[6]
Devi, K.G.; Tejasree, K.; Sri, M.K.; Pravallika, M. Energy reduction of D-Flipflop using 130 nm CMOS technology. J. VLSI Circuit. Syst., 2021, 3(2), 34-41.
[7]
Mahmoud, H.A.H. A low power architectural framework for automated surveillance system with low bit rate transmission. Int. J. Commun. Netw. Inf. Secur., 2021, 13(1), 115-124.
[8]
Al-Zu’bi, H.; Al-Khaleel, O.; Shatnawi, A. FPGA implementation of data flow graphs for digital signal processing applications. Int. J. Commun. Netw. Inf. Secur., 2021, 13(1), 92-114.
[11]
Babu, P.A.; Pasupuleti, V.N.; Modugula, S.M.; Kadava, D.; Maguluri, R.; Mopidevi, N.S. Millimeter-wave power amplifier ics for high dynamic range signals. Inter. J. Commun. Comput. Technol., 2021, 10(2), 15-36.
[12]
Rao, K.M.; Kishore, M.N.D.; Yogesh, M.P.; Saheb, S.K.A.; Hemanth, K. Triple frequency micro strip patch antenna using ground slot technique. Nat. J. Antennas Propag., 2021, 3(2), 1-5.
[19]
Maszara, WP; Lin, MR. FinFETs—Technology and circuit design challenges. In 2013 Proceedings of the European Solid-State Device Research Conference (ESSDERC), 2013 Sep 16 (pp. 3-8). IEEE.
[26]
Jalili, B.; Ghafoori, H.; Jalili, P. Investigation of carbon nano-tube (CNT) particles effect on the performance of a refrigeration cycle. Int. J. Mater. Sci. Innov., 2014, 2, 8-17.
[34]
Mistry, K.; Allen, C.; Auth, C.; Beattie, B.; Bergstrom, D.; Bost, M.; Brazier, M.; Buehler, M.; Cappellani, A.; Chau, R.; Choi, C.H.A. A 45 nm logic technology with high-k+ metal gate transistors,
strained silicon, 9 Cu interconnect layers, 193nm dry patterning,
and 100% Pb-free packaging. In. IEEE International Electron
Devices Meeting 2007 Dec 10, pp. 247-250). IEEE, 2007.
[36]
Xu, N. Effectiveness of strain solutions for next-generation MOSFETs; University of California: Berkeley, 2012.
[37]
Kajal, Sharma VK. FinFET: A Beginning of Non-planar Transistor Era; Springer: Singapore, 2020, pp. 139-159.
[39]
Kajal; Sharma, V.K. Design and Simulation of FinFET Circuits at
Different Technologies. In: 6th International Conference on Inventive
Computation Technologies (ICICT); , 2021; pp. 1-6.
[41]
Hoffman, T.Y. Integrating high-k/metal gates: Gate-first or gate-last? Solid State Technol., 2010, 53(3), 20-21.
[45]
Cerdeira, A.; Estrada, M.; Alvarado, J.; Garduño, I.; Contreras, E.; Tinoco, J.; Iniguez, B.; Kilchytska, V.; Flandre, D. Review on double-gate MOSFETs and FinFETs modeling. Facta universitatis-series. Electr. Energ., 2013, 26(3), 197-213.
[48]
Hossain, M.Z.; Hossain, M.A.; Islam, M.S.; Rahman, M.M.; Chowdhury, M.H. Electrical characteristics of trigate finfet. Global J. Res. Eng. Electri. Electron. Eng., 2011, vol. 11 issue 7.
[50]
Huq, SI; Nafreen, M; Rahman, T; Bhadra, S. Comparative study of full adder circuit with 32nm MOSFET, DG-FinFET and CNTFET. In: 2017 4th International Conference on Advances in Electrical Engineering (ICAEE); 2017 Sep 28 (pp. 38-43). IEEE.
[52]
Kajal; Sharma, V.K. Reliability and PVT simulation of FinFET circuits using Cadence Virtuoso. In: 5th International Conference on Electrical, Electronics, Communication, Computer Technologies and Optimization Techniques (ICEECCOT); , 2021; pp. 344-349.
[56]
Yang, Y.; Jha, N.K. FinPrin: FinFET logic circuit analysis and optimization under PVT variations. IEEE Transactions on Very Large Scale Integration (VLSI). Systems., 2013, 22(12), 2462-2475.
[61]
Poljak, M.; Jovanović, V.; Suligoj, T. Properties of bulk FinFET with high-κ gate dielectric and metal gate electrode. Proc. MIPRO, 2008, 73-78.
[62]
Banerjee, S.; Sarkar, E.; Mukherjee, A. Effect of Fin Width and Fin Height on Threshold Voltage for Tripple Gate Rectangular FinFET. Techno International Journal of Health, Engineering. Manage. Sci., 2018.
[65]
Kajal; Sharma, V.K. Design of low power AOI FinFET circuits at 7nm. In: 4th International Conference on Electronics, Communication and Aerospace Technology (ICECA); , 2020; pp. 136-142.
[70]
Choi, J.H.; Murthy, J.; Roy, K. The effect of process variation on device temperature in FinFET circuits. In: 2007 IEEE/ACM International Conference on Computer-Aided Design; pp. 747-751. IEEE, 2007.
[71]
Lederer, D.; Parvais, B.; Mercha, A.; Collaert, N.; Jurczak, M.; Raskin, J.P.; Decoutere, S. Dependence of FinFET RF performance on fin width. In: Digest of Papers. 2006 Topical Meeting on Silicon Monolithic Integrated Circuits in RF Systems, 18-20 January 2006; San Diego, CA, USA, IEEE, 2006.
[79]
Madhavi, K.B.; Tripathi, S.L. Strategic review on different materials for FinFET structure performance optimization. In: IOP Conference Series: Materials Science and Engineering. Vol. 988; No. 1. IOP Publishing,. , 2020.
[85]
Rahin, A.B.; Rahin, V.B. FinFET-based Full Adder using SDTSPC logic with high performance. Int. J. Mechatron. Electr. Comput. Technol., 2020, 10(38), 4773-4778.
[86]
Prasad, M.V.; Kumar, K.N. Low Power FinFET Based Full Adder Design. Int. J. Adv. Res. Comput. Commun. Eng., 2007, 6(8), 328-335.
[87]
Tahrim, A.; Chin, H.C.; Lim, C.S.; Tan, M.L. Design and performance analysis of 1-bit FinFET full adder cells for sub-threshold region at 16 nm process technology. J. Nanomater., 2015, 2015, Article ID: 726175.
[88]
Vejendla, N. Performance analysis of adder circuits using FINFET’S. J. Circ. Syst., 2017, 5(3), 1.
[90]
Sharma, S; Soni, G Comparative study of finfet based 1-bit full
adder cell implemented using TG And CMOS Logic Styles At 10,
22 And 32nm. IOSR J. VLSI Signal Process. (IOSR-JVSP), 6, 26-35.
[92]
Huq, S.I. Performance Analysis of 6-Transistor Full Adder Circuit using PTM 32 nm Technology LP-MOSFETs and DG-FinFETs. J. Eng. Appl. Sci. (Asian Res. Publ. Netw.), 2020, 15(2), 501-507.
[93]
Gehlot, H.; Lodhi, M.E. Analysis of proposed FinFET based full adder using CMOS logic style. Inter. Res. J. Eng. Technol., 2019, 6 [IRJET].