Therapeutic Applications of Fucoidans and their Potential to Act Against COVID-19

Page: [3671 - 3676] Pages: 6

  • * (Excluding Mailing and Handling)

Abstract

In this review article, we present the updated evidence of therapeutic applications of fucoidan (a seaweed polysaccharide) and its novel potential to treat infectious diseases such as coronavirus disease (COVID-19). Because of their many biological activities, seaweeds have been identified as a rich and useful source of bioactive chemicals. Sulfated polysaccharides from the sea are considered a source of physiologically active chemicals that might be used in medication development. Antitumor, antiviral, antioxidant, antibacterial, anticoagulant, and immune-inflammatory properties have all been described for these compounds. By interfering at various phases of viral infection, marine sulfated polysaccharide has a virucidal effect. As a result, it opens the door to the development of antiviral treatments. Virus entry into host cells is an initial process, avoiding this type of entry makes any precautionary measure effective. The inhibitory action of certain marine sulfated polysaccharides against coronavirus was tested, and fucoidan, iota-carrageenan, and sea cucumber sulfated polysaccharides all showed a substantial antiviral impact. Fucoidan is one of the useful sulfated polysaccharides that has been widely studied and explored in various research. There are different sources of fucoidans, which have been used in the treatment of viral infection. Additionally, we highlight the mechanism of action of fuocidan against COVID-19. Hence, we could suggest that COVID-19 might be prevented and treated using these sulfated polysaccharides. This review thus highlights ample evidence to support the hypothesis that a large number of drugs have been developed from powerful compounds isolated from marine seaweeds.

[1]
Tiwari V, Darmani NA, Yue BYJT, Shukla D. In vitro antiviral activity of neem ( Azardirachta indica L.) bark extract against herpes simplex virus type-1 infection. Phytother Res 2010; 24(8): 1132-40.
[http://dx.doi.org/10.1002/ptr.3085] [PMID: 20041417]
[2]
Sytar O, Brestic M, Hajihashemi S, et al. COVID-19 prophylaxis efforts based on natural antiviral plant extracts and their compounds. Molecules 2021; 26(3): 727.
[http://dx.doi.org/10.3390/molecules26030727] [PMID: 33573318]
[3]
Maurya VK, Kumar S, Bhatt ML, Saxena SK. Antiviral activity of traditional medicinal plants from Ayurveda against SARS-CoV-2 infection. J Biomol Struct Dyn 2020; 1-17.
[PMID: 33073699]
[4]
Mirzaie A, Halaji M, Dehkordi FS, Ranjbar R, Noorbazargan H. A narrative literature review on traditional medicine options for treatment of corona virus disease 2019 (COVID-19). Complement Ther Clin Pract 2020; 40: 101214.
[http://dx.doi.org/10.1016/j.ctcp.2020.101214] [PMID: 32891290]
[5]
Verma S, Singh S. Current and future status of herbal medicines. Vet World 2008; 2(2): 347.
[http://dx.doi.org/10.5455/vetworld.2008.347-350]
[6]
Muthu C, Ayyanar M, Raja N, Ignacimuthu S. Medicinal plants used by traditional healers in Kancheepuram District of Tamil Nadu, India. J Ethnobiol Ethnomed 2006; 2(1): 43.
[http://dx.doi.org/10.1186/1746-4269-2-43] [PMID: 17026769]
[7]
Chauhan PS, Yadav D, Jin JO. Therapeutic potential of algal nanoparticles: A brief review. Comb Chem High Throughput Screen 2022; 25(14): 2443-51.
[PMID: 34477514]
[8]
Katare C, Saxena S, Agrawal S, et al. Lipid-lowering and antioxidant functions of bottle gourd (Lagenaria siceraria) extract in human dyslipidemia. J Evid Based Complementary Altern Med 2014; 19(2): 112-8.
[http://dx.doi.org/10.1177/2156587214524229] [PMID: 24647091]
[9]
Sen S, Chakraborty R. Revival, modernization and integration of Indian traditional herbal medicine in clinical practice: Importance, challenges and future. J Tradit Complement Med 2017; 7(2): 234-44.
[http://dx.doi.org/10.1016/j.jtcme.2016.05.006] [PMID: 28417092]
[10]
Lim XY, Teh BP, Tan TYC. Medicinal plants in COVID-19: Potential and limitations. Front Pharmacol 2021; 12: 611408-8.
[http://dx.doi.org/10.3389/fphar.2021.611408] [PMID: 33841143]
[11]
Ti H, Zhuang Z, Yu Q, Wang S. Progress of plant medicine derived extracts and alkaloids on modulating viral infections and inflammation. Drug Des Devel Ther 2021; 15: 1385-408.
[http://dx.doi.org/10.2147/DDDT.S299120] [PMID: 33833499]
[12]
Chauhan PS, Yadav D, Dubey A, Jin JO. Nano-biomaterials as sensing and therapeutic tool to mitigate viral pathogenesis with special reference to COVID-19. Curr Pharm Des 2021; 27(32): 3424-34.
[http://dx.doi.org/10.2174/1381612827666210203142934] [PMID: 33535945]
[13]
Conti V, Sellitto C, Torsiello M, et al. Identification of drug interaction adverse events in patients with COVID-19. JAMA Netw Open 2022; 5(4): e227970-0.
[http://dx.doi.org/10.1001/jamanetworkopen.2022.7970] [PMID: 35438752]
[14]
Paine MF. Natural products: Experimental approaches to elucidate disposition mechanisms and predict pharmacokinetic drug interactions. Drug Metab Dispos 2020; 48(10): 956-62.
[http://dx.doi.org/10.1124/dmd.120.000182] [PMID: 32816868]
[15]
Panther EJ, Lucke-Wold B. Subarachnoid hemorrhage: Management considerations for COVID-19. Exploration of Neuroprotective Therapy 2022; 2(2): 65-73.
[http://dx.doi.org/10.37349/ent.2022.00018] [PMID: 35340712]
[16]
Chavda V, Jan AT, Yadav D. Mini-review on SARS-CoV-2 infection and neurological manifestations: A perspective. CNS Neurol Disord Drug Targets 2022; 21(3): 210-6.
[http://dx.doi.org/10.2174/1871527320666210706103422] [PMID: 34967301]
[17]
Small C, Mehkri Y, Panther E, Felisma P, Lucke-Wold B. Coronavirus disease-2019 and stroke: Pathophysiology and management. Can J Neurol Sci 2022; 1-8.
[http://dx.doi.org/10.1017/cjn.2022.267] [PMID: 35762309]
[18]
Thakur V, Ratho RK, Kumar P, et al. Multi-organ involvement in COVID-19: Beyond pulmonary manifestations. J Clin Med 2021; 10(3): 446.
[http://dx.doi.org/10.3390/jcm10030446] [PMID: 33498861]
[19]
Khanna K, Kohli SK, Kaur R, et al. Herbal immune-boosters: Substantial warriors of pandemic COVID-19 battle. Phytomedicine 2021; 85: 153361.
[http://dx.doi.org/10.1016/j.phymed.2020.153361] [PMID: 33485605]
[20]
Olejarczyk JP, Young M. StatPearls. StatPearls Publishing 2021.
[21]
Anand U, Jacobo-Herrera N, Altemimi A, Lakhssassi N. A comprehensive review on medicinal plants as antimicrobial therapeutics: Potential avenues of biocompatible drug discovery. Metabolites 2019; 9(11): 258.
[http://dx.doi.org/10.3390/metabo9110258] [PMID: 31683833]
[22]
Kumar Y, Tarafdar A, Badgujar PC. Seaweed as a source of natural antioxidants: Therapeutic activity and food applications. J Food Qual 2021; 2021: 1-17.
[http://dx.doi.org/10.1155/2021/5753391]
[23]
Khalid S, Abbas M, Saeed F, Bader-Ul-Ain H, Suleria HAR. Therapeutic potential of seaweed bioactive compounds. IntechOpen 2018.
[http://dx.doi.org/10.5772/intechopen.74060]
[24]
Ponce NMA, Stortz CA. A comprehensive and comparative analysis of the fucoidan compositional data across the Phaeophyceae. Front Plant Sci 2020; 11: 556312.
[http://dx.doi.org/10.3389/fpls.2020.556312] [PMID: 33324429]
[25]
Choudhary B, Chauhan OP, Mishra A. Edible seaweeds: A potential novel source of bioactive metabolites and nutraceuticals with human health benefits. Front Mar Sci 2021; 8: 740054.
[http://dx.doi.org/10.3389/fmars.2021.740054]
[26]
Ruocco N, Costantini S, Guariniello S, Costantini M. Polysaccharides from the marine environment with pharmacological, cosmeceutical and nutraceutical potential. Molecules 2016; 21(5): 551.
[http://dx.doi.org/10.3390/molecules21050551] [PMID: 27128892]
[27]
Almeida-Lima J, Dantas-Santos N, Gomes DL, et al. Evaluation of acute and subchronic toxicity of a non-anticoagulant, but antithrombotic algal heterofucan from the Spatoglossum schröederi in Wistar rats. Rev Bras Farmacogn 2011; 21(4): 674-9.
[http://dx.doi.org/10.1590/S0102-695X2011005000098]
[28]
Arokiarajan MS, Thirunavukkarasu R, Joseph J, Ekaterina O, Aruni W. Advance research in biomedical applications on marine sulfated polysaccharide. Int J Biol Macromol 2022; 194: 870-81.
[http://dx.doi.org/10.1016/j.ijbiomac.2021.11.142] [PMID: 34843816]
[29]
de Jesus Raposo MF, de Morais AMMB, de Morais RMSC. Polysaccharides: Bioactivity and Biotechnology. Cham: Springer International Publishing 2015; pp. 1683-727.
[http://dx.doi.org/10.1007/978-3-319-16298-0_47]
[30]
Hwang J, Yadav D, Lee PC, Jin J-O. Immunomodulatory effects of polysaccharides from marine algae for treating cancer, infectious disease, and inflammation. Phytother Res 2022; 36(2): 761-77.
[http://dx.doi.org/10.1002/ptr.7348]
[31]
Jin JO, Chauhan PS, Arukha AP, Chavda V, Dubey A, Yadav D. The therapeutic potential of the anticancer activity of fucoidan: Current advances and hurdles. Mar Drugs 2021; 19(5): 265.
[http://dx.doi.org/10.3390/md19050265] [PMID: 34068561]
[32]
Luthuli S, Wu S, Cheng Y, Zheng X, Wu M, Tong H. Therapeutic effects of Fucoidan: A review on recent studies. Mar Drugs 2019; 17(9): 487.
[http://dx.doi.org/10.3390/md17090487] [PMID: 31438588]
[33]
Hans N, Malik A, Naik S. Antiviral activity of sulfated polysaccharides from marine algae and its application in combating COVID-19: Mini review. Bioresour Technol Rep 2021; 13: 100623-3.
[http://dx.doi.org/10.1016/j.biteb.2020.100623] [PMID: 33521606]
[34]
Mak W, Hamid N, Liu T, Lu J, White WL. Fucoidan from New Zealand Undaria pinnatifida: Monthly variations and determination of antioxidant activities. Carbohydr Polym 2013; 95(1): 606-14.
[http://dx.doi.org/10.1016/j.carbpol.2013.02.047] [PMID: 23618312]
[35]
Zhang W, An EK, Park HB, et al. Ecklonia cava fucoidan has potential to stimulate natural killer cells in vivo. Int J Biol Macromol 2021; 185: 111-21.
[http://dx.doi.org/10.1016/j.ijbiomac.2021.06.045] [PMID: 34119543]
[36]
Wang J, Wang F, Zhang Q, Zhang Z, Shi X, Li P. Synthesized different derivatives of low molecular fucoidan extracted from Laminaria japonica and their potential antioxidant activity in vitro. Int J Biol Macromol 2009; 44(5): 379-84.
[http://dx.doi.org/10.1016/j.ijbiomac.2009.02.001] [PMID: 19428470]
[37]
Sanjeewa KKA, Jeon YJ. Fucoidans as scientifically and commercially important algal polysaccharides. Mar Drugs 2021; 19(6): 284.
[http://dx.doi.org/10.3390/md19060284] [PMID: 34063770]
[38]
Richards C, Williams NA, Fitton JH, Stringer DN, Karpiniec SS, Park AY. Oral fucoidan attenuates lung pathology and clinical signs in a severe influenza A mouse model. Mar Drugs 2020; 18(5): 246.
[http://dx.doi.org/10.3390/md18050246] [PMID: 32397317]
[39]
Synytsya A, Bleha R, Synytsya A, et al. Mekabu fucoidan: Structural complexity and defensive effects against avian influenza A viruses. Carbohydr Polym 2014; 111: 633-44.
[http://dx.doi.org/10.1016/j.carbpol.2014.05.032] [PMID: 25037398]
[40]
Wang W, Wu J, Zhang X, et al. Inhibition of Influenza A virus infection by fucoidan targeting viral neuraminidase and cellular EGFR pathway. Sci Rep 2017; 7(1): 40760-0.
[http://dx.doi.org/10.1038/srep40760] [PMID: 28094330]
[41]
Song S, Peng H, Wang Q, et al. Inhibitory activities of marine sulfated polysaccharides against SARS-CoV-2. Food Funct 2020; 11(9): 7415-20.
[http://dx.doi.org/10.1039/D0FO02017F] [PMID: 32966484]
[42]
Cao Y, Hao Y, Li Z, Liu S, Wang L. Antiviral activity of polysaccharide extract from Laminaria japonica against respiratory syncytial virus. Biomed Pharmacother 2016; 84: 1705-10.
[http://dx.doi.org/10.1016/j.biopha.2016.10.082] [PMID: 27847204]
[43]
Kwon PS, Oh H, Kwon SJ, et al. Sulfated polysaccharides effectively inhibit SARS-CoV-2 in vitro. Cell Discov 2020; 6(1): 50.
[http://dx.doi.org/10.1038/s41421-020-00192-8] [PMID: 32714563]
[44]
Ao Z, Chan M, Ouyang MJ, et al. Identification and evaluation of the inhibitory effect of Prunella vulgaris extract on SARS-coronavirus 2 virus entry. PLoS One 2021; 16(6): e0251649-.
[http://dx.doi.org/10.1371/journal.pone.0251649] [PMID: 34106944]
[45]
Jin W, Zhang W, Mitra D, et al. The structure-activity relationship of the interactions of SARS-CoV-2 spike glycoproteins with glucuronomannan and sulfated galactofucan from Saccharina japonica. Int J Biol Macromol 2020; 163: 1649-58.
[http://dx.doi.org/10.1016/j.ijbiomac.2020.09.184] [PMID: 32979436]
[46]
De Pasquale V, Quiccione MS, Tafuri S, Avallone L, Pavone LM. Heparan sulfate proteoglycans in viral infection and treatment: A special focus on SARS-CoV-2. Int J Mol Sci 2021; 22(12): 6574.
[http://dx.doi.org/10.3390/ijms22126574] [PMID: 34207476]
[47]
David AB, Diamant E, Dor E, et al. Identification of SARS-CoV-2 receptor binding inhibitors by in vitro screening of drug libraries. Molecules 2021; 26(11): 3213.
[http://dx.doi.org/10.3390/molecules26113213] [PMID: 34072087]
[48]
Yu M, Zhang T, Zhang W, Sun Q, Li H, Li J. Elucidating the interactions between heparin/heparan sulfate and SARS-CoV-2-related proteins-an important strategy for developing novel therapeutics for the COVID-19 Pandemic. Front Mol Biosci 2021; 7: 628551-1.
[http://dx.doi.org/10.3389/fmolb.2020.628551] [PMID: 33569392]
[49]
Talsma DT, Poppelaars F, Dam W, et al. MASP-2 Is a heparin-binding protease; Identification of blocking oligosaccharides. Front Immunol 2020; 11(732): 732.
[http://dx.doi.org/10.3389/fimmu.2020.00732] [PMID: 32425936]
[50]
Verdecchia P, Cavallini C, Spanevello A, Angeli F. The pivotal link between ACE2 deficiency and SARS-CoV-2 infection. Eur J Intern Med 2020; 76: 14-20.
[http://dx.doi.org/10.1016/j.ejim.2020.04.037] [PMID: 32336612]
[51]
Lafarga T, Acién-Fernández FG, Garcia-Vaquero M. Bioactive peptides and carbohydrates from seaweed for food applications: Natural occurrence, isolation, purification, and identification. Algal Res 2020; 48: 101909.
[http://dx.doi.org/10.1016/j.algal.2020.101909]
[52]
Gozzo L, Viale P, Longo L, Vitale DC, Drago F. The potential role of heparin in patients with COVID-19: Beyond the anticoagulant effect - a review. Front Pharmacol 2020; 11: 1307-7.
[http://dx.doi.org/10.3389/fphar.2020.01307] [PMID: 32973526]
[53]
Giossi R, Menichelli D, Pani A, et al. A systematic review and a meta-analysis comparing prophylactic and therapeutic low molecular weight heparins for mortality reduction in 32,688 COVID-19 patients. Front Pharmacol 2021; 12(2153): 698008.
[http://dx.doi.org/10.3389/fphar.2021.698008] [PMID: 34539396]
[54]
Shereen MA, Khan S, Kazmi A, Bashir N, Siddique R. COVID-19 infection: Emergence, transmission, and characteristics of human coronaviruses. J Adv Res 2020; 24: 91-8.
[http://dx.doi.org/10.1016/j.jare.2020.03.005] [PMID: 32257431]
[55]
Hu B, Guo H, Zhou P, Shi ZL. Characteristics of SARS-CoV-2 and COVID-19. Nat Rev Microbiol 2021; 19(3): 141-54.
[http://dx.doi.org/10.1038/s41579-020-00459-7] [PMID: 33024307]
[56]
Krylova NV, Ermakova SP, Lavrov VF, et al. The comparative analysis of antiviral activity of native and modified Fucoidans from Brown Algae Fucus evanescensin vitro and in vivo. Mar Drugs 2020; 18(4): 224.
[http://dx.doi.org/10.3390/md18040224] [PMID: 32331442]
[57]
Pereira L, Critchley AT. The COVID 19 novel coronavirus pandemic 2020: Seaweeds to the rescue? Why does substantial, supporting research about the antiviral properties of seaweed polysaccharides seem to go unrecognized by the pharmaceutical community in these desperate times? J Appl Phycol 2020; 32(3): 1875-7.
[http://dx.doi.org/10.1007/s10811-020-02143-y] [PMID: 32836796]
[58]
Chen S, Sathuvan M, Zhang X, et al. Characterization of polysaccharides from different species of brown seaweed using saccharide mapping and chromatographic analysis. BMC Chem 2021; 15(1): 1-1.
[http://dx.doi.org/10.1186/s13065-020-00727-w] [PMID: 33430936]
[59]
Chaisuwan W, Phimolsiripol Y, Chaiyaso T, et al. The antiviral activity of bacterial, fungal, and algal polysaccharides as bioactive ingredients: Potential uses for enhancing immune systems and preventing viruses. Front Nutr 2021; 8(902): 772033.
[http://dx.doi.org/10.3389/fnut.2021.772033] [PMID: 34805253]
[60]
Li B, Lu F, Wei X, Zhao R. Fucoidan: Structure and bioactivity. Molecules 2008; 13(8): 1671-95.
[http://dx.doi.org/10.3390/molecules13081671] [PMID: 18794778]
[61]
Kuznetsova TA, Smolina TP, Makarenkova ID, et al. Immunoadjuvant Activity of Fucoidans from the Brown Alga Fucus evanescens. Mar Drugs 2020; 18(3): 155.
[http://dx.doi.org/10.3390/md18030155] [PMID: 32168741]
[62]
Hayashi T, Hayashi K, Kanekiyo K. Promising antiviral Glyco-molecules from an edible alga. Hoboken, NJ, USA: John Wiley & Sons 2007.
[http://dx.doi.org/10.1002/9780470179727.ch7]
[63]
Negishi H, Mori M, Mori H, Yamori Y. Supplementation of elderly Japanese men and women with fucoidan from seaweed increases immune responses to seasonal influenza vaccination. J Nutr 2013; 143(11): 1794-8.
[http://dx.doi.org/10.3945/jn.113.179036] [PMID: 24005608]
[64]
Yang JY, Lim SY. Fucoidans and bowel health. Mar Drugs 2021; 19(8): 436.
[http://dx.doi.org/10.3390/md19080436] [PMID: 34436275]
[65]
Fitton HJ, Stringer DS, Park AY, Karpiniec SN. Therapies from fucoidan: New developments. Mar Drugs 2019; 17(10): 571.
[http://dx.doi.org/10.3390/md17100571] [PMID: 31601041]
[66]
Liu J, Obaidi I, Nagar S, Scalabrino G, Sheridan H. The antiviral potential of algal-derived macromolecules. CRBIOT 2021; 3: 120-34.
[http://dx.doi.org/10.1016/j.crbiot.2021.04.003]
[67]
Prokofjeva M, Imbs T, Shevchenko N, et al. Fucoidans as potential inhibitors of HIV-1. Mar Drugs 2013; 11(8): 3000-14.
[http://dx.doi.org/10.3390/md11083000] [PMID: 23966033]
[68]
Dinesh S, Menon T, Hanna LE, Suresh V, Sathuvan M, Manikannan M. In vitro anti-HIV-1 activity of fucoidan from Sargassum swartzii. Int J Biol Macromol 2016; 82: 83-8.
[http://dx.doi.org/10.1016/j.ijbiomac.2015.09.078] [PMID: 26472515]
[69]
Bittkau KS, Dörschmann P, Blümel M, et al. Comparison of the effects of Fucoidans on the cell viability of tumor and non-tumor cell lines. Mar Drugs 2019; 17(8): 441.
[http://dx.doi.org/10.3390/md17080441] [PMID: 31357497]
[70]
Sanniyasi E, Venkatasubramanian G, Anbalagan MM, Raj PP, Gopal RK. In vitro anti-HIV-1 activity of the bioactive compound extracted and purified from two different marine macroalgae (seaweeds) (Dictyota bartayesiana J.V., Lamouroux and Turbinaria decurrens Bory). Sci Rep 2019; 9(1): 12185.
[http://dx.doi.org/10.1038/s41598-019-47917-8] [PMID: 31434919]
[71]
Crosby AW. America’s forgotten pandemic: The influenza of 1918. Cambridge University Press 2003.
[http://dx.doi.org/10.1017/CBO9780511586576]
[72]
Ayatollahi SA, Sharifi-Rad J, Tsouh Fokou PV, et al. Naturally occurring bioactives as antivirals: Emphasis on coronavirus infection. Front Pharmacol 2021; 12(502): 575877.
[http://dx.doi.org/10.3389/fphar.2021.575877] [PMID: 34267652]
[73]
Moscona A. Global transmission of oseltamivir-resistant influenza. N Engl J Med 2009; 360(10): 953-6.
[http://dx.doi.org/10.1056/NEJMp0900648] [PMID: 19258250]
[74]
Song Y, Wang Q, Wang Q, et al. Structural characterization and antitumor effects of fucoidans from brown algae Kjellmaniella crassifolia farmed in northern China. Int J Biol Macromol 2018; 119: 125-33.
[http://dx.doi.org/10.1016/j.ijbiomac.2018.07.126] [PMID: 30041037]
[75]
Wang HX, Zeng MS, Ye Y, Liu JY, Xu PP. Antiviral activity of puerarin as potent inhibitor of influenza virus neuraminidase. Phytother Res 2021; 35(1): 324-36.
[http://dx.doi.org/10.1002/ptr.6803] [PMID: 32757226]