Enhancing Psychological Interventions for Post-Traumatic Stress Disorder (PTSD) Treatment with Memory Influencing Drugs

Page: [687 - 707] Pages: 21

  • * (Excluding Mailing and Handling)

Abstract

Post-traumatic stress disorder (PTSD) is a chronic psychiatric disease resulting from the experience or witnessing of traumatic events. Persistent PTSD symptoms impair patients’ daily quality of life, jeopardizing sleep, mood, sociability, and arousal. Recommended psychological or pharmacological interventions are effective only in a small portion of patients and often lead to relapse. Thus, there is a critical need to address a lack of advancement in the treatment of PTSD. The combination of psychological interventions, aimed at facilitating the extinction of the traumatic memory, and pharmacological medications, represents a promising tool for PTSD treatment. Timely use of psychotherapy in conjunction with pharmacological treatments, rather than monotherapy, could thus determine a synergistic effect by potentiating the effects of psychological interventions. In such a scenario, drugs that modulate cognitive processes involved in the development and/or persistence of post-traumatic symptomatology could be of great help to improve the outcome of psychotherapies and patients' prognosis. The purpose of the present article is to review the current data available from clinical trials on combined pharmacological treatments with psychological interventions in PTSD therapy. An overview of findings from animal studies that prompted clinical research is also discussed.

[1]
Yehuda, R.; Hoge, C.W.; McFarlane, A.C.; Vermetten, E.; Lanius, R.A.; Nievergelt, C.M.; Hobfoll, S.E.; Koenen, K.C.; Neylan, T.C.; Hyman, S.E. Post-traumatic stress disorder. Nat. Rev. Dis. Primers, 2015, 1(1), 15057.
[http://dx.doi.org/10.1038/nrdp.2015.57] [PMID: 27189040]
[2]
Shalev, A.; Liberzon, I.; Marmar, C. Post-traumatic stress disorder. N. Engl. J. Med., 2017, 376(25), 2459-2469.
[http://dx.doi.org/10.1056/NEJMra1612499] [PMID: 28636846]
[3]
Agaibi, C.E.; Wilson, J.P. Trauma, PTSD, and Resilience. Trauma Violence Abuse, 2005, 6(3), 195-216.
[http://dx.doi.org/10.1177/1524838005277438] [PMID: 16237155]
[4]
Sareen, J. Posttraumatic stress disorder in adults: Impact, comorbidity, risk factors, and treatment. Can. J. Psychiatry, 2014, 59(9), 460-467.
[http://dx.doi.org/10.1177/070674371405900902] [PMID: 25565692]
[5]
Atwoli, L.; Stein, D.J.; Koenen, K.C.; McLaughlin, K.A. Epidemiology of posttraumatic stress disorder. Curr. Opin. Psychiatry, 2015, 28(4), 307-311.
[http://dx.doi.org/10.1097/YCO.0000000000000167] [PMID: 26001922]
[6]
Bradley, R.; Greene, J.; Russ, E.; Dutra, L.; Westen, D. A multidimensional meta-analysis of psychotherapy for PTSD. Am. J. Psychiatry, 2005, 162(2), 214-227.
[http://dx.doi.org/10.1176/appi.ajp.162.2.214] [PMID: 15677582]
[7]
Pai, A.; Suris, A.; North, C. Posttraumatic stress disorder in the DSM-5: Controversy, change, and conceptual considerations. Behav. Sci. (Basel), 2017, 7(4), 7.
[http://dx.doi.org/10.3390/bs7010007] [PMID: 28208816]
[8]
Guideline Development Panel for the Treatment of PTSD in Adults, American Psychological Association. Summary of the clinical practice guideline for the treatment of posttraumatic stress disorder (PTSD) in adults. Am. Psychol., 2019, 74(5), 596-607.
[http://dx.doi.org/10.1037/amp0000473] [PMID: 31305099]
[9]
Vahia, V. Diagnostic and statistical manual of mental disorders 5: A quick glance. Indian J. Psychiatry, 2013, 55(3), 220-223.
[http://dx.doi.org/10.4103/0019-5545.117131] [PMID: 24082241]
[10]
Hill, M.N.; Campolongo, P.; Yehuda, R.; Patel, S. Integrating endocannabinoid signaling and cannabinoids into the biology and treatment of posttraumatic stress disorder. Neuropsychopharmacology, 2018, 43(1), 80-102.
[http://dx.doi.org/10.1038/npp.2017.162] [PMID: 28745306]
[11]
Careaga, M.B.L.; Girardi, C.E.N.; Suchecki, D. Understanding posttraumatic stress disorder through fear conditioning, extinction and reconsolidation. Neurosci. Biobehav. Rev., 2016, 71, 48-57.
[http://dx.doi.org/10.1016/j.neubiorev.2016.08.023] [PMID: 27590828]
[12]
Kida, S. Reconsolidation/destabilization, extinction and forgetting of fear memory as therapeutic targets for PTSD. Psychopharmacology (Berl.), 2019, 236(1), 49-57.
[http://dx.doi.org/10.1007/s00213-018-5086-2] [PMID: 30374892]
[13]
Smith, N.B.; Doran, J.M.; Sippel, L.M.; Harpaz-Rotem, I. Fear extinction and memory reconsolidation as critical components in behavioral treatment for posttraumatic stress disorder and potential augmentation of these processes. Neurosci. Lett., 2017, 649, 170-175.
[http://dx.doi.org/10.1016/j.neulet.2017.01.006] [PMID: 28065842]
[14]
Foa, E.B.; Hembree, E.A.; Cahill, S.P.; Rauch, S.A.M.; Riggs, D.S.; Feeny, N.C.; Yadin, E. Randomized trial of prolonged exposure for posttraumatic stress disorder with and without cognitive restructuring: Outcome at academic and community clinics. J. Consult. Clin. Psychol., 2005, 73(5), 953-964.
[http://dx.doi.org/10.1037/0022-006X.73.5.953] [PMID: 16287395]
[15]
McDonagh, A.; Friedman, M.; McHugo, G.; Ford, J.; Sengupta, A.; Mueser, K.; Demment, C.C.; Fournier, D.; Schnurr, P.P.; Descamps, M. Randomized trial of cognitive-behavioral therapy for chronic posttraumatic stress disorder in adult female survivors of childhood sexual abuse. J. Consult. Clin. Psychol., 2005, 73(3), 515-524.
[http://dx.doi.org/10.1037/0022-006X.73.3.515] [PMID: 15982149]
[16]
Schwartze, D.; Barkowski, S.; Strauss, B.; Knaevelsrud, C.; Rosendahl, J. Efficacy of group psychotherapy for posttraumatic stress disorder: Systematic review and meta-analysis of randomized controlled trials. Psychother. Res., 2019, 29(4), 415-431.
[http://dx.doi.org/10.1080/10503307.2017.1405168] [PMID: 29179647]
[17]
Lewis, C.; Roberts, N.P.; Andrew, M.; Starling, E.; Bisson, J.I. Psychological therapies for post-traumatic stress disorder in adults: Systematic review and meta-analysis. Eur. J. Psychotraumatol., 2020, 11(1)1729633
[http://dx.doi.org/10.1080/20008198.2020.1729633] [PMID: 32284821]
[18]
Bentz, D.; Michael, T.; de Quervain, D.J.F.; Wilhelm, F.H. Enhancing exposure therapy for anxiety disorders with glucocorticoids: From basic mechanisms of emotional learning to clinical applications. J. Anxiety Disord., 2010, 24(2), 223-230.
[http://dx.doi.org/10.1016/j.janxdis.2009.10.011] [PMID: 19962269]
[19]
Hofmann, S.G.; Wu, J.Q.; Boettcher, H. D-Cycloserine as an augmentation strategy for cognitive behavioral therapy of anxiety disorders. Biol. Mood Anxiety Disord., 2013, 3(1), 11.
[http://dx.doi.org/10.1186/2045-5380-3-11] [PMID: 23768232]
[20]
Otto, M.W.; Basden, S.L.; Leyro, T.M.; McHugh, R.K.; Hofmann, S.G. Clinical perspectives on the combination of D-cycloserine and cognitive-behavioral therapy for the treatment of anxiety disorders. CNS Spectr, 2007, 12(1), 12:51-6, 9-61.
[http://dx.doi.org/10.1017/s1092852900020526] [PMID: 17192764]
[21]
Otto, M.W.; McHugh, R.K.; Kantak, K.M. Combined pharmacotherapy and cognitive-behavioral therapy for anxiety disorders: Medication effects, glucocorticoids, and attenuated treatment outcomes. Clin. Psychol. Sci. Pract., 2010, 17(2), 91-103.
[http://dx.doi.org/10.1111/j.1468-2850.2010.01198.x] [PMID: 26855480]
[22]
Dębiec, J.; Bush, D.E.A.; LeDoux, J.E. Noradrenergic enhancement of reconsolidation in the amygdala impairs extinction of conditioned fear in rats-a possible mechanism for the persistence of traumatic memories in PTSD. Depress. Anxiety, 2011, 28(3), 186-193.
[http://dx.doi.org/10.1002/da.20803] [PMID: 21394851]
[23]
Morgan, L. MDMA-assisted psychotherapy for people diagnosed with treatment-resistant PTSD: What it is and what it isn’t. Ann. Gen. Psychiatry, 2020, 19(1), 33.
[http://dx.doi.org/10.1186/s12991-020-00283-6] [PMID: 32435270]
[24]
McGaugh, J.L. Memory- A century of consolidation. Science, 2000, 287(5451), 248-251.
[http://dx.doi.org/10.1126/science.287.5451.248] [PMID: 10634773]
[25]
Silva, A.J.; Kogan, J.H.; Frankland, P.W.; Kida, S. CREB and memory. Annu. Rev. Neurosci., 1998, 21(1), 127-148.
[http://dx.doi.org/10.1146/annurev.neuro.21.1.127] [PMID: 9530494]
[26]
Squire, L.R.; Genzel, L.; Wixted, J.T.; Morris, R.G. Memory consolidation. Cold Spring Harb. Perspect. Biol., 2015, 7(8)a021766
[http://dx.doi.org/10.1101/cshperspect.a021766] [PMID: 26238360]
[27]
Abel, T.; Lattal, K.M. Molecular mechanisms of memory acquisition, consolidation and retrieval. Curr. Opin. Neurobiol., 2001, 11(2), 180-187.
[http://dx.doi.org/10.1016/S0959-4388(00)00194-X] [PMID: 11301237]
[28]
Davis, H.P.; Squire, L.R. Protein synthesis and memory: A review. Psychol. Bull., 1984, 96(3), 518-559.
[http://dx.doi.org/10.1037/0033-2909.96.3.518] [PMID: 6096908]
[29]
Kida, S.; Josselyn, S.A.; de Ortiz, S.P.; Kogan, J.H.; Chevere, I.; Masushige, S.; Silva, A.J. CREB required for the stability of new and reactivated fear memories. Nat. Neurosci., 2002, 5(4), 348-355.
[http://dx.doi.org/10.1038/nn819] [PMID: 11889468]
[30]
Kida, S.; Serita, T. Functional roles of CREB as a positive regulator in the formation and enhancement of memory. Brain Res. Bull., 2014, 105, 17-24.
[http://dx.doi.org/10.1016/j.brainresbull.2014.04.011] [PMID: 24811207]
[31]
McGaugh, J.L. Making lasting memories: Remembering the significant. Proc. Natl. Acad. Sci. USA, 2013, 110(Suppl. 2), 10402-10407.
[http://dx.doi.org/10.1073/pnas.1301209110] [PMID: 23754441]
[32]
Roozendaal, B.; McGaugh, J.L. Memory modulation. Behav. Neurosci., 2011, 125(6), 797-824.
[http://dx.doi.org/10.1037/a0026187] [PMID: 22122145]
[33]
Buurstede, J.C.; van Weert, L.; Colucci, P.; Gentenaar, M.; Viho, E.M.G.; Koorneef, L.L. Hippocampal glucocorticoid target genes associated with enhancement of memory consolidation. Eur. J. Neurosci., 2021, 55(9-10), 2666-2683.
[PMID: 33840130]
[34]
Berardis, D.; Marini, S.; Serroni, N.; Iasevoli, F.; Tomasetti, C.; Bartolomeis, A.; Mazza, M.; Tempesta, D.; Valchera, A.; Fornaro, M.; Pompili, M.; Sepede, G.; Vellante, F.; Orsolini, L.; Martinotti, G.; Giannantonio, M. Targeting the noradrenergic system in posttraumatic stress disorder: A systematic review and meta-analysis of prazosin trials. Curr. Drug Targets, 2015, 16(10), 1094-1106.
[http://dx.doi.org/10.2174/1389450116666150506114108] [PMID: 25944011]
[35]
Pervanidou, P.; Chrousos, G.P. Neuroendocrinology of post-traumatic stress disorder. Prog. Brain Res; , 2010, p. 182, 149-160.
[http://dx.doi.org/10.1016/S0079-6123(10)82005-9] [PMID: 20541663]
[36]
Popoli, M.; Yan, Z.; McEwen, B.S.; Sanacora, G. The stressed synapse: The impact of stress and glucocorticoids on glutamate transmission. Nat. Rev. Neurosci., 2012, 13(1), 22-37.
[http://dx.doi.org/10.1038/nrn3138] [PMID: 22127301]
[37]
Anagnostaras, S.G.; Maren, S.; Fanselow, M.S. Temporally graded retrograde amnesia of contextual fear after hippocampal damage in rats: Within-subjects examination. J. Neurosci., 1999, 19(3), 1106-1114.
[http://dx.doi.org/10.1523/JNEUROSCI.19-03-01106.1999] [PMID: 9920672]
[38]
Dudai, Y. The neurobiology of consolidations, or, how stable is the engram? Annu. Rev. Psychol., 2004, 55(1), 51-86.
[http://dx.doi.org/10.1146/annurev.psych.55.090902.142050] [PMID: 14744210]
[39]
Frankland, P.W.; Bontempi, B. The organization of recent and remote memories. Nat. Rev. Neurosci., 2005, 6(2), 119-130.
[http://dx.doi.org/10.1038/nrn1607] [PMID: 15685217]
[40]
Dudai, Y.; Karni, A.; Born, J. The consolidation and transformation of memory. Neuron, 2015, 88(1), 20-32.
[http://dx.doi.org/10.1016/j.neuron.2015.09.004] [PMID: 26447570]
[41]
Misanin, J.R.; Miller, R.R.; Lewis, D.J. Retrograde amnesia produced by electroconvulsive shock after reactivation of a consolidated memory trace. Science, 1968, 160(3827), 554-555.
[http://dx.doi.org/10.1126/science.160.3827.554] [PMID: 5689415]
[42]
Schneider, A.M.; Sherman, W. Amnesia: A function of the temporal relation of footshock to electroconvulsive shock. Science, 1968, 159(3811), 219-221.
[http://dx.doi.org/10.1126/science.159.3811.219] [PMID: 5688702]
[43]
Haubrich, J.; Nader, K. Memory reconsolidation. Curr. Top. Behav. Neurosci., 2016, 37, 151-176.
[http://dx.doi.org/10.1007/7854_2016_463] [PMID: 27885549]
[44]
Nader, K.; Schafe, G.E.; Le Doux, J.E. Fear memories require protein synthesis in the amygdala for reconsolidation after retrieval. Nature, 2000, 406(6797), 722-726.
[http://dx.doi.org/10.1038/35021052] [PMID: 10963596]
[45]
Bellfy, L.; Kwapis, J.L. Molecular mechanisms of reconsolidation-dependent memory updating. Int. J. Mol. Sci., 2020, 21(18), 6580.
[http://dx.doi.org/10.3390/ijms21186580] [PMID: 32916796]
[46]
McKenzie, S.; Eichenbaum, H. Consolidation and reconsolidation: Two lives of memories? Neuron, 2011, 71(2), 224-233.
[http://dx.doi.org/10.1016/j.neuron.2011.06.037] [PMID: 21791282]
[47]
Debiec, J.; LeDoux, J.E.; Nader, K. Cellular and systems reconsolidation in the hippocampus. Neuron, 2002, 36(3), 527-538.
[http://dx.doi.org/10.1016/S0896-6273(02)01001-2] [PMID: 12408854]
[48]
Nader, K. Memory traces unbound. Trends Neurosci., 2003, 26(2), 65-72.
[http://dx.doi.org/10.1016/S0166-2236(02)00042-5] [PMID: 12536129]
[49]
Milekic, M.H.; Alberini, C.M. Temporally graded requirement for protein synthesis following memory reactivation. Neuron, 2002, 36(3), 521-525.
[http://dx.doi.org/10.1016/S0896-6273(02)00976-5] [PMID: 12408853]
[50]
Lewis, D.J. Psychobiology of active and inactive memory. Psychol. Bull., 1979, 86(5), 1054-1083.
[http://dx.doi.org/10.1037/0033-2909.86.5.1054] [PMID: 386401]
[51]
Luyten, L.; Beckers, T. A preregistered, direct replication attempt of the retrieval-extinction effect in cued fear conditioning in rats. Neurobiol. Learn. Mem., 2017, 144, 208-215.
[http://dx.doi.org/10.1016/j.nlm.2017.07.014] [PMID: 28765085]
[52]
Monfils, M.H.; Cowansage, K.K.; Klann, E.; LeDoux, J.E. Extinction-reconsolidation boundaries: Key to persistent attenuation of fear memories. Science, 2009, 324(5929), 951-955.
[http://dx.doi.org/10.1126/science.1167975] [PMID: 19342552]
[53]
Myers, K.M.; Davis, M. Behavioral and neural analysis of extinction. Neuron, 2002, 36(4), 567-584.
[http://dx.doi.org/10.1016/S0896-6273(02)01064-4] [PMID: 12441048]
[54]
Pavlov, I.P. Conditioned reflexes: An investigation of the physiological activity of the cerebral cortex. Ann. Neurosci., 2010, 17(3), 136-141.
[http://dx.doi.org/10.5214/ans.0972-7531.1017309] [PMID: 25205891]
[55]
Myers, K.M.; Ressler, K.J.; Davis, M. Different mechanisms of fear extinction dependent on length of time since fear acquisition. Learn. Mem., 2006, 13(2), 216-223.
[http://dx.doi.org/10.1101/lm.119806] [PMID: 16585797]
[56]
Oyarzún, J.P.; Lopez-Barroso, D.; Fuentemilla, L.; Cucurell, D.; Pedraza, C.; Rodriguez-Fornells, A.; de Diego-Balaguer, R. Updating fearful memories with extinction training during reconsolidation: A human study using auditory aversive stimuli. PLoS One, 2012, 7(6)e38849
[http://dx.doi.org/10.1371/journal.pone.0038849] [PMID: 22768048]
[57]
Gale, G.D.; Anagnostaras, S.G.; Godsil, B.P.; Mitchell, S.; Nozawa, T.; Sage, J.R.; Wiltgen, B.; Fanselow, M.S. Role of the basolateral amygdala in the storage of fear memories across the adult lifetime of rats. J. Neurosci., 2004, 24(15), 3810-3815.
[http://dx.doi.org/10.1523/JNEUROSCI.4100-03.2004] [PMID: 15084662]
[58]
Rescorla, R.A. Spontaneous recovery. Learn. Mem., 2004, 11(5), 501-509.
[http://dx.doi.org/10.1101/lm.77504] [PMID: 15466300]
[59]
Bouton, M.E.; King, D.A. Contextual control of the extinction of conditioned fear: Tests for the associative value of the context. J. Exp. Psychol. Anim. Behav. Process., 1983, 9(3), 248-265.
[http://dx.doi.org/10.1037/0097-7403.9.3.248] [PMID: 6886630]
[60]
Bouton, M.E.; Bolles, R.C. Role of conditioned contextual stimuli in reinstatement of extinguished fear. J. Exp. Psychol. Anim. Behav. Process., 1979, 5(4), 368-378.
[http://dx.doi.org/10.1037/0097-7403.5.4.368] [PMID: 528893]
[61]
Rescorla, R.A.; Heth, C.D. Reinstatement of fear to an extinguished conditioned stimulus. J. Exp. Psychol. Anim. Behav. Process., 1975, 1(1), 88-96.
[http://dx.doi.org/10.1037/0097-7403.1.1.88] [PMID: 1151290]
[62]
Westbrook, R.F.; Iordanova, M.; McNally, G.; Richardson, R.; Harris, J.A. Reinstatement of fear to an extinguished conditioned stimulus: Two roles for context. J. Exp. Psychol. Anim. Behav. Process., 2002, 28(1), 97-110.
[http://dx.doi.org/10.1037/0097-7403.28.1.97] [PMID: 11868238]
[63]
McLean, C.P.; Foa, E.B. Prolonged exposure therapy for post-traumatic stress disorder: A review of evidence and dissemination. Expert Rev. Neurother., 2011, 11(8), 1151-1163.
[http://dx.doi.org/10.1586/ern.11.94] [PMID: 21797656]
[64]
Boeldt, D.; McMahon, E.; McFaul, M.; Greenleaf, W. Using virtual reality exposure therapy to enhance treatment of anxiety disorders: Identifying areas of clinical adoption and potential obstacles. Front. Psychiatry, 2019, 10, 773.
[http://dx.doi.org/10.3389/fpsyt.2019.00773] [PMID: 31708821]
[65]
Powers, M.B.; Halpern, J.M.; Ferenschak, M.P.; Gillihan, S.J.; Foa, E.B. A meta-analytic review of prolonged exposure for posttraumatic stress disorder. Clin. Psychol. Rev., 2010, 30(6), 635-641.
[http://dx.doi.org/10.1016/j.cpr.2010.04.007] [PMID: 20546985]
[66]
Walker, D.L.; Ressler, K.J.; Lu, K.T.; Davis, M. Facilitation of conditioned fear extinction by systemic administration or intra-amygdala infusions of D-cycloserine as assessed with fear-potentiated startle in rats. J. Neurosci., 2002, 22(6), 2343-2351.
[http://dx.doi.org/10.1523/JNEUROSCI.22-06-02343.2002] [PMID: 11896173]
[67]
Baker, J.D.; Azorlosa, J.L. The NMDA antagonist MK-801 blocks the extinction of Pavlovian fear conditioning. Behav. Neurosci., 1996, 110(3), 618-620.
[http://dx.doi.org/10.1037/0735-7044.110.3.618] [PMID: 8889007]
[68]
Santini, E.; Muller, R.U.; Quirk, G.J. Consolidation of extinction learning involves transfer from NMDA-independent to NMDA-dependent memory. J. Neurosci., 2001, 21(22), 9009-9017.
[http://dx.doi.org/10.1523/JNEUROSCI.21-22-09009.2001] [PMID: 11698611]
[69]
Ledgerwood, L.; Richardson, R.; Cranney, J. Effects of D-cycloserine on extinction of conditioned freezing. Behav. Neurosci., 2003, 117(2), 341-349.
[http://dx.doi.org/10.1037/0735-7044.117.2.341] [PMID: 12708530]
[70]
Ledgerwood, L.; Richardson, R.; Cranney, J. d-cycloserine facilitates extinction of learned fear: Effects on reacquisition and generalized extinction. Biol. Psychiatry, 2005, 57(8), 841-847.
[http://dx.doi.org/10.1016/j.biopsych.2005.01.023] [PMID: 15820704]
[71]
Weber, M.; Hart, J.; Richardson, R. Effects of d-cycloserine on extinction of learned fear to an olfactory cue. Neurobiol. Learn. Mem., 2007, 87(4), 476-482.
[http://dx.doi.org/10.1016/j.nlm.2006.12.010] [PMID: 17275356]
[72]
Bouton, M.E.; Vurbic, D.; Woods, A.M. d-Cycloserine facilitates context-specific fear extinction learning. Neurobiol. Learn. Mem., 2008, 90(3), 504-510.
[http://dx.doi.org/10.1016/j.nlm.2008.07.003] [PMID: 18672079]
[73]
Lee, J.L.C.; Milton, A.L.; Everitt, B.J. Reconsolidation and extinction of conditioned fear: Inhibition and potentiation. J. Neurosci., 2006, 26(39), 10051-10056.
[http://dx.doi.org/10.1523/JNEUROSCI.2466-06.2006] [PMID: 17005868]
[74]
Parnas, A.S.; Weber, M.; Richardson, R. Effects of multiple exposures to d-cycloserine on extinction of conditioned fear in rats. Neurobiol. Learn. Mem., 2005, 83(3), 224-231.
[http://dx.doi.org/10.1016/j.nlm.2005.01.001] [PMID: 15820858]
[75]
Ressler, K.J.; Rothbaum, B.O.; Tannenbaum, L.; Anderson, P.; Graap, K.; Zimand, E.; Hodges, L.; Davis, M. Cognitive enhancers as adjuncts to psychotherapy: Use of D-cycloserine in phobic individuals to facilitate extinction of fear. Arch. Gen. Psychiatry, 2004, 61(11), 1136-1144.
[http://dx.doi.org/10.1001/archpsyc.61.11.1136] [PMID: 15520361]
[76]
Guastella, A.J.; Richardson, R.; Lovibond, P.F.; Rapee, R.M.; Gaston, J.E.; Mitchell, P.; Dadds, M.R. A randomized controlled trial of D-cycloserine enhancement of exposure therapy for social anxiety disorder. Biol. Psychiatry, 2008, 63(6), 544-549.
[http://dx.doi.org/10.1016/j.biopsych.2007.11.011] [PMID: 18179785]
[77]
Hofmann, S.G.; Pollack, M.H.; Otto, M.W. Augmentation treatment of psychotherapy for anxiety disorders with D-cycloserine. CNS Drug Rev., 2006, 12(3-4), 208-217.
[http://dx.doi.org/10.1111/j.1527-3458.2006.00208.x] [PMID: 17227287]
[78]
Otto, M.W.; Tolin, D.F.; Simon, N.M.; Pearlson, G.D.; Basden, S.; Meunier, S.A.; Hofmann, S.G.; Eisenmenger, K.; Krystal, J.H.; Pollack, M.H. Efficacy of d-cycloserine for enhancing response to cognitive-behavior therapy for panic disorder. Biol. Psychiatry, 2010, 67(4), 365-370.
[http://dx.doi.org/10.1016/j.biopsych.2009.07.036] [PMID: 19811776]
[79]
Kushner, M.G.; Kim, S.W.; Donahue, C.; Thuras, P.; Adson, D.; Kotlyar, M.; McCabe, J.; Peterson, J.; Foa, E.B. D-cycloserine augmented exposure therapy for obsessive-compulsive disorder. Biol. Psychiatry, 2007, 62(8), 835-838.
[http://dx.doi.org/10.1016/j.biopsych.2006.12.020] [PMID: 17588545]
[80]
Davis, M.; Ressler, K.; Rothbaum, B.O.; Richardson, R. Effects of D-cycloserine on extinction: Translation from preclinical to clinical work. Biol. Psychiatry, 2006, 60(4), 369-375.
[http://dx.doi.org/10.1016/j.biopsych.2006.03.084] [PMID: 16919524]
[81]
Alexander, W. Pharmacotherapy for post-traumatic stress disorder in combat veterans: Focus on antidepressants and atypical antipsychotic agents. P&T, 2012, 37(1), 32-38.
[PMID: 22346334]
[82]
Rubin, D.C.; Berntsen, D.; Bohni, M.K. A memory-based model of posttraumatic stress disorder: Evaluating basic assumptions underlying the PTSD diagnosis. Psychol. Rev., 2008, 115(4), 985-1011.
[http://dx.doi.org/10.1037/a0013397] [PMID: 18954211]
[83]
Litz, B.T.; Salters-Pedneault, K.; Steenkamp, M.M.; Hermos, J.A.; Bryant, R.A.; Otto, M.W.; Hofmann, S.G. A randomized placebo-controlled trial of d-cycloserine and exposure therapy for posttraumatic stress disorder. J. Psychiatr. Res., 2012, 46(9), 1184-1190.
[http://dx.doi.org/10.1016/j.jpsychires.2012.05.006] [PMID: 22694905]
[84]
de Kleine, R.A.; Hendriks, G.J.; Kusters, W.J.C.; Broekman, T.G.; van Minnen, A. A randomized placebo-controlled trial of D-cycloserine to enhance exposure therapy for posttraumatic stress disorder. Biol. Psychiatry, 2012, 71(11), 962-968.
[http://dx.doi.org/10.1016/j.biopsych.2012.02.033] [PMID: 22480663]
[85]
Rothbaum, B.O.; Price, M.; Jovanovic, T.; Norrholm, S.D.; Gerardi, M.; Dunlop, B.; Davis, M.; Bradley, B.; Duncan, E.J.; Rizzo, A.; Ressler, K.J. A randomized, double-blind evaluation of D-cycloserine or alprazolam combined with virtual reality exposure therapy for posttraumatic stress disorder in Iraq and Afghanistan War veterans. Am. J. Psychiatry, 2014, 171(6), 640-648.
[http://dx.doi.org/10.1176/appi.ajp.2014.13121625] [PMID: 24743802]
[86]
Scheeringa, M.S.; Weems, C.F. Randomized placebo-controlled D-cycloserine with cognitive behavior therapy for pediatric posttraumatic stress. J. Child Adolesc. Psychopharmacol., 2014, 24(2), 69-77.
[http://dx.doi.org/10.1089/cap.2013.0106] [PMID: 24506079]
[87]
Difede, J.; Cukor, J.; Wyka, K.; Olden, M.; Hoffman, H.; Lee, F.S.; Altemus, M. D-cycloserine augmentation of exposure therapy for post-traumatic stress disorder: A pilot randomized clinical trial. Neuropsychopharmacology, 2014, 39(5), 1052-1058.
[http://dx.doi.org/10.1038/npp.2013.317] [PMID: 24217129]
[88]
Rosenfield, D.; Smits, J.A.J.; Hofmann, S.G.; Mataix-Cols, D.; de la Cruz, L.F.; Andersson, E.; Rück, C.; Monzani, B.; Pérez-Vigil, A.; Frumento, P.; Davis, M.; de Kleine, R.A.; Difede, J.; Dunlop, B.W.; Farrell, L.J.; Geller, D.; Gerardi, M.; Guastella, A.J.; Hendriks, G.J.; Kushner, M.G.; Lee, F.S.; Lenze, E.J.; Levinson, C.A.; McConnell, H.; Plag, J.; Pollack, M.H.; Ressler, K.J.; Rodebaugh, T.L.; Rothbaum, B.O.; Storch, E.A.; Ströhle, A.; Tart, C.D.; Tolin, D.F.; van Minnen, A.; Waters, A.M.; Weems, C.F.; Wilhelm, S.; Wyka, K.; Altemus, M.; Anderson, P.; Cukor, J.; Finck, C.; Geffken, G.R.; Golfels, F.; Goodman, W.K.; Gutner, C.A.; Heyman, I.; Jovanovic, T.; Lewin, A.B.; McNamara, J.P.; Murphy, T.K.; Norrholm, S.; Thuras, P.; Turner, C.; Otto, M.W. Changes in dosing and dose timing of D-cycloserine explain its apparent declining efficacy for augmenting exposure therapy for anxiety-related disorders: An individual participant-data meta-analysis. J. Anxiety Disord., 2019, 68102149
[http://dx.doi.org/10.1016/j.janxdis.2019.102149] [PMID: 31698111]
[89]
Smits, J.A.J.; Rosenfield, D.; Otto, M.W.; Marques, L.; Davis, M.L.; Meuret, A.E.; Simon, N.M.; Pollack, M.H.; Hofmann, S.G. d-cycloserine enhancement of exposure therapy for social anxiety disorder depends on the success of exposure sessions. J. Psychiatr. Res., 2013, 47(10), 1455-1461.
[http://dx.doi.org/10.1016/j.jpsychires.2013.06.020] [PMID: 23870811]
[90]
Smits, J.A.J.; Rosenfield, D.; Otto, M.W.; Powers, M.B.; Hofmann, S.G.; Telch, M.J.; Pollack, M.H.; Tart, C.D. D-cycloserine enhancement of fear extinction is specific to successful exposure sessions: evidence from the treatment of height phobia. Biol. Psychiatry, 2013, 73(11), 1054-1058.
[http://dx.doi.org/10.1016/j.biopsych.2012.12.009] [PMID: 23332511]
[91]
Smits, J.A.J.; Pollack, M.H.; Rosenfield, D.; Otto, M.W.; Dowd, S.; Carpenter, J.; Dutcher, C.D.; Lewis, E.M.; Witcraft, S.M.; Papini, S.; Curtiss, J.; Andrews, L.; Kind, S.; Conroy, K.; Hofmann, S.G. Dose timing of D -cycloserine to augment exposure therapy for social anxiety disorder. JAMA Netw. Open, 2020, 3(6)e206777
[http://dx.doi.org/10.1001/jamanetworkopen.2020.6777] [PMID: 32496566]
[92]
Barsegyan, A.; McGaugh, J.L.; Roozendaal, B. Noradrenergic activation of the basolateral amygdala modulates the consolidation of object-in-context recognition memory. Front. Behav. Neurosci., 2014, 8, 160.
[http://dx.doi.org/10.3389/fnbeh.2014.00160] [PMID: 24847228]
[93]
Giustino, T.F.; Ramanathan, K.R.; Totty, M.S.; Miles, O.W.; Maren, S. Locus coeruleus norepinephrine drives stress-induced increases in basolateral amygdala firing and impairs extinction learning. J. Neurosci., 2020, 40(4), 907-916.
[http://dx.doi.org/10.1523/JNEUROSCI.1092-19.2019] [PMID: 31801809]
[94]
Roozendaal, B.; Castello, N.A.; Vedana, G.; Barsegyan, A.; McGaugh, J.L. Noradrenergic activation of the basolateral amygdala modulates consolidation of object recognition memory. Neurobiol. Learn. Mem., 2008, 90(3), 576-579.
[http://dx.doi.org/10.1016/j.nlm.2008.06.010] [PMID: 18657626]
[95]
Mason, S.T.; Fibiger, H.C. Noradrenaline, fear and extinction. Brain Res., 1979, 165(1), 47-56.
[http://dx.doi.org/10.1016/0006-8993(79)90043-X] [PMID: 427586]
[96]
McCormick, D.A.; Thompson, R.F. Locus coeruleus lesions and resistance to extinction of a classically conditioned response: Involvement of the neocortex and hippocampus. Brain Res., 1982, 245(2), 239-249.
[http://dx.doi.org/10.1016/0006-8993(82)90806-X] [PMID: 7127072]
[97]
Mueller, D.; Porter, J.T.; Quirk, G.J. Noradrenergic signaling in infralimbic cortex increases cell excitability and strengthens memory for fear extinction. J. Neurosci., 2008, 28(2), 369-375.
[http://dx.doi.org/10.1523/JNEUROSCI.3248-07.2008] [PMID: 18184779]
[98]
Abercrombie, E.D.; Keller, R.W., Jr; Zigmond, M.J. Characterization of hippocampal norepinephrine release as measured by microdialysis perfusion: Pharmacological and behavioral studies. Neuroscience, 1988, 27(3), 897-904.
[http://dx.doi.org/10.1016/0306-4522(88)90192-3] [PMID: 3252176]
[99]
Aghajanian, G.K.; VanderMaelen, C.P. alpha 2-adrenoceptor-mediated hyperpolarization of locus coeruleus neurons: Intracellular studies in vivo. Science, 1982, 215(4538), 1394-1396.
[http://dx.doi.org/10.1126/science.6278591] [PMID: 6278591]
[100]
Davis, A.R.; Shields, A.D.; Brigman, J.L.; Norcross, M.; McElligott, Z.A.; Holmes, A.; Winder, D.G. Yohimbine impairs extinction of cocaine-conditioned place preference in an α 2 -adrenergic receptor independent process. Learn. Mem., 2008, 15(9), 667-676.
[http://dx.doi.org/10.1101/lm.1079308] [PMID: 18772254]
[101]
Cahill, E.N.; Milton, A.L. Neurochemical and molecular mechanisms underlying the retrieval-extinction effect. Psychopharmacology (Berl.), 2019, 236(1), 111-132.
[http://dx.doi.org/10.1007/s00213-018-5121-3] [PMID: 30656364]
[102]
Herrick-Davis, K.; Titeler, M.; Leonhardt, S.; Struble, R.; Price, D. Serotonin 5-HT1D receptors in human prefrontal cortex and caudate: Interaction with a GTP binding protein. J. Neurochem., 1988, 51(6), 1906-1912.
[http://dx.doi.org/10.1111/j.1471-4159.1988.tb01176.x] [PMID: 3141589]
[103]
Millan, M.J.; Newman-Tancredi, A.; Audinot, V.; Cussac, D.; Lejeune, F.; Nicolas, J.P.; Cogé, F.; Galizzi, J.P.; Boutin, J.A.; Rivet, J.M.; Dekeyne, A.; Gobert, A. Agonist and antagonist actions of yohimbine as compared to fluparoxan at alpha(2)-adrenergic receptors (AR)s, serotonin (5-HT)(1A), 5-HT(1B), 5-HT(1D) and dopamine D(2) and D(3) receptors. Significance for the modulation of frontocortical monoaminergic transmission and depressive states. Synapse, 2000, 35(2), 79-95.
[http://dx.doi.org/10.1002/(SICI)1098-2396(200002)35:2<79:AID-SYN1>3.0.CO;2-X] [PMID: 10611634]
[104]
Newman-Tancredi, A.; Nicolas, J.P.; Audinot, V.; Gavaudan, S.; Verrièle, L.; Touzard, M.; Chaput, C.; Richard, N.; Millan, M.J. Actions of α2 adrenoceptor ligands at α2A and 5-HT1A receptors: The antagonist, atipamezole, and the agonist, dexmedetomidine, are highly selective for α2A adrenoceptors. Naunyn Schmiedebergs Arch. Pharmacol., 1998, 358(2), 197-206.
[http://dx.doi.org/10.1007/PL00005243] [PMID: 9750005]
[105]
Winter, J.C.; Rabin, R.A. Antagonism of the stimulus effects of yohimbine and 8-hydroxydipropylaminotetralin. Pharmacol. Biochem. Behav., 1993, 44(4), 851-855.
[http://dx.doi.org/10.1016/0091-3057(93)90016-M] [PMID: 8385783]
[106]
Cain, C.K.; Blouin, A.M.; Barad, M. Adrenergic transmission facilitates extinction of conditional fear in mice. Learn. Mem., 2004, 11(2), 179-187.
[http://dx.doi.org/10.1101/lm.71504] [PMID: 15054133]
[107]
Morris, R.W.; Bouton, M.E. The effect of yohimbine on the extinction of conditioned fear: A role for context. Behav. Neurosci., 2007, 121(3), 501-514.
[http://dx.doi.org/10.1037/0735-7044.121.3.501] [PMID: 17592941]
[108]
Mueller, D.; Olivera-Figueroa, L.A.; Pine, D.S.; Quirk, G.J. The effects of yohimbine and amphetamine on fear expression and extinction in rats. Psychopharmacology (Berl.), 2009, 204(4), 599-606.
[http://dx.doi.org/10.1007/s00213-009-1491-x] [PMID: 19242678]
[109]
Bouton, M.E. Context and behavioral processes in extinction. Learn. Mem., 2004, 11(5), 485-494.
[http://dx.doi.org/10.1101/lm.78804] [PMID: 15466298]
[110]
Harris, J.A.; Jones, M.L.; Bailey, G.K.; Westbrook, R.F. Contextual control over conditioned responding in an extinction paradigm. J. Exp. Psychol. Anim. Behav. Process., 2000, 26(2), 174-185.
[http://dx.doi.org/10.1037/0097-7403.26.2.174] [PMID: 10782432]
[111]
Jaycox, L.H.; Foa, E.B.; Morral, A.R. Influence of emotional engagement and habituation on exposure therapy for PTSD. J. Consult. Clin. Psychol., 1998, 66(1), 185-192.
[http://dx.doi.org/10.1037/0022-006X.66.1.185] [PMID: 9489273]
[112]
Norrholm, S.D.; Jovanovic, T.; Gerardi, M.; Breazeale, K.G.; Price, M.; Davis, M.; Duncan, E.; Ressler, K.J.; Bradley, B.; Rizzo, A.; Tuerk, P.W.; Rothbaum, B.O. Baseline psychophysiological and cortisol reactivity as a predictor of PTSD treatment outcome in virtual reality exposure therapy. Behav. Res. Ther., 2016, 82, 28-37.
[http://dx.doi.org/10.1016/j.brat.2016.05.002] [PMID: 27183343]
[113]
Wangelin, B.C.; Tuerk, P.W. Taking the pulse of prolonged exposure therapy: Physiological reactivity to trauma imagery as an objective measure of treatment response. Depress. Anxiety, 2015, 32(12), 927-934.
[http://dx.doi.org/10.1002/da.22449] [PMID: 26522237]
[114]
Meyerbroeker, K.; Powers, M.B.; van Stegeren, A.; Emmelkamp, P.M.G. Does yohimbine hydrochloride facilitate fear extinction in virtual reality treatment of fear of flying? A randomized placebo-controlled trial. Psychother. Psychosom., 2012, 81(1), 29-37.
[http://dx.doi.org/10.1159/000329454] [PMID: 22116378]
[115]
Powers, M.B.; Smits, J.A.J.; Otto, M.W.; Sanders, C.; Emmelkamp, P.M.G. Facilitation of fear extinction in phobic participants with a novel cognitive enhancer: A randomized placebo controlled trial of yohimbine augmentation. J. Anxiety Disord., 2009, 23(3), 350-356.
[http://dx.doi.org/10.1016/j.janxdis.2009.01.001] [PMID: 19223151]
[116]
Holmes, A.; Quirk, G.J. Pharmacological facilitation of fear extinction and the search for adjunct treatments for anxiety disorders - the case of yohimbine. Trends Pharmacol. Sci., 2010, 31(1), 2-7.
[http://dx.doi.org/10.1016/j.tips.2009.10.003] [PMID: 20036429]
[117]
Smits, J.A.J.; Rosenfield, D.; Davis, M.L.; Julian, K.; Handelsman, P.R.; Otto, M.W.; Tuerk, P.; Shiekh, M.; Rosenfield, B.; Hofmann, S.G.; Powers, M.B. Yohimbine enhancement of exposure therapy for social anxiety disorder: A randomized controlled trial. Biol. Psychiatry, 2014, 75(11), 840-846.
[http://dx.doi.org/10.1016/j.biopsych.2013.10.008] [PMID: 24237691]
[118]
Tuerk, P.W.; Wangelin, B.C.; Powers, M.B.; Smits, J.A.J.; Acierno, R.; Myers, U.S.; Orr, S.P.; Foa, E.B.; Hamner, M.B. Augmenting treatment efficiency in exposure therapy for PTSD: A randomized double-blind placebo-controlled trial of yohimbine HCl. Cogn. Behav. Ther., 2018, 47(5), 351-371.
[http://dx.doi.org/10.1080/16506073.2018.1432679] [PMID: 29448886]
[119]
Charney, D.S.; Heninger, G.R.; Breier, A. Noradrenergic function in panic anxiety. Effects of yohimbine in healthy subjects and patients with agoraphobia and panic disorder. Arch. Gen. Psychiatry, 1984, 41(8), 751-763.
[http://dx.doi.org/10.1001/archpsyc.1984.01790190025003] [PMID: 6742977]
[120]
Charney, D.S.; Woods, S.W.; Goodman, W.K.; Heninger, G.R. Neurobiological mechanisms of panic anxiety: Biochemical and behavioral correlates of yohimbine-induced panic attacks. Am. J. Psychiatry, 1987, 144(8), 1030-1036.
[http://dx.doi.org/10.1176/ajp.144.8.1030] [PMID: 3037926]
[121]
Lin, A.L.; Poteet, E.; Du, F.; Gourav, R.C.; Liu, R.; Wen, Y.; Bresnen, A.; Huang, S.; Fox, P.T.; Yang, S.H.; Duong, T.Q. Methylene blue as a cerebral metabolic and hemodynamic enhancer. PLoS One, 2012, 7(10)e46585
[http://dx.doi.org/10.1371/journal.pone.0046585] [PMID: 23056355]
[122]
Rojas, J.C.; Bruchey, A.K.; Gonzalez-Lima, F. Neurometabolic mechanisms for memory enhancement and neuroprotection of methylene blue. Prog. Neurobiol., 2012, 96(1), 32-45.
[http://dx.doi.org/10.1016/j.pneurobio.2011.10.007] [PMID: 22067440]
[123]
Callaway, N.L.; Riha, P.D.; Bruchey, A.K.; Munshi, Z.; Gonzalez-Lima, F. Methylene blue improves brain oxidative metabolism and memory retention in rats. Pharmacol. Biochem. Behav., 2004, 77(1), 175-181.
[http://dx.doi.org/10.1016/j.pbb.2003.10.007] [PMID: 14724055]
[124]
Riha, P.D.; Bruchey, A.K.; Echevarria, D.J.; Gonzalez-Lima, F. Memory facilitation by methylene blue: Dose-dependent effect on behavior and brain oxygen consumption. Eur. J. Pharmacol., 2005, 511(2-3), 151-158.
[http://dx.doi.org/10.1016/j.ejphar.2005.02.001] [PMID: 15792783]
[125]
Gonzalez-Lima, F.; Bruchey, A.K. Extinction memory improvement by the metabolic enhancer methylene blue. Learn. Mem., 2004, 11(5), 633-640.
[http://dx.doi.org/10.1101/lm.82404] [PMID: 15466319]
[126]
Henn, F.A.; Vollmayr, B. Stress models of depression: Forming genetically vulnerable strains. Neurosci. Biobehav. Rev., 2005, 29(4-5), 799-804.
[http://dx.doi.org/10.1016/j.neubiorev.2005.03.019] [PMID: 15925700]
[127]
Shumake, J.; Barrett, D.; Gonzalez-Lima, F. Behavioral characteristics of rats predisposed to learned helplessness: Reduced reward sensitivity, increased novelty seeking, and persistent fear memories. Behav. Brain Res., 2005, 164(2), 222-230.
[http://dx.doi.org/10.1016/j.bbr.2005.06.016] [PMID: 16095730]
[128]
Colucci, P.; Marchetta, E.; Mancini, G.F.; Alva, P.; Chiarotti, F.; Hasan, M.T.; Campolongo, P. Predicting susceptibility and resilience in an animal model of post-traumatic stress disorder (PTSD). Transl. Psychiatry, 2020, 10(1), 243.
[http://dx.doi.org/10.1038/s41398-020-00929-9] [PMID: 32694545]
[129]
Wrubel, K.M.; Barrett, D.; Shumake, J.; Johnson, S.E.; Gonzalez-Lima, F. Methylene blue facilitates the extinction of fear in an animal model of susceptibility to learned helplessness. Neurobiol. Learn. Mem., 2007, 87(2), 209-217.
[http://dx.doi.org/10.1016/j.nlm.2006.08.009] [PMID: 17011803]
[130]
Auchter, A.M.; Shumake, J.; Gonzalez-Lima, F.; Monfils, M.H. Preventing the return of fear using reconsolidation updating and methylene blue is differentially dependent on extinction learning. Sci. Rep., 2017, 7(1), 46071.
[http://dx.doi.org/10.1038/srep46071] [PMID: 28397861]
[131]
Telch, M.J.; Bruchey, A.K.; Rosenfield, D.; Cobb, A.R.; Smits, J.; Pahl, S.; Gonzalez-Lima, F. Effects of post-session administration of methylene blue on fear extinction and contextual memory in adults with claustrophobia. Am. J. Psychiatry, 2014, 171(10), 1091-1098.
[http://dx.doi.org/10.1176/appi.ajp.2014.13101407] [PMID: 25018057]
[132]
Zoellner, L.A.; Telch, M.; Foa, E.B.; Farach, F.J.; McLean, C.P.; Gallop, R.; Bluett, E.J.; Cobb, A.; Gonzalez-Lima, F. Enhancing extinction learning in posttraumatic stress disorder with brief daily imaginal exposure and methylene blue. J. Clin. Psychiatry, 2017, 78(7), e782-e789.
[http://dx.doi.org/10.4088/JCP.16m10936] [PMID: 28686823]
[133]
McGaugh, J.L.; Roozendaal, B. Role of adrenal stress hormones in forming lasting memories in the brain. Curr. Opin. Neurobiol., 2002, 12(2), 205-210.
[http://dx.doi.org/10.1016/S0959-4388(02)00306-9] [PMID: 12015238]
[134]
Okuda, S.; Roozendaal, B.; McGaugh, J.L. Glucocorticoid effects on object recognition memory require training-associated emotional arousal. Proc. Natl. Acad. Sci. USA, 2004, 101(3), 853-858.
[http://dx.doi.org/10.1073/pnas.0307803100] [PMID: 14711996]
[135]
Roozendaal, B. Stress and memory: Opposing effects of glucocorticoids on memory consolidation and memory retrieval. Neurobiol. Learn. Mem., 2002, 78(3), 578-595.
[http://dx.doi.org/10.1006/nlme.2002.4080] [PMID: 12559837]
[136]
Sandi, C.; Rose, S.P.R. Corticosterone enhances long-term retention in one-day-old chicks trained in a weak passive avoidance learning paradigm. Brain Res., 1994, 647(1), 106-112.
[http://dx.doi.org/10.1016/0006-8993(94)91404-4] [PMID: 8069692]
[137]
Lian, Y.; Xiao, J.; Wang, Q.; Ning, L.; Guan, S.; Ge, H.; Li, F.; Liu, J. The relationship between glucocorticoid receptor polymorphisms, stressful life events, social support, and post-traumatic stress disorder. BMC Psychiatry, 2014, 14(1), 232.
[http://dx.doi.org/10.1186/s12888-014-0232-9] [PMID: 25113244]
[138]
Maheu, F.S.; Joober, R.; Beaulieu, S.; Lupien, S.J. Differential effects of adrenergic and corticosteroid hormonal systems on human short- and long-term declarative memory for emotionally arousing material. Behav. Neurosci., 2004, 118(2), 420-428.
[http://dx.doi.org/10.1037/0735-7044.118.2.420] [PMID: 15113269]
[139]
Roozendaall, B.; Bohus, B.; McGaugh, J.L. Dose-dependent suppression of adrenocortical activity with metyrapone: Effects on emotion and memory. Psychoneuroendocrinology, 1996, 21(8), 681-693.
[http://dx.doi.org/10.1016/S0306-4530(96)00028-5] [PMID: 9247987]
[140]
Chhatwal, J.P.; Myers, K.M.; Ressler, K.J.; Davis, M. Regulation of gephyrin and GABAA receptor binding within the amygdala after fear acquisition and extinction. J. Neurosci., 2005, 25(2), 502-506.
[http://dx.doi.org/10.1523/JNEUROSCI.3301-04.2005] [PMID: 15647495]
[141]
Markram, K.; Lopez Fernandez, M.A.; Abrous, D.N.; Sandi, C. Amygdala upregulation of NCAM polysialylation induced by auditory fear conditioning is not required for memory formation, but plays a role in fear extinction. Neurobiol. Learn. Mem., 2007, 87(4), 573-582.
[http://dx.doi.org/10.1016/j.nlm.2006.11.007] [PMID: 17223582]
[142]
Milad, M.R.; Rauch, S.L.; Pitman, R.K.; Quirk, G.J. Fear extinction in rats: Implications for human brain imaging and anxiety disorders. Biol. Psychol., 2006, 73(1), 61-71.
[http://dx.doi.org/10.1016/j.biopsycho.2006.01.008] [PMID: 16476517]
[143]
Sierra-Mercado, D.; Padilla-Coreano, N.; Quirk, G.J. Dissociable roles of prelimbic and infralimbic cortices, ventral hippocampus, and basolateral amygdala in the expression and extinction of conditioned fear. Neuropsychopharmacology, 2011, 36(2), 529-538.
[http://dx.doi.org/10.1038/npp.2010.184] [PMID: 20962768]
[144]
Flavell, C.R.; Lambert, E.A.; Winters, B.D.; Bredy, T.W. Mechanisms governing the reactivation-dependent destabilization of memories and their role in extinction. Front. Behav. Neurosci., 2013, 7, 214.
[http://dx.doi.org/10.3389/fnbeh.2013.00214] [PMID: 24421762]
[145]
Inda, M.C.; Delgado-García, J.M.; Carrión, A.M. Acquisition, consolidation, reconsolidation, and extinction of eyelid conditioning responses require de novo protein synthesis. J. Neurosci., 2005, 25(8), 2070-2080.
[http://dx.doi.org/10.1523/JNEUROSCI.4163-04.2005] [PMID: 15728847]
[146]
Barrett, D.; Gonzalez-Lima, F. Behavioral effects of metyrapone on Pavlovian extinction. Neurosci. Lett., 2004, 371(2-3), 91-96.
[http://dx.doi.org/10.1016/j.neulet.2004.08.046] [PMID: 15519735]
[147]
Blundell, J.; Blaiss, C.A.; Lagace, D.C.; Eisch, A.J.; Powell, C.M. Block of glucocorticoid synthesis during re-activation inhibits extinction of an established fear memory. Neurobiol. Learn. Mem., 2011, 95(4), 453-460.
[http://dx.doi.org/10.1016/j.nlm.2011.02.006] [PMID: 21333745]
[148]
Cai, W.H.; Blundell, J.; Han, J.; Greene, R.W.; Powell, C.M. Postreactivation glucocorticoids impair recall of established fear memory. J. Neurosci., 2006, 26(37), 9560-9566.
[http://dx.doi.org/10.1523/JNEUROSCI.2397-06.2006] [PMID: 16971540]
[149]
Yang, Y.L.; Chao, P.K.; Lu, K.T. Systemic and intra-amygdala administration of glucocorticoid agonist and antagonist modulate extinction of conditioned fear. Neuropsychopharmacology, 2006, 31(5), 912-924.
[http://dx.doi.org/10.1038/sj.npp.1300899] [PMID: 16205786]
[150]
Clay, R.; Hebert, M.; Gill, G.; Stapleton, L.A.; Pridham, A.; Coady, M.; Bishop, J.; Adamec, R.E.; Blundell, J.J. Glucocorticoids are required for extinction of predator stress-induced hyperarousal. Neurobiol. Learn. Mem., 2011, 96(2), 367-377.
[http://dx.doi.org/10.1016/j.nlm.2011.06.012] [PMID: 21736945]
[151]
Yang, Y.L.; Chao, P.K.; Ro, L.S.; Wo, Y.Y.P.; Lu, K.T. Glutamate NMDA receptors within the amygdala participate in the modulatory effect of glucocorticoids on extinction of conditioned fear in rats. Neuropsychopharmacology, 2007, 32(5), 1042-1051.
[http://dx.doi.org/10.1038/sj.npp.1301215] [PMID: 17047672]
[152]
de Quervain, D.; Wolf, O.T.; Roozendaal, B. Glucocorticoid-induced enhancement of extinction—from animal models to clinical trials. Psychopharmacology (Berl.), 2019, 236(1), 183-199.
[http://dx.doi.org/10.1007/s00213-018-5116-0] [PMID: 30610352]
[153]
de Quervain, D.J.F.; Aerni, A.; Schelling, G.; Roozendaal, B. Glucocorticoids and the regulation of memory in health and disease. Front. Neuroendocrinol., 2009, 30(3), 358-370.
[http://dx.doi.org/10.1016/j.yfrne.2009.03.002] [PMID: 19341764]
[154]
de Quervain, D.J.F.; Bentz, D.; Michael, T.; Bolt, O.C.; Wiederhold, B.K.; Margraf, J.; Wilhelm, F.H. Glucocorticoids enhance extinction-based psychotherapy. Proc. Natl. Acad. Sci. USA, 2011, 108(16), 6621-6625.
[http://dx.doi.org/10.1073/pnas.1018214108] [PMID: 21444799]
[155]
Yehuda, R.; Bierer, L.M.; Pratchett, L.C.; Lehrner, A.; Koch, E.C.; Van Manen, J.A.; Flory, J.D.; Makotkine, I.; Hildebrandt, T. Cortisol augmentation of a psychological treatment for warfighters with posttraumatic stress disorder: Randomized trial showing improved treatment retention and outcome. Psychoneuroendocrinology, 2015, 51, 589-597.
[http://dx.doi.org/10.1016/j.psyneuen.2014.08.004] [PMID: 25212409]
[156]
Yehuda, R.; Bierer, L.; Pratchett, L.; Malowney, M. Glucocorticoid augmentation of prolonged exposure therapy: Rationale and case report. Eur. J. Psychotraumatol., 2010, 1(1), 5643.
[http://dx.doi.org/10.3402/ejpt.v1i0.5643] [PMID: 22893802]
[157]
Maples-Keller, J.L.; Jovanovic, T.; Dunlop, B.W.; Rauch, S.; Yasinski, C.; Michopoulos, V.; Coghlan, C.; Norrholm, S.; Rizzo, A.S.; Ressler, K.; Rothbaum, B.O. When translational neuroscience fails in the clinic: Dexamethasone prior to virtual reality exposure therapy increases drop-out rates. J. Anxiety Disord., 2019, 61, 89-97.
[http://dx.doi.org/10.1016/j.janxdis.2018.10.006] [PMID: 30502903]
[158]
Atakan, Z. Cannabis, a complex plant: Different compounds and different effects on individuals. Ther. Adv. Psychopharmacol., 2012, 2(6), 241-254.
[http://dx.doi.org/10.1177/2045125312457586] [PMID: 23983983]
[159]
Izzo, A.A.; Borrelli, F.; Capasso, R.; Di Marzo, V.; Mechoulam, R. Non-psychotropic plant cannabinoids: New therapeutic opportunities from an ancient herb. Trends Pharmacol. Sci., 2009, 30(10), 515-527.
[http://dx.doi.org/10.1016/j.tips.2009.07.006] [PMID: 19729208]
[160]
Katona, I. Endocannabinoid receptors: CNS localization of the CB1 cannabinoid receptor. Curr. Top. Behav. Neurosci., 2009, 1, 65-86.
[http://dx.doi.org/10.1007/978-3-540-88955-7_3] [PMID: 21104380]
[161]
Piomelli, D.; Giuffrida, A.; Calignano, A.; Rodríguez de Fonseca, F. The endocannabinoid system as a target for therapeutic drugs. Trends Pharmacol. Sci., 2000, 21(6), 218-224.
[http://dx.doi.org/10.1016/S0165-6147(00)01482-6] [PMID: 10838609]
[162]
Morena, M.; Campolongo, P. The endocannabinoid system: An emotional buffer in the modulation of memory function. Neurobiol. Learn. Mem., 2014, 112, 30-43.
[http://dx.doi.org/10.1016/j.nlm.2013.12.010] [PMID: 24382324]
[163]
Gunduz-Cinar, O.; MacPherson, K.P.; Cinar, R.; Gamble-George, J.; Sugden, K.; Williams, B.; Godlewski, G.; Ramikie, T.S.; Gorka, A.X.; Alapafuja, S.O.; Nikas, S.P.; Makriyannis, A.; Poulton, R.; Patel, S.; Hariri, A.R.; Caspi, A.; Moffitt, T.E.; Kunos, G.; Holmes, A. Convergent translational evidence of a role for anandamide in amygdala-mediated fear extinction, threat processing and stress-reactivity. Mol. Psychiatry, 2013, 18(7), 813-823.
[http://dx.doi.org/10.1038/mp.2012.72] [PMID: 22688188]
[164]
Pamplona, F.A.; Bitencourt, R.M.; Takahashi, R.N. Short- and long-term effects of cannabinoids on the extinction of contextual fear memory in rats. Neurobiol. Learn. Mem., 2008, 90(1), 290-293.
[http://dx.doi.org/10.1016/j.nlm.2008.04.003] [PMID: 18486502]
[165]
Pamplona, F.A.; Takahashi, R.N. WIN 55212-2 impairs contextual fear conditioning through the activation of CB1 cannabinoid receptors. Neurosci. Lett., 2006, 397(1-2), 88-92.
[http://dx.doi.org/10.1016/j.neulet.2005.12.026] [PMID: 16406322]
[166]
Ratano, P.; Everitt, B.J.; Milton, A.L. The CB1 receptor antagonist AM251 impairs reconsolidation of pavlovian fear memory in the rat basolateral amygdala. Neuropsychopharmacology, 2014, 39(11), 2529-2537.
[http://dx.doi.org/10.1038/npp.2014.103] [PMID: 24801769]
[167]
Reich, C.G.; Mohammadi, M.H.; Alger, B.E. Endocannabinoid modulation of fear responses: Learning and state-dependent performance effects. J. Psychopharmacol., 2008, 22(7), 769-777.
[http://dx.doi.org/10.1177/0269881107083999] [PMID: 18308796]
[168]
Dincheva, I.; Drysdale, A.T.; Hartley, C.A.; Johnson, D.C.; Jing, D.; King, E.C.; Ra, S.; Gray, J.M.; Yang, R.; DeGruccio, A.M.; Huang, C.; Cravatt, B.F.; Glatt, C.E.; Hill, M.N.; Casey, B.J.; Lee, F.S. FAAH genetic variation enhances fronto-amygdala function in mouse and human. Nat. Commun., 2015, 6(1), 6395.
[http://dx.doi.org/10.1038/ncomms7395] [PMID: 25731744]
[169]
Marsicano, G.; Wotjak, C.T.; Azad, S.C.; Bisogno, T.; Rammes, G.; Cascio, M.G.; Hermann, H.; Tang, J.; Hofmann, C.; Zieglgänsberger, W.; Di Marzo, V.; Lutz, B. The endogenous cannabinoid system controls extinction of aversive memories. Nature, 2002, 418(6897), 530-534.
[http://dx.doi.org/10.1038/nature00839] [PMID: 12152079]
[170]
Morena, M.; Berardi, A.; Colucci, P.; Palmery, M.; Trezza, V.; Hill, M.N.; Campolongo, P. Enhancing endocannabinoid neurotransmission augments the efficacy of extinction training and ameliorates traumatic stress-induced behavioral alterations in rats. Neuropsychopharmacology, 2018, 43(6), 1284-1296.
[http://dx.doi.org/10.1038/npp.2017.305] [PMID: 29265107]
[171]
Morena, M.; Nastase, A.S.; Santori, A.; Cravatt, B.F.; Shansky, R.M.; Hill, M.N. Sex‐dependent effects of endocannabinoid modulation of conditioned fear extinction in rats. Br. J. Pharmacol., 2021, 178(4), 983-996.
[http://dx.doi.org/10.1111/bph.15341] [PMID: 33314038]
[172]
Mayo, L.M.; Asratian, A.; Lindé, J.; Holm, L.; Nätt, D.; Augier, G.; Stensson, N.; Vecchiarelli, H.A.; Balsevich, G.; Aukema, R.J.; Ghafouri, B.; Spagnolo, P.A.; Lee, F.S.; Hill, M.N.; Heilig, M. Protective effects of elevated anandamide on stress and fear-related behaviors: Translational evidence from humans and mice. Mol. Psychiatry, 2020, 25(5), 993-1005.
[http://dx.doi.org/10.1038/s41380-018-0215-1] [PMID: 30120421]
[173]
Mayo, L.M.; Asratian, A.; Lindé, J.; Morena, M.; Haataja, R.; Hammar, V.; Augier, G.; Hill, M.N.; Heilig, M. Elevated anandamide, enhanced recall of fear extinction, and attenuated stress responses following inhibition of fatty acid amide hydrolase: A randomized, controlled experimental medicine trial. Biol. Psychiatry, 2020, 87(6), 538-547.
[http://dx.doi.org/10.1016/j.biopsych.2019.07.034] [PMID: 31590924]
[174]
Mayo, L.M.; Rabinak, C.A.; Hill, M.N.; Heilig, M. Targeting the endocannabinoid system in the treatment of posttraumatic stress disorder: A promising case of preclinical-clinical translation? Biol. Psychiatry, 2022, 91(3), 262-272.
[http://dx.doi.org/10.1016/j.biopsych.2021.07.019] [PMID: 34598785]
[175]
Rabinak, C.A.; Angstadt, M.; Sripada, C.S.; Abelson, J.L.; Liberzon, I.; Milad, M.R.; Phan, K.L. Cannabinoid facilitation of fear extinction memory recall in humans. Neuropharmacology, 2013, 64, 396-402.
[http://dx.doi.org/10.1016/j.neuropharm.2012.06.063] [PMID: 22796109]
[176]
Fraser, G.A. The use of a synthetic cannabinoid in the management of treatment-resistant nightmares in posttraumatic stress disorder (PTSD). CNS Neurosci. Ther., 2009, 15(1), 84-88.
[http://dx.doi.org/10.1111/j.1755-5949.2008.00071.x] [PMID: 19228182]
[177]
Jetly, R.; Heber, A.; Fraser, G.; Boisvert, D. The efficacy of nabilone, a synthetic cannabinoid, in the treatment of PTSD-associated nightmares: A preliminary randomized, double-blind, placebo-controlled cross-over design study. Psychoneuroendocrinology, 2015, 51, 585-588.
[http://dx.doi.org/10.1016/j.psyneuen.2014.11.002] [PMID: 25467221]
[178]
Cameron, C.; Watson, D.; Robinson, J. Use of a synthetic cannabinoid in a correctional population for posttraumatic stress disorder-related insomnia and nightmares, chronic pain, harm reduction, and other indications: A retrospective evaluation. J. Clin. Psychopharmacol., 2014, 34(5), 559-564.
[http://dx.doi.org/10.1097/JCP.0000000000000180] [PMID: 24987795]
[179]
Roitman, P.; Mechoulam, R.; Cooper-Kazaz, R.; Shalev, A. Preliminary, open-label, pilot study of add-on oral Δ9-tetrahydrocannabinol in chronic post-traumatic stress disorder. Clin. Drug Investig., 2014, 34(8), 587-591.
[http://dx.doi.org/10.1007/s40261-014-0212-3] [PMID: 24935052]
[180]
Di Forti, M.; Quattrone, D.; Freeman, T.P.; Tripoli, G.; Gayer-Anderson, C.; Quigley, H.; Rodriguez, V.; Jongsma, H.E.; Ferraro, L.; La Cascia, C.; La Barbera, D.; Tarricone, I.; Berardi, D.; Szöke, A.; Arango, C.; Tortelli, A.; Velthorst, E.; Bernardo, M.; Del-Ben, C.M.; Menezes, P.R.; Selten, J.P.; Jones, P.B.; Kirkbride, J.B.; Rutten, B.P.F.; de Haan, L.; Sham, P.C.; van Os, J.; Lewis, C.M.; Lynskey, M.; Morgan, C.; Murray, R.M.; Amoretti, S.; Arrojo, M.; Baudin, G.; Beards, S.; Bernardo, M.; Bobes, J.; Bonetto, C.; Cabrera, B.; Carracedo, A.; Charpeaud, T.; Costas, J.; Cristofalo, D.; Cuadrado, P.; Díaz-Caneja, C.M.; Ferchiou, A.; Franke, N.; Frijda, F.; García Bernardo, E.; Garcia-Portilla, P.; González, E.; Hubbard, K.; Jamain, S.; Jiménez-López, E.; Leboyer, M.; López Montoya, G.; Lorente-Rovira, E.; Marcelino Loureiro, C.; Marrazzo, G.; Martínez, C.; Matteis, M.; Messchaart, E.; Moltó, M.D.; Nacher, J.; Olmeda, M.S.; Parellada, M.; González Peñas, J.; Pignon, B.; Rapado, M.; Richard, J-R.; Rodríguez Solano, J.J.; Roldán Díaz, L.; Ruggeri, M.; Sáiz, P.A.; Sánchez, E.; Sanjuán, J.; Sartorio, C.; Schürhoff, F.; Seminerio, F.; Shuhama, R.; Sideli, L.; Stilo, S.A.; Termorshuizen, F.; Tosato, S.; Tronche, A-M.; van Dam, D.; van der Ven, E. The contribution of cannabis use to variation in the incidence of psychotic disorder across Europe (EU-GEI): A multicentre case-control study. Lancet Psychiatry, 2019, 6(5), 427-436.
[http://dx.doi.org/10.1016/S2215-0366(19)30048-3] [PMID: 30902669]
[181]
Hamilton, I.; Monaghan, M. Cannabis and psychosis: Are we any closer to understanding the relationship? Curr. Psychiatry Rep., 2019, 21(7), 48.
[http://dx.doi.org/10.1007/s11920-019-1044-x] [PMID: 31161275]
[182]
Feduccia, A.A.; Duvauchelle, C.L. Auditory stimuli enhance MDMA-conditioned reward and MDMA-induced nucleus accumbens dopamine, serotonin and locomotor responses. Brain Res. Bull., 2008, 77(4), 189-196.
[http://dx.doi.org/10.1016/j.brainresbull.2008.07.007] [PMID: 18722516]
[183]
Han, D.D.; Gu, H.H. Comparison of the monoamine transporters from human and mouse in their sensitivities to psychostimulant drugs. BMC Pharmacol., 2006, 6(1), 6.
[http://dx.doi.org/10.1186/1471-2210-6-6] [PMID: 16515684]
[184]
Kuypers, K.P.C.; Dolder, P.C.; Ramaekers, J.G.; Liechti, M.E. Multifaceted empathy of healthy volunteers after single doses of MDMA: A pooled sample of placebo-controlled studies. J. Psychopharmacol., 2017, 31(5), 589-598.
[http://dx.doi.org/10.1177/0269881117699617] [PMID: 28372480]
[185]
De La Torre, R.; Farré, M.; Roset, P.N.; López, C.H.; Mas, M.; Ortuño, J.; Menoyo, E.; Pizarro, N.; Segura, J.; Camí, J. Pharmacology of MDMA in Humans. Ann. N. Y. Acad. Sci., 2000, 914(1), 225-237.
[http://dx.doi.org/10.1111/j.1749-6632.2000.tb05199.x] [PMID: 11085324]
[186]
Dolder, P.C.; Müller, F.; Schmid, Y.; Borgwardt, S.J.; Liechti, M.E. Direct comparison of the acute subjective, emotional, autonomic, and endocrine effects of MDMA, methylphenidate, and modafinil in healthy subjects. Psychopharmacology (Berl.), 2018, 235(2), 467-479.
[http://dx.doi.org/10.1007/s00213-017-4650-5] [PMID: 28551715]
[187]
Amoroso, T.; Workman, M. Treating posttraumatic stress disorder with MDMA-assisted psychotherapy: A preliminary meta-analysis and comparison to prolonged exposure therapy. J. Psychopharmacol., 2016, 30(7), 595-600.
[http://dx.doi.org/10.1177/0269881116642542] [PMID: 27118529]
[188]
Feduccia, A.A.; Mithoefer, M.C. MDMA-assisted psychotherapy for PTSD: Are memory reconsolidation and fear extinction underlying mechanisms? Prog. Neuropsychopharmacol. Biol. Psychiatry 2018, 84(Pt A), 221-228.
[http://dx.doi.org/10.1016/j.pnpbp.2018.03.003] [PMID: 29524515]
[189]
Young, M.B.; Andero, R.; Ressler, K.J.; Howell, L.L. 3,4-Methylenedioxymethamphetamine facilitates fear extinction learning. Transl. Psychiatry, 2015, 5(9)e634
[http://dx.doi.org/10.1038/tp.2015.138] [PMID: 26371762]
[190]
Chung, L. A brief introduction to the transduction of neural activity into fos signal. Balsaeng’gwa Saengsig, 2015, 19(2), 61-67.
[http://dx.doi.org/10.12717/DR.2015.19.2.061] [PMID: 27004262]
[191]
Autry, A.E.; Monteggia, L.M. Brain-derived neurotrophic factor and neuropsychiatric disorders. Pharmacol. Rev., 2012, 64(2), 238-258.
[http://dx.doi.org/10.1124/pr.111.005108] [PMID: 22407616]
[192]
Zhang, L.; Li, X.X.; Hu, X.Z. Post-traumatic stress disorder risk and brain-derived neurotrophic factor Val66Met. World J. Psychiatry, 2016, 6(1), 1-6.
[http://dx.doi.org/10.5498/wjp.v6.i1.1] [PMID: 27014593]
[193]
Andero, R.; Ressler, K.J. Fear extinction and BDNF: Translating animal models of PTSD to the clinic. Genes Brain Behav., 2012, 11(5), 503-512.
[http://dx.doi.org/10.1111/j.1601-183X.2012.00801.x] [PMID: 22530815]
[194]
Young, M.B.; Norrholm, S.D.; Khoury, L.M.; Jovanovic, T.; Rauch, S.A.M.; Reiff, C.M.; Dunlop, B.W.; Rothbaum, B.O.; Howell, L.L. Inhibition of serotonin transporters disrupts the enhancement of fear memory extinction by 3,4-methylenedioxy-methamphetamine (MDMA). Psychopharmacology (Berl.), 2017, 234(19), 2883-2895.
[http://dx.doi.org/10.1007/s00213-017-4684-8] [PMID: 28741031]
[195]
Balu, D.T.; Turner, J.R.; Brookshire, B.R.; Hill-Smith, T.E.; Blendy, J.A.; Lucki, I. Brain monoamines and antidepressant-like responses in MRL/MpJ versus C57BL/6J mice. Neuropharmacology, 2013, 67, 503-510.
[http://dx.doi.org/10.1016/j.neuropharm.2012.11.027] [PMID: 23220293]
[196]
Burghardt, N.S.; Sigurdsson, T.; Gorman, J.M.; McEwen, B.S.; LeDoux, J.E. Chronic antidepressant treatment impairs the acquisition of fear extinction. Biol. Psychiatry, 2013, 73(11), 1078-1086.
[http://dx.doi.org/10.1016/j.biopsych.2012.10.012] [PMID: 23260230]
[197]
Gunduz-Cinar, O.; Flynn, S.; Brockway, E.; Kaugars, K.; Baldi, R.; Ramikie, T.S.; Cinar, R.; Kunos, G.; Patel, S.; Holmes, A. Fluoxetine facilitates fear extinction through amygdala endocannabinoids. Neuropsychopharmacology, 2016, 41(6), 1598-1609.
[http://dx.doi.org/10.1038/npp.2015.318] [PMID: 26514583]
[198]
Grillon, C. Models and mechanisms of anxiety: Evidence from startle studies. Psychopharmacology (Berl.), 2008, 199(3), 421-437.
[http://dx.doi.org/10.1007/s00213-007-1019-1] [PMID: 18058089]
[199]
Grillon, C.; Ameli, R.; Woods, S.W.; Merikangas, K.; Davis, M. Fear-potentiated startle in humans: Effects of anticipatory anxiety on the acoustic blink reflex. Psychophysiology, 1991, 28(5), 588-595.
[http://dx.doi.org/10.1111/j.1469-8986.1991.tb01999.x] [PMID: 1758934]
[200]
Meyer, J.H.; Kapur, S.; Eisfeld, B.; Brown, G.M.; Houle, S.; DaSilva, J.; Wilson, A.A.; Rafi-Tari, S.; Mayberg, H.S.; Kennedy, S.H. The effect of paroxetine on 5-HT(2A) receptors in depression: an [(18)F]setoperone PET imaging study. Am. J. Psychiatry, 2001, 158(1), 78-85.
[http://dx.doi.org/10.1176/appi.ajp.158.1.78] [PMID: 11136637]
[201]
Sawyer, E.K.; Mun, J.; Nye, J.A.; Kimmel, H.L.; Voll, R.J.; Stehouwer, J.S.; Rice, K.C.; Goodman, M.M.; Howell, L.L. Neurobiological changes mediating the effects of chronic fluoxetine on cocaine use. Neuropsychopharmacology, 2012, 37(8), 1816-1824.
[http://dx.doi.org/10.1038/npp.2012.29] [PMID: 22434223]
[202]
Parrott, A.C.; Lasky, J. Ecstasy (MDMA) effects upon mood and cognition: Before, during and after a Saturday night dance. Psychopharmacology (Berl.), 1998, 139(3), 261-268.
[http://dx.doi.org/10.1007/s002130050714] [PMID: 9784083]
[203]
Monson, C.M.; Wagner, A.C.; Mithoefer, A.T.; Liebman, R.E.; Feduccia, A.A.; Jerome, L.; Yazar-Klosinski, B.; Emerson, A.; Doblin, R.; Mithoefer, M.C. MDMA-facilitated cognitive-behavioural conjoint therapy for posttraumatic stress disorder: An uncontrolled trial. Eur. J. Psychotraumatol., 2020, 11(1)1840123
[http://dx.doi.org/10.1080/20008198.2020.1840123] [PMID: 33408811]
[204]
Feduccia, A.A.; Jerome, L.; Mithoefer, M.C.; Holland, J. Discontinuation of medications classified as reuptake inhibitors affects treatment response of MDMA-assisted psychotherapy. Psychopharmacology (Berl.), 2021, 238(2), 581-588.
[http://dx.doi.org/10.1007/s00213-020-05710-w] [PMID: 33221932]
[205]
Wagner, M.T.; Mithoefer, M.C.; Mithoefer, A.T.; MacAulay, R.K.; Jerome, L.; Yazar-Klosinski, B.; Doblin, R. Therapeutic effect of increased openness: Investigating mechanism of action in MDMA-assisted psychotherapy. J. Psychopharmacol., 2017, 31(8), 967-974.
[http://dx.doi.org/10.1177/0269881117711712] [PMID: 28635375]
[206]
Mithoefer, M.C.; Mithoefer, A.T.; Feduccia, A.A.; Jerome, L.; Wagner, M.; Wymer, J.; Holland, J.; Hamilton, S.; Yazar-Klosinski, B.; Emerson, A.; Doblin, R. 3,4-methylenedioxymethamphetamine (MDMA)-assisted psychotherapy for post-traumatic stress disorder in military veterans, firefighters, and police officers: A randomised, double-blind, dose-response, phase 2 clinical trial. Lancet Psychiatry, 2018, 5(6), 486-497.
[http://dx.doi.org/10.1016/S2215-0366(18)30135-4] [PMID: 29728331]
[207]
Mithoefer, M.C.; Wagner, M.T.; Mithoefer, A.T.; Jerome, L.; Doblin, R. The safety and efficacy of ±3,4-methylenedioxymetham-phetamine-assisted psychotherapy in subjects with chronic, treatment-resistant posttraumatic stress disorder: The first randomized controlled pilot study. J. Psychopharmacol., 2011, 25(4), 439-452.
[http://dx.doi.org/10.1177/0269881110378371] [PMID: 20643699]
[208]
Mithoefer, M.C.; Wagner, M.T.; Mithoefer, A.T.; Jerome, L.; Martin, S.F.; Yazar-Klosinski, B.; Michel, Y.; Brewerton, T.D.; Doblin, R. Durability of improvement in post-traumatic stress disorder symptoms and absence of harmful effects or drug dependency after 3,4-methylenedioxymethamphetamine-assisted psychotherapy: A prospective long-term follow-up study. J. Psychopharmacol., 2013, 27(1), 28-39.
[http://dx.doi.org/10.1177/0269881112456611] [PMID: 23172889]
[209]
Oehen, P.; Traber, R.; Widmer, V.; Schnyder, U. A randomized, controlled pilot study of MDMA (±3,4-Methylenedioxymetham-phetamine)-assisted psychotherapy for treatment of resistant, chronic Post-Traumatic Stress Disorder (PTSD). J. Psychopharmacol., 2013, 27(1), 40-52.
[http://dx.doi.org/10.1177/0269881112464827] [PMID: 23118021]
[210]
Ot’alora, G. M.; Grigsby, J.; Poulter, B.; Van Derveer, J.W., III; Giron, S.G.; Jerome, L.; Feduccia, A.A.; Hamilton, S.; Yazar-Klosinski, B.; Emerson, A.; Mithoefer, M.C.; Doblin, R. 3,4-Methylenedioxymethamphetamine-assisted psychotherapy for treatment of chronic posttraumatic stress disorder: A randomized phase 2 controlled trial. J. Psychopharmacol., 2018, 32(12), 1295-1307.
[http://dx.doi.org/10.1177/0269881118806297] [PMID: 30371148]
[211]
Kurdi, M.; Theerth, K.; Deva, R. Ketamine: Current applications in anesthesia, pain, and critical care. Anesth. Essays Res., 2014, 8(3), 283-290.
[http://dx.doi.org/10.4103/0259-1162.143110] [PMID: 25886322]
[212]
Trimmel, H.; Helbok, R.; Staudinger, T.; Jaksch, W.; Messerer, B.; Schöchl, H.; Likar, R.S. (+)-ketamine. Wien. Klin. Wochenschr., 2018, 130(9-10), 356-366.
[http://dx.doi.org/10.1007/s00508-017-1299-3] [PMID: 29322377]
[213]
Iqbal, S.Z.; Mathew, S.J. Ketamine for depression clinical issues. Adv. Pharmacol., 2020, 89, 131-162.
[http://dx.doi.org/10.1016/bs.apha.2020.02.005] [PMID: 32616205]
[214]
Park, L.T.; Falodun, T.B.; Zarate, C.A., Jr Ketamine for treatment-resistant mood disorders. Focus Am. Psychiatr. Publ., 2019, 17(1), 8-12.
[http://dx.doi.org/10.1176/appi.focus.20180030] [PMID: 31975953]
[215]
Morena, M.; Berardi, A.; Peloso, A.; Valeri, D.; Palmery, M.; Trezza, V.; Schelling, G.; Campolongo, P. Effects of ketamine, dexmedetomidine and propofol anesthesia on emotional memory consolidation in rats: Consequences for the development of post-traumatic stress disorder. Behav. Brain Res., 2017, 329, 215-220.
[http://dx.doi.org/10.1016/j.bbr.2017.04.048] [PMID: 28461010]
[216]
Morena, M.; Colucci, P.; Mancini, G.F.; De Castro, V.; Peloso, A.; Schelling, G.; Campolongo, P. Ketamine anesthesia enhances fear memory consolidation via noradrenergic activation in the basolateral amygdala. Neurobiol. Learn. Mem., 2021, 178107362
[http://dx.doi.org/10.1016/j.nlm.2020.107362] [PMID: 33333316]
[217]
Wei, M.D.; Wang, Y.H.; Lu, K.; Lv, B.J.; Wang, Y.; Chen, W.Y. Ketamine reverses the impaired fear memory extinction and accompanied depressive-like behaviors in adolescent mice. Behav. Brain Res., 2020, 379112342
[http://dx.doi.org/10.1016/j.bbr.2019.112342] [PMID: 31705920]
[218]
Ju, L.S.; Yang, J.J.; Lei, L.; Xia, J.Y.; Luo, D.; Ji, M.H.; Martynyuk, A.E.; Yang, J.J. The combination of long-term ketamine and extinction training contributes to fear erasure by Bdnf methylation. Front. Cell. Neurosci., 2017, 11, 100.
[http://dx.doi.org/10.3389/fncel.2017.00100] [PMID: 28473755]
[219]
Girgenti, M.J.; Ghosal, S.; LoPresto, D.; Taylor, J.R.; Duman, R.S. Ketamine accelerates fear extinction via mTORC1 signaling. Neurobiol. Dis., 2017, 100, 1-8.
[http://dx.doi.org/10.1016/j.nbd.2016.12.026] [PMID: 28043916]
[220]
Feder, A.; Parides, M.K.; Murrough, J.W.; Perez, A.M.; Morgan, J.E.; Saxena, S.; Kirkwood, K. aan het Rot, M.; Lapidus, K.A.B.; Wan, L.B.; Iosifescu, D.; Charney, D.S. Efficacy of intravenous ketamine for treatment of chronic posttraumatic stress disorder: A randomized clinical trial. JAMA Psychiatry, 2014, 71(6), 681-688.
[http://dx.doi.org/10.1001/jamapsychiatry.2014.62] [PMID: 24740528]
[221]
Pradhan, B.; Mitrev, L.; Moaddell, R.; Wainer, I.W. d -Serine is a potential biomarker for clinical response in treatment of post-traumatic stress disorder using (R, S)-ketamine infusion and TIMBER psychotherapy: A pilot study. Biochim. Biophys. Acta. Proteins Proteomics, 2018, 1866(7), 831-839.
[http://dx.doi.org/10.1016/j.bbapap.2018.03.006] [PMID: 29563072]
[222]
Beck, K.; Hindley, G.; Borgan, F.; Ginestet, C.; McCutcheon, R.; Brugger, S.; Driesen, N.; Ranganathan, M.; D’Souza, D.C.; Taylor, M.; Krystal, J.H.; Howes, O.D. Association of ketamine with psychiatric symptoms and implications for its therapeutic use and for understanding schizophrenia. JAMA Netw. Open, 2020, 3(5)e204693
[http://dx.doi.org/10.1001/jamanetworkopen.2020.4693] [PMID: 32437573]
[223]
Carhart-Harris, R.L.; Bolstridge, M.; Day, C.M.J.; Rucker, J.; Watts, R.; Erritzoe, D.E.; Kaelen, M.; Giribaldi, B.; Bloomfield, M.; Pilling, S.; Rickard, J.A.; Forbes, B.; Feilding, A.; Taylor, D.; Curran, H.V.; Nutt, D.J. Psilocybin with psychological support for treatment-resistant depression: Six-month follow-up. Psychopharmacology (Berl.), 2018, 235(2), 399-408.
[http://dx.doi.org/10.1007/s00213-017-4771-x] [PMID: 29119217]
[224]
Carhart-Harris, R.L.; Bolstridge, M.; Rucker, J.; Day, C.M.J.; Erritzoe, D.; Kaelen, M.; Bloomfield, M.; Rickard, J.A.; Forbes, B.; Feilding, A.; Taylor, D.; Pilling, S.; Curran, V.H.; Nutt, D.J. Psilocybin with psychological support for treatment-resistant depression: An open-label feasibility study. Lancet Psychiatry, 2016, 3(7), 619-627.
[http://dx.doi.org/10.1016/S2215-0366(16)30065-7] [PMID: 27210031]
[225]
Moreno, F.A.; Wiegand, C.B.; Taitano, E.K.; Delgado, P.L. Safety, tolerability, and efficacy of psilocybin in 9 patients with obsessive-compulsive disorder. J. Clin. Psychiatry, 2006, 67(11), 1735-1740.
[http://dx.doi.org/10.4088/JCP.v67n1110] [PMID: 17196053]
[226]
Pokorny, T.; Preller, K.H.; Kometer, M.; Dziobek, I.; Vollenweider, F.X. Effect of psilocybin on empathy and moral decision-making. Int. J. Neuropsychopharmacol., 2017, 20(9), 747-757.
[http://dx.doi.org/10.1093/ijnp/pyx047] [PMID: 28637246]
[227]
Soler, J.; Elices, M.; Franquesa, A.; Barker, S.; Friedlander, P.; Feilding, A.; Pascual, J.C.; Riba, J. Exploring the therapeutic potential of Ayahuasca: Acute intake increases mindfulness-related capacities. Psychopharmacology (Berl.), 2016, 233(5), 823-829.
[http://dx.doi.org/10.1007/s00213-015-4162-0] [PMID: 26612618]
[228]
Stroud, J.B.; Freeman, T.P.; Leech, R.; Hindocha, C.; Lawn, W.; Nutt, D.J.; Curran, H.V.; Carhart-Harris, R.L. Psilocybin with psychological support improves emotional face recognition in treatment-resistant depression. Psychopharmacology (Berl.), 2018, 235(2), 459-466.
[http://dx.doi.org/10.1007/s00213-017-4754-y] [PMID: 29085980]
[229]
Lebedev, A.V.; Kaelen, M.; Lövdén, M.; Nilsson, J.; Feilding, A.; Nutt, D.J.; Carhart-Harris, R.L. LSD-induced entropic brain activity predicts subsequent personality change. Hum. Brain Mapp., 2016, 37(9), 3203-3213.
[http://dx.doi.org/10.1002/hbm.23234] [PMID: 27151536]
[230]
MacLean, K.A.; Johnson, M.W.; Griffiths, R.R. Mystical experiences occasioned by the hallucinogen psilocybin lead to increases in the personality domain of openness. J. Psychopharmacol., 2011, 25(11), 1453-1461.
[http://dx.doi.org/10.1177/0269881111420188] [PMID: 21956378]
[231]
Roseman, L.; Haijen, E.; Idialu-Ikato, K.; Kaelen, M.; Watts, R.; Carhart-Harris, R. Emotional breakthrough and psychedelics: Validation of the emotional breakthrough inventory. J. Psychopharmacol., 2019, 33(9), 1076-1087.
[http://dx.doi.org/10.1177/0269881119855974] [PMID: 31294673]
[232]
Cameron, L.P.; Benson, C.J.; Dunlap, L.E.; Olson, D.E. Effects of N, N -dimethyltryptamine on rat behaviors relevant to anxiety and depression. ACS Chem. Neurosci., 2018, 9(7), 1582-1590.
[http://dx.doi.org/10.1021/acschemneuro.8b00134] [PMID: 29664276]
[233]
Catlow, B.J.; Song, S.; Paredes, D.A.; Kirstein, C.L.; Sanchez-Ramos, J. Effects of psilocybin on hippocampal neurogenesis and extinction of trace fear conditioning. Exp. Brain Res., 2013, 228(4), 481-491.
[http://dx.doi.org/10.1007/s00221-013-3579-0] [PMID: 23727882]
[234]
De Berardis, D.; Vellante, F.; Fornaro, M.; Anastasia, A.; Olivieri, L.; Rapini, G.; Serroni, N.; Orsolini, L.; Valchera, A.; Carano, A.; Tomasetti, C.; Varasano, P.A.; Pressanti, G.L.; Bustini, M.; Pompili, M.; Serafini, G.; Perna, G.; Martinotti, G.; Di Giannantonio, M. Alexithymia, suicide ideation, affective temperaments and homocysteine levels in drug naïve patients with post-traumatic stress disorder: An exploratory study in the everyday ‘real world’ clinical practice. Int. J. Psychiatry Clin. Pract., 2020, 24(1), 83-87.
[http://dx.doi.org/10.1080/13651501.2019.1699575] [PMID: 31829763]
[235]
Hegberg, N.J.; Hayes, J.P.; Hayes, S.M. Exercise intervention in PTSD: A narrative review and rationale for implementation. Front. Psychiatry, 2019, 10, 133.
[http://dx.doi.org/10.3389/fpsyt.2019.00133] [PMID: 30949075]
[236]
Kozel, F.A.; Motes, M.A.; Didehbani, N.; DeLaRosa, B.; Bass, C.; Schraufnagel, C.D.; Jones, P.; Morgan, C.R.; Spence, J.S.; Kraut, M.A.; Hart, J., Jr Repetitive TMS to augment cognitive processing therapy in combat veterans of recent conflicts with PTSD: A randomized clinical trial. J. Affect. Disord., 2018, 229, 506-514.
[http://dx.doi.org/10.1016/j.jad.2017.12.046] [PMID: 29351885]
[237]
Langevin, J.P.; Chen, J.; Koek, R.; Sultzer, D.; Mandelkern, M.; Schwartz, H.; Krahl, S. Deep brain stimulation of the basolateral amygdala: Targeting technique and electrodiagnostic findings. Brain Sci., 2016, 6(3), 28.
[http://dx.doi.org/10.3390/brainsci6030028] [PMID: 27517963]
[238]
Osuch, E.A.; Benson, B.E.; Luckenbaugh, D.A.; Geraci, M.; Post, R.M.; McCann, U. Repetitive TMS combined with exposure therapy for PTSD: A preliminary study. J. Anxiety Disord., 2009, 23(1), 54-59.
[http://dx.doi.org/10.1016/j.janxdis.2008.03.015] [PMID: 18455908]
[239]
Powers, M.B.; Medina, J.L.; Burns, S.; Kauffman, B.Y.; Monfils, M.; Asmundson, G.J.G.; Diamond, A.; McIntyre, C.; Smits, J.A.J. Exercise augmentation of exposure therapy for PTSD: Rationale and pilot efficacy data. Cogn. Behav. Ther., 2015, 44(4), 314-327.
[http://dx.doi.org/10.1080/16506073.2015.1012740] [PMID: 25706090]
[240]
Reznikov, R.; Hamani, C. Posttraumatic stress disorder: Perspectives for the use of deep brain stimulation. Neuromodulation, 2017, 20(1), 7-14.
[http://dx.doi.org/10.1111/ner.12551] [PMID: 27992092]
[241]
Galea, S.; Merchant, R.M.; Lurie, N. The mental health consequences of COVID-19 and physical distancing. JAMA Intern. Med., 2020, 180(6), 817-818.
[http://dx.doi.org/10.1001/jamainternmed.2020.1562] [PMID: 32275292]
[242]
Yuan, K.; Gong, Y.M.; Liu, L.; Sun, Y.K.; Tian, S.S.; Wang, Y.J.; Zhong, Y.; Zhang, A.Y.; Su, S.Z.; Liu, X.X.; Zhang, Y.X.; Lin, X.; Shi, L.; Yan, W.; Fazel, S.; Vitiello, M.V.; Bryant, R.A.; Zhou, X.Y.; Ran, M.S.; Bao, Y.P.; Shi, J.; Lu, L. Prevalence of posttraumatic stress disorder after infectious disease pandemics in the twenty-first century, including COVID-19: A meta-analysis and systematic review. Mol. Psychiatry, 2021, 26(9), 4982-4998.
[http://dx.doi.org/10.1038/s41380-021-01036-x] [PMID: 33542468]