [PMID: 18078962]
[48]
Di Salvo, M.L.; Safo, M.K.; Contestabile, R. Biomedical aspects of pyridoxal 5′-phosphate availability. Front. Biosci., 2012, 4(3), 897-913.
[49]
Korytnyk, W. A Seven-Membered Cyclic Ketal of Pyridoxol. J. Org. Chem., 1962, 27(10), 3724-3726.
[http://dx.doi.org/10.1021/jo01057a532]
[50]
Korytnyk, W.; Srivastava, S.C.; Angelino, N.; Potti, P.G.G.; Paul, B. Chemistry and biology of vitamin B6. 33. General method for modifying the 2-methyl group of pyridoxol. Synthesis and biological activity of 2-vinyl- and 2-ethynylpyridoxols and related compounds. J. Med. Chem., 1973, 16(10), 1096-1101.
[http://dx.doi.org/10.1021/jm00268a007] [PMID: 4749469]
[51]
Jacobson, K.A.; Kim, Y.C.; Wildman, S.S.; Mohanram, A.; Harden, T.K.; Boyer, J.L.; King, B.F.; Burnstock, G. A pyridoxine cyclic phosphate and its 6-azoaryl derivative selectively potentiate and antagonize activation of P2X1 receptors. J. Med. Chem., 1998, 41(13), 2201-2206.
[http://dx.doi.org/10.1021/jm980183o] [PMID: 9632352]
[52]
Pal, T.; Patil, P.; Sharma, A. Synthesis, molecular docking and spectroscopic studies of pyridoxine carbamates as metal chelator. J. Mol. Struct., 2021, 1223, 128837.
[http://dx.doi.org/10.1016/j.molstruc.2020.128837]
[53]
Regge, D.; Macera, S.; Cirillo, S.; Galatola, G. Mangafodipir trisodium: Review of its use as an injectable contrast medium for magnetic resonance imaging. Reports Med. Imag., 2009, 2, 55-68.
[http://dx.doi.org/10.2147/RMI.S4472]
[54]
Haque, W. Pyridoxine AMD pyridoxal analogues: Cardiovascular therapeutics. Patent no. US6417204B1, 2002.
[55]
Haque, W.; Diakur, J.; Pham, V.; Zhang, W. Substitued pyridoxines as anti-platelet agents. WO2006045203A1, 2006.
[56]
Haque, W. Pyridoxine and pyridoxine analogues. JP2004502757A, 2004.
[57]
Saletu, B.; Grünberger, J.; Saletu, M.; Mader, R.; Volavka, J. Treatment of the alcoholic organic brain syndrome with EMD 21657. A derivative of a pyritinolmetabolite: Double-blind clinical, quantitative EEG and psychometric studies. Int. Pharmacopsychiatry, 1978, 13(3), 177-192.
[http://dx.doi.org/10.1159/000468338] [PMID: 355183]
[58]
Tervo, A.J.; Kyrylenko, S.; Niskanen, P.; Salminen, A.; Leppänen, J.; Nyrönen, T.H.; Järvinen, T.; Poso, A. An in silico approach to discovering novel inhibitors of human sirtuin type 2. J. Med. Chem., 2004, 47(25), 6292-6298.
[http://dx.doi.org/10.1021/jm049933m] [PMID: 15566299]
[59]
Li, W.; Yang, X.; Song, Q.; Cao, Z.; Shi, Y.; Deng, Y.; Zhang, L. Pyridoxine-resveratrol hybrids as novel inhibitors of MAO-B with antioxidant and neuroprotective activities for the treatment of Parkinson’s disease. Bioorg. Chem., 2020, 97, 103707.
[http://dx.doi.org/10.1016/j.bioorg.2020.103707] [PMID: 32146176]
[60]
Pugachev, M.V.; Pavelyev, R.S.; Nguyen, T.N.T.; Iksanova, A.G.; Lodochnikova, O.A.; Shtyrlin, Y.G. Synthesis and antitumor activity of pyridoxine monoalkenyl derivatives. Russ. Chem. Bull., 2016, 65(2), 532-536.
[http://dx.doi.org/10.1007/s11172-016-1333-z]
[61]
Pugachev, M.V.; Pavelyev, R.S.; Nguyen, T.N.T.; Gabbasova, R.R.; Bulatov, T.M.; Iksanova, A.G.; Aljondi, B.; Bondar, O.V.; Grishaev, D.Y.; Yamaleeva, Z.R.; Kataeva, O.N.; Nikishova, T.V.; Balakin, K.V.; Shtyrlin, Y.G. Synthesis, antitumor activity and structure-activity studies of novel pyridoxine-based bioisosteric analogs of estradiol. Bioorg. Med. Chem., 2021, 30, 115957.
[http://dx.doi.org/10.1016/j.bmc.2020.115957] [PMID: 33373820]
[62]
Yang, X.; Qiang, X.; Li, Y.; Luo, L.; Xu, R.; Zheng, Y.; Cao, Z.; Tan, Z.; Deng, Y. Pyridoxine-resveratrol hybrids Mannich base derivatives as novel dual inhibitors of AChE and MAO-B with antioxidant and metal-chelating properties for the treatment of Alzheimer’s disease. Bioorg. Chem., 2017, 71, 305-314.
[http://dx.doi.org/10.1016/j.bioorg.2017.02.016] [PMID: 28267984]
[63]
Mao, X.; Li, W.; Zhu, S.; Zou, J.; Tian, H.; Duan, Y.; Wang, Y.; Fei, J.; Wang, X. Bifunctional pyridoxal derivatives as efficient bioorthogonal reagents for biomacromolecule modifications. Chem. Commun. (Camb.), 2020, 56(55), 7601-7604.
[http://dx.doi.org/10.1039/D0CC02722G] [PMID: 32514510]
[64]
Mehta, V.D.; Kulkarni, P.V.; Mason, R.P.; Constantinescu, A.; Aravind, S.; Goomer, N.; Antich, P.P. 6-Fluoropyridoxol: A novel probe of cellular pH using 19F NMR spectroscopy. FEBS Lett., 1994, 349(2), 234-238.
[http://dx.doi.org/10.1016/0014-5793(94)00675-X] [PMID: 8050572]
[65]
Ziganshin, A.U.; Hoyle, C.H.V.; Lambrecht, G.; Mutschler, E.; Bäumert, H.G.; Burnstock, G. Selective antagonism by PPADS at P2X-purinoceptors in rabbit isolated blood vessels. Br. J. Pharmacol., 1994, 111(3), 923-929.
[http://dx.doi.org/10.1111/j.1476-5381.1994.tb14827.x] [PMID: 8019770]
[66]
Connolly, G.P. Differentiation by pyridoxal 5-phosphate, PPADS and IsoPPADS between responses mediated by UTP and those evoked by α,β-methylene-ATP on rat sympathetic ganglia. Br. J. Pharmacol., 1995, 114(3), 727-731.
[http://dx.doi.org/10.1111/j.1476-5381.1995.tb17199.x] [PMID: 7735699]
[67]
Culbertson, S.M.; Enright, G.D.; Ingold, K.U. Synthesis of a novel radical trapping and carbonyl group trapping anti-AGE agent: A pyridoxamine analogue for inhibiting advanced glycation (AGE) and lipoxidation (ALE) end products. Org. Lett., 2003, 5(15), 2659-2662.
[http://dx.doi.org/10.1021/ol0348147] [PMID: 12868883]
[68]
Mason, R.P.; Yu, Jian-Xin; Cui, Weina; Bourke, Vincent A 6-trifluoromethyl pyridoxine: Novel 19F-NMR pH Indicator for In vivo detection. J. Med. Chem., 2012, 55, 6814-6821.
[http://dx.doi.org/10.1021/jm300520q] [PMID: 22775397]
[69]
Diakur, J.; Haque, W.; Pham, V.; Yao, J.; Zhang, W. Novel heteroaryl phosphonates as cardioprotective agents. US2006241083A1,
[70]
Zehender, M.; Meinertz, T.; Hohnloser, S.; Geibel, A.; Just, H. Efficacy and tolerance of the new class IB antiarrhythmic barucainide: An intravenous dose-finding study. Clin. Pharmacol. Ther., 1991, 49(1), 78-85.
[http://dx.doi.org/10.1038/clpt.1991.13] [PMID: 1988242]
[71]
Dzyurkevich, M.S.; Babkov, D.A.; Shtyrlin, N.V.; Mayka, O.Y.; Iksanova, A.G.; Vassiliev, P.M.; Balakin, K.V.; Spasov, A.A.; Tarasov, V.V.; Barreto, G.; Shtyrlin, Y.G.; Aliev, G. Author Correction: Pyridoxine dipharmacophore derivatives as potent glucokinase activators for the treatment of type 2 diabetes mellitus. Sci. Rep., 2018, 8(1), 6489.
[http://dx.doi.org/10.1038/s41598-018-24838-6] [PMID: 29670171]
[72]
Shtyrlin, Y.G.; Dzyurkevich, M.S.; Shtyrlin, N.V.; Gerasimova, E.V.; Iksanova, A.G.; Sitdikova, G.F.; Yakovlev, A.V. Pyridoxine derivative for treatment of epilepsy. US10844018B2, 2020.
[73]
Garipov, M.R.; Pavelyev, R.S.; Lisovskaya, S.A.; Nikitina, E.V.; Kayumov, A.R.; Sabirova, A.E.; Bondar, O.V.; Malanyeva, A.G.; Aimaletdinov, A.M.; Iksanova, A.G.; Balakin, K.V.; Shtyrlin, Y.G. Fluconazole-pyridoxine bis-triazolium compounds with potent activity against pathogenic bacteria and fungi including their biofilmembedded forms. J. Chem., 2017, 2017, 4761650.
[http://dx.doi.org/10.1155/2017/4761650]
[74]
Garipov, M.R.; Sabirova, A.E.; Pavelyev, R.S.; Shtyrlin, N.V.; Lisovskaya, S.A.; Bondar, O.V.; Laikov, A.V.; Romanova, J.G.; Bogachev, M.I.; Kayumov, A.R.; Shtyrlin, Y.G. Targeting pathogenic fungi, bacteria and fungal-bacterial biofilms by newly synthesized quaternary ammonium derivative of pyridoxine and terbinafine with dual action profile. Bioorg. Chem., 2020, 104, 104306.
[http://dx.doi.org/10.1016/j.bioorg.2020.104306] [PMID: 33011535]
[75]
Dzyurkevich, M.S.; Babkov, D.A.; Shtyrlin, N.V.; Mayka, O.Y.; Iksanova, A.G.; Vassiliev, P.M.; Balakin, K.V.; Spasov, A.A.; Tarasov, V.V.; Barreto, G.; Shtyrlin, Y.G.; Aliev, G. Pyridoxine dipharmacophore derivatives as potent glucokinase activators for the treatment of type 2 diabetes mellitus. Sci. Rep., 2017, 7(1), 16072.
[http://dx.doi.org/10.1038/s41598-017-16405-2] [PMID: 29167582]
[76]
Kassab, S.; Begley, P.; Church, S.J.; Rotariu, S.M.; Chevalier-Riffard, C.; Dowsey, A.W.; Phillips, A.M.; Zeef, L.A.H.; Grayson, B.; Neill, J.C.; Cooper, G.J.S.; Unwin, R.D.; Gardiner, N.J. Cognitive dysfunction in diabetic rats is prevented by pyridoxamine treatment. A multidisciplinary investigation. Mol. Metab., 2019, 28, 107-119.
[http://dx.doi.org/10.1016/j.molmet.2019.08.003] [PMID: 31451429]
[77]
Kim, D.G.; Kang, Y.; Lee, H.; Lee, E.K.; Nam, T.; Kim, J.A.; Jeong, B.S. 6-Amino-2,4,5-trimethylpyridin-3-ols: A new general synthetic route and antiangiogenic activity. Eur. J. Med. Chem., 2014, 78, 126-139.
[http://dx.doi.org/10.1016/j.ejmech.2014.03.045] [PMID: 24681390]
[78]
Korytnyk, W.; Angelino, N. Vitamin B6 antagonists obtained by replacing or modifying the 2-methyl group. J. Med. Chem., 1977, 20(6), 745-749.
[http://dx.doi.org/10.1021/jm00216a002] [PMID: 559765]
[79]
Korytnyk, W. Synthesis and biological activity of vitamin B6 analogs. Methods Enzymol., 1979, 62, 454-483.
[http://dx.doi.org/10.1016/0076-6879(79)62254-1] [PMID: 440125]
[80]
Stranix, B.R.; Wu, J.J.; Milot, G.; Beaulieu, F.; Bouchard, J.E.; Gouveia, K.; Forte, A.; Garde, S.; Wang, Z.; Mouscadet, J.F.; Delelis, O.; Xiao, Y. Pyridoxine hydroxamic acids as novel HIV-integrase inhibitors. Bioorg. Med. Chem. Lett., 2016, 26(4), 1233-1236.
[http://dx.doi.org/10.1016/j.bmcl.2016.01.028] [PMID: 26826732]
[81]
Shtyrlin, Y.G.; Pavel'Ev, R.S.; Iksanova, A.G.; Shtyrlin, N.V.; Pugachev, M.V.; Balakin, K.V.; Ajmaletdinov, A.M.; Ganiev, I.M. Malan'Eva, A.G. Naproxen-based non-steroidal anti-inflammatory drug with low gastric toxicity. US10507202B2, 2019.
[82]
Mibielli, M.A.; Geller, M.; Cohen, J.C.; Goldberg, S.G.; Cohen, M.T.; Nunes, C.P.; Oliveira, L.B.; Da Fonseca, A.S. Diclofenac plus B vitamins versus diclofenac monotherapy in lumbago: The DOLOR study. Curr. Med. Res. Opin., 2009, 25(11), 2589-99.
[83]
Gašo-Sokač, D.; Bušić, V.; Cetina, M.; Jukić, M. An efficient synthesis of pyridoxal oxime derivatives under microwave irradiation. Molecules, 2014, 19(6), 7610-7620.
[http://dx.doi.org/10.3390/molecules19067610] [PMID: 24914903]
[84]
Nizamov, I.S.; Belov, T.G.; Nizamov, I.D.; Nikitin, Y.N.; Akhmedova, G.R.; Shilnikova, O.V.; Timushev, I.D.; Salikhov, R.Z.; Shulaeva, M.P.; Pozdeev, O.K.; Batyeva, E.S.; Cherkasov, R.A. Pyridoxonium salts of chiral and cyclic dithiophosphoric and bisdithiophosphonic acids and their antimicrobial activities. Phosphorus Sulfur Silicon Relat. Elem., 2021, 196(4), 431-438.
[http://dx.doi.org/10.1080/10426507.2020.1854255]
[85]
Sapozhnikov, S.V.; Shtyrlin, N.V.; Kayumov, A.R.; Zamaldinova, A.E.; Iksanova, A.G.; Nikitina, Е.V.; Krylova, Е.S.; Grishaev, D.Y.; Balakin, K.V.; Shtyrlin, Y.G. New quaternary ammonium pyridoxine derivatives: Synthesis and antibacterial activity. Med. Chem. Res., 2017, 26(12), 3188-3202.
[http://dx.doi.org/10.1007/s00044-017-2012-9]
[86]
Grigor’ev, A.A.; Shtyrlin, N.V.; Gabbasova, R.R.; Zeldi, M.I.; Grishaev, D.Yu.; Gnezdilov, O.I.; Balakin, K.V.; Nasakin, O.E.; Shtyrlin, Y.G. Synthesis, antibacterial and antitumor activity of methylpyridinium salts of pyridoxine functionalized 2-amino-6-sulfanylpyridine-3,5-dicarbonitriles. Synth. Commun., 2018, 48, 2288-2304.
[http://dx.doi.org/10.1080/00397911.2018.1501487]
[87]
Tischer, M.; Pradel, G.; Ohlsen, K.; Holzgrabe, U. Quaternary ammonium salts and their antimicrobial potential: Targets or nonspecific interactions? ChemMedChem, 2012, 7(1), 22-31.
[http://dx.doi.org/10.1002/cmdc.201100404] [PMID: 22113995]
[88]
Siu, P.M.; Vick, J.A. Evidence for a central muscarinic action by 1-(2-methyl-3-hydroxy-5-hydroxymethyl-4-pyridyl)-6,7-dihydroxy-1,2, 3,4-tetrahydroisoquinoline in regulating blood pressure in the anesthetized dog. Arch. Int. Pharmacodyn. Ther., 1987, 285(1), 43-49.
[PMID: 3579425]
[89]
Haque, W. Pyridoxal Analogues for vitamin B-6 disorders. WO0053606A1, 2000.
[90]
Haque, W. Cardioprotective phosphonates and malonates. WO0164692A1, 2001.
[91]
Essanu, A. Furo-(3,4-C)-pyridine derivatives and therapeutic composition containing the same. US4735950A, 1988.
[92]
Ibrahim, M.A. Evaluating the Effect of PIH on Rats-Liver Overloaded with Iron, 2016, 11, 73-82.
[93]
Richardson, D.; Kalinowski, D.S.; Palanimuthu, D. Palanimuthu, adamantane compounds. WO2017214680A1, 2017.
[94]
Sarel, S. Pyridoxal hydrazone derivatives their production and use and pharmaceutical compositions containing the same. EP0315434A2, 1989.
[95]
Palanimuthu, D.; Poon, R.; Sahni, S.; Anjum, R.; Hibbs, D.; Lin, H.Y.; Bernhardt, P.V.; Kalinowski, D.S.; Richardson, D.R. A novel class of thiosemicarbazones show multi-functional activity for the treatment of Alzheimer’s disease. Eur. J. Med. Chem., 2017, 139, 612-632.
[http://dx.doi.org/10.1016/j.ejmech.2017.08.021] [PMID: 28841514]
[96]
Diana, G.D.; Bailey, T.R.; Young, D.C.; Chunduru, S.K. Compositions and methods for treating or preventing viral infections and associated diseases. WO03090674A2, 2003.
[97]
Stanek, J.; Caravatti, G.; Frei, J.; Capraro, H.G. Substituted oxadiaminobutane. EP0369944A1, 1989.
[98]
Oliveira, E.; Santos, C.; Poeta, P.; Capelo, J.L.; Lodeiro, C. Turnon selective vitamin B6 derivative fluorescent probe for histidine detection in biological samples. Analyst (Lond.), 2013, 138(13), 3642-3645.
[http://dx.doi.org/10.1039/c3an00324h] [PMID: 23689251]
[99]
Shtyrlin, N.V.; Pugachev, M.V.; Sapozhnikov, S.V.; Garipov, M.R.; Vafina, R.M.; Grishaev, D.Y.; Pavelyev, R.S.; Kazakova, R.R.; Agafonova, M.N.; Iksanova, A.G.; Lisovskaya, S.A.; Zeldi, M.I.; Krylova, E.S.; Nikitina, E.V.; Sabirova, A.E.; Kayumov, A.R.; Shtyrlin, Y.G. Novel Bis-ammonium salts of pyridoxine: synthesis and antimicrobial properties. Molecules, 2020, 25(18), 4341.
[http://dx.doi.org/10.3390/molecules25184341] [PMID: 32971844]
[100]
Bothra, S.; Upadhyay, Y.; Kumar, R.; Ashok Kumar, S.K.; Sahoo, S.K. Chemically modified cellulose strips with pyridoxal conjugated red fluorescent gold nanoclusters for nanomolar detection of mercuric ions. Biosens. Bioelectron., 2017, 90, 329-335.
[http://dx.doi.org/10.1016/j.bios.2016.11.066] [PMID: 27940235]
[101]
Kesel, A.J. Synthesis of retinoid vitamin A-vitamin B6 conjugate analogues for antiviral chemotherapy. Biochem. Biophys. Res. Commun., 2003, 300(3), 793-799.
[http://dx.doi.org/10.1016/S0006-291X(02)02918-2] [PMID: 12507521]