Synthesis and Reactions of Thieno[2,3-c]quinolines from Arylaldehyde and Arylamine Derivatives: A Review (Part VIII)

Page: [151 - 171] Pages: 21

  • * (Excluding Mailing and Handling)

Abstract

In this review article, many thieno[2,3-c]quinoline derivatives are shown from many aspects, including different preparation and processing methods, by the use of recent systems and high technology. This review includes many chemical reactions that show the preparation of thieno[2,3- c]quinoline derivatives from aryl-aldehyde, arylamine derivatives, and other chemical reagents. Several synthesized thieno[2,3-c]quinoline derivatives are described in this review article, including: benzothieno[ 2,3-c]quinoline; 1,2,4-triazolo[4,3-a]quinoline; benzothieno [2,3-c]tetrazolo[1,5-a]quinoline; acetyl-amino-benzothieno[2,3-c]quinolinones; methoxythieno[3',2': 4,5]thieno[2,3-c]quinoline; amino- thieno-thieno[2,3-c]quinoline-methaniminium chloride; thieno [3',2':4,5]thieno[2,3-c]quinolineimidazole; thieno[2,3-c]phenanthroline; naphtho[1,2-f]thieno [3',2':4,5]thieno[2,3- c][1,2,4]triazolo[4,3-a]quinoline; naphtho-tetrazolo[1,5-a]thieno[3',2':4,5] thieno[2,3-c]quinoline; and benzo[4,5]thieno[2,3-c]quinoline-2-carbonitrile.

Graphical Abstract

[1]
Anft, B. Friedlieb Ferdinand Runge: A forgotten chemist of the nineteenth century. J. Chem. Educ., 1955, 32(11), 566-574.
[http://dx.doi.org/10.1021/ed032p566]
[2]
Leete, E. Biosynthesis of quinine and related alkaloids. Acc. Chem. Res., 1969, 2(2), 59-64.
[http://dx.doi.org/10.1021/ar50014a005]
[3]
Abu-Hashem, A.A.; El-Gazzar, A.B.A.; Abdelgawad, A.A.M.; Gouda, M.A. Synthesis and chemical reactions of thieno[3,2- c]quinolines from arylamine derivatives, part (V): A review. Phosphorus Sulfur Silicon Relat. Elem., 2022, 197(7), 665-688.
[http://dx.doi.org/10.1080/10426507.2021.2012176]
[4]
Mahajan, P.; Nikam, M.; Asrondkar, A.; Bobade, A.; Gill, C. Synthesis, antioxidant, and anti-inflammatory evaluation of novel thiophene-fused quinoline based β-diketones and derivatives. J. Heterocycl. Chem., 2017, 54(2), 1415-1422.
[http://dx.doi.org/10.1002/jhet.2722]
[5]
Castrillo, A.; Pennington, D.J.; Otto, F.; Parker, P.J.; Owen, M.J.; Boscá, L. Protein kinase Cepsilon is required for macrophage activation and defense against bacterial infection. J. Exp. Med., 2001, 194(9), 1231-1242.
[http://dx.doi.org/10.1084/jem.194.9.1231] [PMID: 11696589]
[6]
Jarak, I.; Kralj, M.; Šuman, L. Pavlović G.; Dogan, J.; Piantanida, I.; Žinić M.; Pavelić K.; Karminski-Zamola, G. Novel cyano- and N-isopropylamidino-substituted derivatives of benzo[b]thiophene-2-carboxanilides and benzo[b]thieno[2,3-c]quinolones: synthesis, photochemical synthesis, crystal structure determination, and antitumor evaluation. J. Med. Chem., 2005, 48(7), 2346-2360.
[http://dx.doi.org/10.1021/jm049541f] [PMID: 15801828]
[7]
Dogan Koružnjak, J.; Grdiša, M.; Slade, N.; Zamola, B. Pavelić K.; Karminski-Zamola, G. Novel derivatives of benzo[b]thieno [2,3-c]quinolones: synthesis, photochemical synthesis, and antitumor evaluation. J. Med. Chem., 2003, 46(21), 4516-4524.
[http://dx.doi.org/10.1021/jm0210966] [PMID: 14521413]
[8]
Goerlitzer, K.; Gabriel, B.; Jomaa, H.; Wiesner, J. Thieno[3,2- c]quinoline-4-yl-amines -- synthesis and investigation of activity against malaria. Pharmazie, 2006, 61(4), 278-284.2006.
[9]
Sović I.; Viskić M.; Bertoša, B.; Ester, K.; Kralj, M.; Hranjec, M.; Karminski-Zamola, G. Exploring antiproliferative activity of heteroaromatic amides and their fused derivatives using 3D-QSAR, synthesis, and biological tests. Monatsh. Chem., 2015, 146(9), 1503-1517.
[http://dx.doi.org/10.1007/s00706-015-1478-8]
[10]
Pierre, F.; Regan, C.F.; Chevrel, M.C.; Siddiqui-Jain, A.; Macalino, D.; Streiner, N.; Drygin, D.; Haddach, M.; O’Brien, S.E.; Rice, W.G.; Ryckman, D.M. Novel potent dual inhibitors of CK2 and Pim kinases with antiproliferative activity against cancer cells. Bioorg. Med. Chem. Lett., 2012, 22(9), 3327-3331.
[http://dx.doi.org/10.1016/j.bmcl.2012.02.099]
[11]
Abass, M. Substituted Quinolinones, Part 10: Synthesis of angular tetracyclic thieno and thiopyrano[3,2-c]benzo[h]quinolinones under PTC conditions as novel enzymatic enhancers. Phosphorus Sulfur Silicon Relat. Elem., 2007, 182(4), 735-748.
[http://dx.doi.org/10.1080/10426500601047511]
[12]
Salem, M.A.; Gouda, M.A.; El-Bana, G.G. Chemistry of 2-(Piperazin-1-yl) quinoline-3-carbaldehydes. Mini Rev. Org. Chem., 2022, 19(4), 480-495.
[http://dx.doi.org/10.2174/1570193X18666211001124510]
[13]
Abu-Hashem, A.A.; Abdelgawad, A.A.M.; Hussein, H.A.R.; Gouda, M.A. Synthetic and reactions routes to tetrahydrothieno[3,2-b]quinoline derivatives (Part IV). Mini Rev. Org. Chem., 2022, 19(1), 74-91.
[http://dx.doi.org/10.2174/1570193X18666210218212719]
[14]
Abu-Hashem, A.A.; Abdelgawad, A.A.M.; Gouda, M.A. Vilsmeier-Haack cyclisation as a facile synthetic route to thieno[2,3-b]quinolines (Part I). Lett. Org. Chem., 2022.
[http://dx.doi.org/10.2174/1570178619666220922105259]
[15]
Salem, M.A.; Abu-Hashem, A.A.; Abdelgawad, A.A.M.; Gouda, M.A. Synthesis and reactivity of thieno[2,3- b]quinoline derivatives (Part II). J. Heterocycl. Chem., 2021, 58(9), 1705-1740.
[http://dx.doi.org/10.1002/jhet.4269]
[16]
Gouda, M.A.; Abu-Hashem, A.A.; Abdelgawad, A.A.M. Recent progress on the chemistry of thieno[3,2- b]quinoline derivatives (part III). J. Heterocycl. Chem., 2021, 58(4), 908-927.
[http://dx.doi.org/10.1002/jhet.4205]
[17]
Gouda, M.A.; Abu-Hashem, A.A.; Abdelgawad, A.A.M. Thieno[3,2-c]quinoline heterocyclic synthesis and reactivity part (VI). Mini Rev. Org. Chem., 2022, 19(5), 629-653.
[http://dx.doi.org/10.2174/1570193X18666211004102537]
[18]
Abu-Hashem, A.A.; Al-Hussain, S.A. Design, synthesis of new 1,2,4-triazole/1,3,4-thiadiazole with spiroindoline, imidazo[4,5-b]quinoxaline and thieno[2,3-d]pyrimidine from isatin derivatives as anticancer agents. Molecules, 2022, 27(3), 835.
[http://dx.doi.org/10.3390/molecules27030835] [PMID: 35164098]
[19]
Abu-Hashem, A.A.; Al-Hussain, S.A.; Zaki, M.E.A. Design, synthesis and snticancer activity of new polycyclic: imidazole, thiazine, oxathiine, pyrroloquinoxaline and thienotriazolopyrimidine derivatives. Molecules, 2021, 26(7), 2031.
[http://dx.doi.org/10.3390/molecules26072031] [PMID: 33918322]
[20]
Abu-Hashem, A.A.; El-Shazly, M. Synthesis and antimicrobial evaluation of novel triazole, tetrazole, and spiropyrimidine-thiadiazole derivatives. Polycycl. Aromat. Compd., 2021, 41(3), 478-497.
[http://dx.doi.org/10.1080/10406638.2019.1598448]
[21]
Abu-Hashem, A.A. Synthesis and antimicrobial activity of new 1,2,4-triazole, 1,3,4-oxadiazole, 1,3,4-thiadiazole, thiopyrane, thiazolidinone, and azepine derivatives. J. Heterocycl. Chem., 2021, 58(1), 74-92.
[http://dx.doi.org/10.1002/jhet.4149]
[22]
Abu-Hashem, A.A. Synthesis of new pyrazoles, oxadiazoles, triazoles, pyrrolotriazines, and pyrrolotriazepines as potential cytotoxic agents. J. Heterocycl. Chem., 2021, 58(3), 805-821.
[http://dx.doi.org/10.1002/jhet.4216]
[23]
Abu-Hashem, A.A.; Hussein, H.A.R.; Aly, A.S. Synthesis and antimicrobial activity of novel 1,2,4-triazolopyrimidofuroquina-zolinones from natural furochromones (Visnagenone and Khellinone). Med. Chem., 2021, 17(7), 707-723.
[http://dx.doi.org/10.2174/1573406416666200406130047] [PMID: 32250227]
[24]
Abu-Hashem, A.A.; Al-Hussain, S.A.; Zaki, M.E.A. Synthesis of novel benzodifuranyl; 1,3,5-triazines; 1,3,5-oxadiazepines; and thiazolopyrimidines derived from visnaginone and khellinone as anti-Inflammatory and analgesic agents. Molecules, 2020, 25(1), 220.
[http://dx.doi.org/10.3390/molecules25010220] [PMID: 31948127]
[25]
Abu-Hashem, A.A.; Abu-Zied, K.M.; AbdelSalam Zaki, M.E.; El-Shehry, M.F.; Awad, H.M.; Khedr, M.A. Design, synthesis, and anticancer potential of the enzyme (PARP-1) inhibitor with computational studies of new triazole, thiazolidinone, thieno[2,3-d]pyrimidinones. Lett. Drug Des. Discov., 2020, 17(6), 799-817.
[http://dx.doi.org/10.2174/1570180817666200117114716]
[26]
Gouda, M.A.; Abu-Hashem, A.A.; Hussein, H.A.R.; Aly, A.S. Recent progress on fused thiadiazines: A literature review. Polycycl. Aromat. Compd., 2022, 42(5), 2861-2893.
[http://dx.doi.org/10.1080/10406638.2020.1825002]
[27]
Gouda, M.A.; Abu-Hashem, A.A.; Salem, M.A.; Helal, M.H.; Al-Ghorbani, M.; Hamama, W.S. Recent progress on coumarin scaffold-based anti-microbial agents (Part III). J. Heterocycl. Chem., 2020, 57(11), 3784-3817.
[http://dx.doi.org/10.1002/jhet.4100]
[28]
Abu-Hashem, A.A.; Fathy, U.; Gouda, M.A. Synthesis of 1,2, 4-triazolopyridazines, isoxazolofuropyridazines, and tetrazolopyri-dazines as antimicrobial agents. J. Heterocycl. Chem., 2020, 57(9)
[http://dx.doi.org/10.1002/jhet.4065]
[29]
Gouda, M.A.; Abu-Hashem, A.A.; Hussein, H.A.R.; Aly, A.S. Recent development in the chemistry of bicyclic 6+5 systems, part II: Chemistry of triazolopyrimidine derivatives. Lett. Org. Chem., 2020, 17(12), 897-925.
[http://dx.doi.org/10.2174/1570178617666200417121205]
[30]
Abu-Hashem, A.A.; Zaki, M.E.A. Direct amination and synthesis of fused N-substituted isothiochromene derivatives. J. Heterocycl. Chem., 2019, 56(3), 886-894.
[http://dx.doi.org/10.1002/jhet.3466]
[31]
Abu-Hashem, A. Synthesis of new furothiazolo pyrimido quinazolinones from visnagenone or khellinone and antimicrobial activity. Molecules, 2018, 23(11), 2793.
[http://dx.doi.org/10.3390/molecules23112793] [PMID: 30373270]
[32]
Abu-Hashem, A.A.; Faty, R.A.M. Synthesis, antimicrobial evaluation of some new 1,3,4-thiadiazoles and 1,3,4-thiadiazines. Curr. Org. Synth., 2018, 15(8), 1161-1170.
[http://dx.doi.org/10.2174/1570179415666180720114547]
[33]
Abu-Hashem, A.A.; Gouda, M.A.; Badria, F.A. Design, synthesis and identification of novel substituted isothiochromene analogs as potential antiviral and cytotoxic agents. Med. Chem. Res., 2018, 27(10), 2297-2311.
[http://dx.doi.org/10.1007/s00044-018-2236-3]
[34]
Abu-Hashem, A.A. Synthesis and biological activity of pyrimidines, quinolines, thiazines and pyrazoles bearing a common thieno moiety. Acta Pol. Pharm., 2018, 75(1), 59-70.
[35]
Abu-Hashem, A.A.; Gouda, M.A. Synthesis and antimicrobial activity of some novel quinoline, chromene, pyrazole derivatives bearing triazolopyrimidine moiety. J. Heterocycl. Chem., 2017, 54(2), 850-858.
[http://dx.doi.org/10.1002/jhet.2645]
[36]
Abu-Hashem, A.A.; Hussein, H.A.R.; Abu-zied, K.M. Synthesis of novel 1, 2, 4-triazolopyrimidines and their evaluation as antimicrobial agents. Med. Chem. Res., 2017, 26(1), 120-130.
[http://dx.doi.org/10.1007/s00044-016-1733-5]
[37]
Gouda, M.A.; Abu-Hashem, A.A.; Saad, H.H.; Elattar, K.M. 5-Chloropyrazole-4-carboxaldehydes as synthon in heterocyclic synthesis. Res. Chem. Intermed., 2016, 42(3), 2119-2162.
[http://dx.doi.org/10.1007/s11164-015-2139-6]
[38]
Abu-Hashem, A.A.; El-Shazly, M. Synthesis, reactions and biological activities of furochromones: A review. Eur. J. Med. Chem., 2015, 90, 633-665.
[http://dx.doi.org/10.1016/j.ejmech.2014.12.001] [PMID: 25499986]
[39]
Abu-Hashem, A.; Hussein, H. Synthesis and antitumor activity of new pyrimidine and caffeine derivatives. Lett. Drug Des. Discov., 2015, 12(6), 471-478.
[http://dx.doi.org/10.2174/1570180812666150429234237]
[40]
Abu-Hashem, A.A.; Badria, F.A. Design, synthesis of novel thiourea and pyrimidine derivatives as potential antitumor agents. J. Chin. Chem. Soc. (Taipei), 2015, 62(6), 506-512.
[http://dx.doi.org/10.1002/jccs.201400351]
[41]
Abu-Hashem, A.A. Synthesis and reaction of novel spiro pyrimidine derivatives. J. Heterocycl. Chem., 2014, 51(4), 1020-1026.
[http://dx.doi.org/10.1002/jhet.2002]
[42]
Abu-Hashem, A.A.; Hussein, H.A.R.; Aly, A.S.; Gouda, M.A. Synthesis of benzofuran derivatives via different methods. Synth. Commun., 2014, 44(16), 2285-2312.
[http://dx.doi.org/10.1080/00397911.2014.894528]
[43]
Abu-Hashem, A.A.; Aly, A.S. Synthesis of new pyrazole, triazole, and thiazolidine-pyrimido [4, 5-b] quinoline derivatives with potential antitumor activity. Arch. Pharm. Res., 2012, 35(3), 437-445.
[http://dx.doi.org/10.1007/s12272-012-0306-5] [PMID: 22477190]
[44]
Abu-Hashem, A.A.; Abu-Zied, K.M.; El-Shehry, M.F. Synthetic utility of bifunctional thiophene derivatives and antimicrobial evaluation of the newly synthesized agents. Monatsh. Chem., 2011, 142(5), 539-545.
[http://dx.doi.org/10.1007/s00706-011-0456-z]
[45]
Abu-Hashem, A.A.; Youssef, M.M.; Hussein, H.A.R. Synthesis, antioxidant, antitumor activities of some new thiazolopyrimidines, pyrrolothiazolopyrimidines and triazolopyrrolothiazolopyrimidines derivatives. J. Chin. Chem. Soc. (Taipei), 2011, 58(1), 41-48.
[http://dx.doi.org/10.1002/jccs.201190056]
[46]
Gouda, M.A.; Abu-Hashem, A.A. Synthesis, characterization, antioxidant and antitumor evaluation of some new thiazolidine and thiazolidinone derivatives. Arch. Pharm. (Weinheim), 2011, 344(3), 170-177.
[http://dx.doi.org/10.1002/ardp.201000165] [PMID: 21384416]
[47]
Abu-Hashem, A.A.; Youssef, M.M. Synthesis of new visnagen and khellin furochromone pyrimidine derivatives and their anti-inflammatory and analgesic activity. Molecules, 2011, 16(3), 1956-1972.
[http://dx.doi.org/10.3390/molecules16031956] [PMID: 21358587]
[48]
Abu-Hashem, A.A.; Gouda, M.A. Synthesis, anti-inflammatory and analgesic evaluation of certain new 3a,4,9,9a-tetrahydro-4,9-benzenobenz[f]isoindole-1,3-diones. Arch. Pharm. (Weinheim), 2011, 344(8), 543-551.
[http://dx.doi.org/10.1002/ardp.201100020] [PMID: 21681809]
[49]
Abu-Hashem, A.; El-Shehry, M.; Badria, F. Design and synthesis of novel thiophenecarbohydrazide, thienopyrazole and thienopyrimidine derivatives as antioxidant and antitumor agents. Acta Pharm., 2010, 60(3), 311-323.
[http://dx.doi.org/10.2478/v10007-010-0027-6] [PMID: 21134865]
[50]
Abu-Hashem, A.A.; Gouda, M.A.; Badria, F.A. Synthesis of some new pyrimido[2′1′2,3]thiazolo[4,5-b]quinoxaline derivatives as anti-inflammatory and analgesic agents. Eur. J. Med. Chem., 2010, 45(5), 1976-1981.
[http://dx.doi.org/10.1016/j.ejmech.2010.01.042] [PMID: 20149490]
[51]
El Shehry, M.F.; Abu-Hashem, A.A.; El-Telbani, E.M. Synthesis of 3-((2,4-dichlorophenoxy)methyl)-1,2,4-triazolo(thiadiazoles and thiadiazines) as anti-inflammatory and molluscicidal agents. Eur. J. Med. Chem., 2010, 45(5), 1906-1911.
[http://dx.doi.org/10.1016/j.ejmech.2010.01.030] [PMID: 20153090]
[52]
El-Gazzar, A.B.A.; Youssef, M.M.; Youssef, A.M.S.; Abu-Hashem, A.A.; Badria, F.A. Design and synthesis of azolopyrimidoquinolines, pyrimidoquinazolines as antioxidant, antinflammatory and analgesic activities. Eur. J. Med. Chem., 2009, 44(2), 609-624.
[53]
El-Gazzar, A.B.A.; Hafez, H.N.; Abu-Hashem, A.A.; Aly, A.S. Synthesis and antioxidant, anti-inflammatory, and analgesic activity of novel polycyclic pyrimido[4,5-b]quinolines. Phosphorus Sulfur Silicon Relat. Elem., 2009, 184(2), 379-405.
[http://dx.doi.org/10.1080/10426500802167027]
[54]
El-Gazzar, A.B.A.; Gaafar, A.M.; Youssef, M.M.; Abu-Hashem, A.A.; Badria, F.A. Synthesis and anti-oxidant activity of novel pyrimido[4,5-b]quinolin-4-one derivatives with a new ring system. Phosphorus Sulfur Silicon Relat. Elem., 2007, 182(9), 2009-2037.
[http://dx.doi.org/10.1080/10426500701369864]
[55]
Keshk, E.M.; Abu-Hashem, A.A.; Girges, M.M. Abd EL-Rahman, A.H.; Badria, F.A. Synthesis of benzo[1,2-b:5,4-b′]difuranyl-triazoles, -oxadiazoles, -thiazolidinones, thiadiazoles, and the use of DNA in evaluation of their biological activity. Phosphorus Sulfur Silicon Relat. Elem., 2004, 179(8), 1577-1593.
[http://dx.doi.org/10.1080/10426500490464140]
[56]
Wright, W.B., Jr; Brabander, H.J. The preparation of 3-chlorobenzo[ b] thiophene derivatives from cinnamie acids. J. Heterocycl. Chem., 1971, 8(5), 711-714.
[http://dx.doi.org/10.1002/jhet.5570080504]
[57]
Ried, W.; Oremek, G.; Ocakcioglu, B. Synthese von substituierten benzo[b]thiophenen. Liebigs Ann. Chem., 1980, 1980(9), 1424-1427.
[http://dx.doi.org/10.1002/jlac.198019800911]
[58]
Higa, T.; Krubsack, A.J. Oxidations by thionyl chloride. VI. Mechanism of the reaction with cinnamic acids. J. Org. Chem., 1975, 40(21), 3037-3045.
[http://dx.doi.org/10.1021/jo00909a007]
[59]
Castle, S.L.; Buckhaults, P.J.; Baldwin, L.J.; McKenney, J.D., Jr; Castle, R.N. The synthesis of monomethoxy[1]benzothieno[2,3- c]quinolines. J. Heterocycl. Chem., 1987, 24(4), 1103-1108.
[http://dx.doi.org/10.1002/jhet.5570240435]
[60]
McKenney, J.D., Jr; Castle, R.N. The synthesis of [1]benzo-thieno[2,3-c]quinolines, [1]benzothieno[2,3-c][1,2,4]triazolo[4,3-a]quinoline, and [1]benzothieno[2,3-c]tetrazolo[1,5-a]quinoline. J. Heterocycl. Chem., 1987, 24(6), 1525-1529.
[http://dx.doi.org/10.1002/jhet.5570240606]
[61]
Luo, J.K.; Kudo, H.; Federspiel, R.F.; Castle, R.N. The synthesis of novel polycyclic heterocyclic ring systems via photocyclization. 15. [1] Benzothieno[3′2′4,5]thieno[2,3- c]quinoline, [1] benzothieno[3′2′4,5]thieno[2,3- c][1,2,4]triazolo[4,3- a]quinoline, [1] benzothieno[3′2′4,5]thieno[2,3- c]tetrazolo[1,5- a]quinoline, thieno[3′2′4,5]thieno[2,3- c][1,2,4]triazolo[4,3- a]quinoline, and thieno[3′2′4,5]thieno[2,3- c]tetrazolo[1,5- a]quinoline. J. Heterocycl. Chem., 1995, 32(1), 317-322.
[http://dx.doi.org/10.1002/jhet.5570320152]
[62]
Aleksić M.; Bertoša, B.; Nhili, R.; Depauw, S.; Martin-Kleiner, I.; David-Cordonnier, M.H.; Tomić S.; Kralj, M.; Karminski-Zamola, G. Anilides and quinolones with nitrogen-bearing substituents from benzothiophene and thienothiophene series: Synthesis, photochemical synthesis, cytostatic evaluation, 3D-derived QSAR analysis and DNA-binding properties. Eur. J. Med. Chem., 2014, 71, 267-281.
[http://dx.doi.org/10.1016/j.ejmech.2013.11.010] [PMID: 24334150]
[63]
Wright, W.B., Jr The preparation of 3-chlorothieno[3,2- b] thiophene derivatives from thiophene-2-acrylic acids. J. Heterocycl. Chem., 1972, 9(4), 879-882.
[http://dx.doi.org/10.1002/jhet.5570090421]
[64]
Gronowitz, S.; Maltesson, B.; Liaaen-Jensen, S.; Tricker, M.J.; Svensson, S. On a synthesis of thieno-annelated five-membered heterocyclics. Acta Chem. Scand., 1972, 26(7), 2982-2985.
[http://dx.doi.org/10.3891/acta.chem.scand.26-2982]
[65]
Castle, S.L.; Luo, J.K.; Kudo, H.; Castle, R.N.; Lee, M.L. The synthesis of novel polycyclic heterocyclic ring systems via photocyclization. 1. Thieno[3′2′4,5]thieno[2,3- c]quinoline and thieno [2′3′4,5]thieno[2,3- c]quinoline. J. Heterocycl. Chem., 1988, 25(5), 1363-1365.
[http://dx.doi.org/10.1002/jhet.5570250517]
[66]
Luo, J.K.; Zektzer, A.S.; Castle, R.N. The synthesis of novel polycyclic heterocyclic ring systems via photocyclization. 4. Benzo[f]thieno[2′3′4,5]thieno[2,3-c]quinoline and Benzo[h]thieno [2′3′4,5]thieno[2,3-c]quinoline and the total assignment of their 1H- and 13C-NMR spectra. J. Heterocycl. Chem., 1991, 28(3), 737-743.
[http://dx.doi.org/10.1002/jhet.5570280331]
[67]
Luo, J.K.; Federspiel, R.F.; Castle, R.N. The synthesis of novel polycyclic heterocyclic ring systems via photocyclization. 20. Benzo[h]thieno[3′2′4,5]thieno[2,3-c]-quinoline, benzo[f]thieno[3′2′ 4,5]thieno[2,3-c]quinoline, benzo[f]thieno[3′2′4,5]thieno[2,3-c] tetrazolo[1,5-a]quinolineandbenzo[f]thieno[3′2′4,5]thieno[2,3-c] [1,2,4]triazolo[4,3-a]quinoline. J. Heterocycl. Chem., 1998, 35(6), 1441-1444.
[http://dx.doi.org/10.1002/jhet.5570350637]
[68]
DoganKoruznjak, J.; Slade, N.; Zamola, B.; Pavelić K.; Karminski-Zamola, G. Synthesis, photochemical synthesis and antitumor evaluation of novel derivatives of thieno[3′2′4,5]thieno[2,3-c]quinolones. Chem. Pharm. Bull. (Tokyo), 2002, 50(5), 656-660.
[http://dx.doi.org/10.1248/cpb.50.656] [PMID: 12036023]
[69]
Fairley, T.A.; Tidwell, R.R.; Donkor, I.; Naiman, N.A.; Ohemeng, K.A.; Lombardy, R.J.; Bentley, J.A.; Cory, M. Structure, DNA minor groove binding, and base pair specificity of alkyl- and aryl-linked bis(amidinobenzimidazoles) and bis(amidinoindoles). J. Med. Chem., 1993, 36(12), 1746-1753.
[http://dx.doi.org/10.1021/jm00064a008] [PMID: 8510102]
[70]
Jarak, I.; Kralj, M.; Piantanida, I.; Šuman, L. Žinić M.; Pavelić K.; Karminski-Zamola, G. Novel cyano- and amidino-substituted derivatives of thieno[2,3-b]- and thieno[3,2-b]thiophene-2-carboxanilides and thieno[3′2′4,5]thieno- and thieno[2′3′4,5] thieno [2,3-c]quinolones: Synthesis, photochemical synthesis, DNA binding, and antitumor evaluation. Bioorg. Med. Chem., 2006, 14(8), 2859-2868.
[http://dx.doi.org/10.1016/j.bmc.2005.12.004] [PMID: 16412644]
[71]
Aleksić M.; Bertoša, B.; Nhili, R.; Uzelac, L.; Jarak, I.; Depauw, S.; David-Cordonnier, M.H.; Kralj, M.; Tomić S.; Karminski-Zamola, G. Novel substituted benzothiophene and thienothiophene carboxanilides and quinolones: synthesis, photochemical synthesis, DNA-binding properties, antitumor evaluation and 3D-derived QSAR analysis. J. Med. Chem., 2012, 55(11), 5044-5060.
[http://dx.doi.org/10.1021/jm300505h] [PMID: 22620261]
[72]
Halverson, A.P.; Castle, L.W.; Castle, R.N. Synthesis of two novel ring systems via photocyclization: Thieno[2′3′4,5]thieno[2,3- c][1,10]phenanthroline and thieno[3′2′4,5]thieno[2,3-c][1,10]-phenanthroline. J. Heterocycl. Chem., 1996, 33(1), 119-122.
[http://dx.doi.org/10.1002/jhet.5570330121]
[73]
Bachmann, W.E.; Boatner, C.H. Phenanthrene Derivatives. V. The beckmann rearrangement of the oximes of acetylphenanthrenes and benzoylphenanthrenes. J. Am. Chem. Soc., 1936, 58(11), 2097-2101.
[http://dx.doi.org/10.1021/ja01302a005]
[74]
Luo, J.K.; Federspiel, R.F.; Castle, R.N.; Castle, L.W. The synthesis of novel polycyclic heterocyclic ring systems via photocyclization. 17. Thieno[3′2′4,5]thieno[2,3- c]naphtho-[2,1- f]quinoline and thieno[3′2′4,5]thieno[2,3- c]-naphtho[1,2- g]quinoline. J. Heterocycl. Chem., 1996, 33(1), 185-189.
[http://dx.doi.org/10.1002/jhet.5570330132]
[75]
Luo, J.K.; Federspiel, R.F.; Castle, R.N. The synthesis of novel polycyclic heterocyclic ring systems via photocyclization. 19. Thieno[3′2′4,5]thieno[2,3-c]-naphtho[1,2-f]quinoline, thieno[3′2′ 4,5]thieno[2,3-c]naphtho-[1,2-f][1,2,4]triazolo[4,3-a]quinoline and thieno[3′2′4,5]-thieno[2,3-c]naphtho[1,2- f]tetrazolo[1,5- a]quinoline. J. Heterocycl. Chem., 1997, 34(5), 1597-1601.
[http://dx.doi.org/10.1002/jhet.5570340535]
[76]
Ester, K. Hranjec, M.; Piantanida, I.; Ćaleta, I.; Jarak, I.; Pavelić K.; Kralj, M.; Karminski-Zamola, G. Novel derivatives of pyridylbenzo[ b]thiophene-2-carboxamides and benzo[ b]thieno[2,3- c]naphthyridin-2-ones: minor structural variations provoke major differences of antitumor action mechanisms. J. Med. Chem., 2009, 52(8), 2482-2492.
[http://dx.doi.org/10.1021/jm801573v] [PMID: 19331416]
[77]
Dogan, J.; Karminski-Zamola, G.; Boykin, D. Photosynthesis of heteropolycyclic quinolones. Heterocycles, 1995, 41(8), 1659-1666.
[http://dx.doi.org/10.3987/COM-95-7023]
[78]
Malešević M.; Karminski-Zamola, G.; Bajić M.; Boykin, D.W. Photosynthesis of heteropolycyclic diquinolones twofold photodehydrohalogenation reaction of benzo[1,2-b:4,5-b′]dithiophene- and dithieno[3,2-b:2′3′-d]thiophenedicarboxanilides. Heterocycles, 1995, 41, 2691-2699.
[http://dx.doi.org/10.3987/COM-95-7123]
[79]
Capron, B.; Paulmier, C.; Pastour, P. Preparation and properties of β-thienyl and β-selenienyl propenoic acids. C. R. Acad. Sci. C, 1973, 277(3), 167-170.
[80]
Šafarik, J.; Koružnjak, J.; Karminski-Zamola, G. Chemical and Photochemical Synthesis of Substituted Dihydro-thieno[2′3′ 4,5]thieno[2,3-c]quinolin-6-ones and Tetrahydro-dithieno[2,3-b:2′ 3′-d]thieno[2′',3“c:2”,3′‘c’]diquinolin-6,14-dione. Molecules, 2005, 10(1), 279-288.
[http://dx.doi.org/10.3390/10010279] [PMID: 18007297]
[81]
Luo, J.K.; Musmar, M.J.; Castle, R.N. The synthesis of substituted [1]benzothieno[2,3- c]quinolines and their N -methyl quaternary salts. J. Heterocycl. Chem., 1991, 28(5), 1309-1313.
[http://dx.doi.org/10.1002/jhet.5570280524]
[82]
Stuart, J.G.; Khora, S.; McKenney, J.D., Jr; Castle, R.N. The synthesis of dimethoxy- and trimethoxy[1]benzothieno[2,3- c]quinolines. J. Heterocycl. Chem., 1987, 24(6), 1589-1594.
[http://dx.doi.org/10.1002/jhet.5570240617]
[83]
Luo, J.K.; Castle, S.L.; Castle, R.N. The synthesis of difluoro[1]benzothieno[2,3- c]quinolines and their N -methyl quaternary salts. J. Heterocycl. Chem., 1990, 27(7), 2047-2052.
[http://dx.doi.org/10.1002/jhet.5570270737]
[84]
Luo, J.K.; Castle, R.N. The synthesis of novel polycyclic heterocyclic ring systems via photocyclization. 2. Benzo[h][1]benzo-thieno[2,3-c]quinoline and benzo[h][1]benzothieno[2,3-c] quinoline. J. Heterocycl. Chem., 1990, 27(4), 1031-1033.
[http://dx.doi.org/10.1002/jhet.5570270441]
[85]
Luo, J.K.; Castle, R.N. The synthesis of novel polycyclic heterocyclic ring systems via photocyclization. 5. [1]Benzothieno[2,3- c]naphtho[2,1- f]-quinoline and [1]benzothieno[2,3- c]naphtho[1,2- g]quinoline. J. Heterocycl. Chem., 1991, 28(8), 1825-1830.
[http://dx.doi.org/10.1002/jhet.5570280802]
[86]
Sasaki, K.; Castle, R.N. The synthesis of novel polycyclic heterocyclic ring systems via photocyclization. 8. [1]Benzothieno[2,3- c]naphtho[1,2- h]quinoline and [1]benzothieno[2,3- c]naphtho[1,2- h][1,2,4]triazolo[4,3- a]quinoline. J. Heterocycl. Chem., 1992, 29(6), 1613-1615.
[http://dx.doi.org/10.1002/jhet.5570290641]
[87]
Sasaki, K.; Castle, R.N. The synthesis of novel polycyclic heterocyclic ring systems via photocyclization. 7. [1]Benzothieno[2,3-c]naphtho[2,1- h]quinoline and [1]benzothieno[2,3- c]naphtho[2,1- h][1,2,4]triazolo[4,3- a]quinoline. J. Heterocycl. Chem., 1992, 29(4), 963-965.
[http://dx.doi.org/10.1002/jhet.5570290448]
[88]
Luo, J.K.; Zektzer, A.S.; Castle, R.N.; Crouch, R.C.; Shockcor, J.P.; Martin, G.E. The synthesis of novel polycyclic heterocyclic ring systems via photocyclization. 11. Synthesis and total assignment of the 1H and 13C NMR spectra of isomeric benzothienonaphthoquinolines using multiple inverse detected two-dimensional NMR methods. J. Heterocycl. Chem., 1993, 30(2), 453-460.
[http://dx.doi.org/10.1002/jhet.5570300229]
[89]
Halverson, A.P.; Castle, L.W. Synthesis and total 1 H-NMR assignment of [1]benzothieno-[2,3-c] [1,10]phenanthroline. J. Heterocycl. Chem., 1996, 33(3), 727-730.
[http://dx.doi.org/10.1002/jhet.5570330334]
[90]
El-Desoky, S.I.; Kandeel, E.M.; Abd el-Rahmn, A.H.; Shmidt, R.R. Synthesis of pyrrolo-, thienopyrrolo-, benzothienopyrroloquinolines as well as triazoloindole derivatives. Z. Naturforsch. B. J. Chem. Sci., 1998, 53(10), 1216-1222.
[http://dx.doi.org/10.1515/znb-1998-1019]
[91]
Gakhar, H.K.; Kaur, R.; Gupta, S.B. [1,3]Dioxolo[5,6][1] benzothieno[2,3-c]-quinolin-6(5H)-ones. Monatsh. Chem., 1995, 126(11), 1253-1256.
[http://dx.doi.org/10.1007/BF00824304]
[92]
Castle, L.; Elmaaty, T. The First Synthesis of Bis-Fused 1,10-Phenanthrolines via Double Photo¬cyclization of N,N-Disubstituted o -Phenylenediamine. Synthesis, 2006, 2006(9), 1402-1404.
[http://dx.doi.org/10.1055/s-2006-926441]
[93]
Krubsack, A.J.; Higa, T. Mechanism of the abnormal reaction of thionyl chloride with carboxylic acids. Tetrahedron Lett., 1968, 9(49), 5149-5152.
[http://dx.doi.org/10.1016/S0040-4039(00)72306-9]
[94]
Dogan, J.; Karminski-Zamola, G.; Boykin, D.W. Synthesis and photosynthesis of substituted benzo[b]thieno[3,2-c]quinolones. Heterocycl. Commun., 1996, 2(3), 213-218.
[http://dx.doi.org/10.1515/HC.1996.2.3.213]
[95]
Fulton, J.D.; Robinson, R.; Oldham, J.W.H.; Ubbelohde, A.R. Derivatives of β-Naphthaldehyde. J. Chem. Soc., 1939, 200-202.
[http://dx.doi.org/10.1039/jr9390000200]
[96]
Kudo, H.; Castle, R.N.; Lee, M.L. Synthesis of the isomeric monomethyl derivatives of the novel naphtho[2′1′4,5]thieno[2,3-c]quinoline ring system. J. Heterocycl. Chem., 1985, 22(1), 211-214.
[http://dx.doi.org/10.1002/jhet.5570220150]
[97]
Li, R.; Farmer, P.S.; Wang, J.; Boyd, R.J.; Cameron, T.S.; Quilliam, M.A.; Walter, J.A.; Howlett, S.E. Molecular geometries of dibenzothiazepinone and dibenzoxazepinone calcium antagonists. Drug Des. Discov., 1995, 12(4), 337-358.
[PMID: 9040993]
[98]
Kudo, H.; Castle, R.N.; Lee, M.L. Synthesis of the monomethyl isomers of naphtho[1′2′4,5]thieno[2,3- c]quinoline. J. Heterocycl. Chem., 1984, 21(6), 1761-1764.
[http://dx.doi.org/10.1002/jhet.5570210639]
[99]
Leonard, N.J.; Morrice, A.G.; Sprecker, M.A. Linear benzoadenine. Stretched-out analog of adenine. J. Org. Chem., 1975, 40(3), 356-363.
[http://dx.doi.org/10.1021/jo00891a021] [PMID: 1133619]
[100]
Pakray, S.; Castle, R.N. The synthesis of monomethoxynaphtho[1′2′4,5]thieno[2,3- c]quinolines. J. Heterocycl. Chem., 1987, 24(1), 231-233.
[http://dx.doi.org/10.1002/jhet.5570240143]
[101]
Luo, J.K.; Castle, S.L.; Castle, R.N. The synthesis of novel polycyclic heterocyclic ring systems via photocyclization. 12. Benzo[ h]naphtho-[2′1′4,5]thieno[2,3-c]quinoline and benzo[f]-naphtho [2′1′4,5]thieno[2,3-c]quinoline. J. Heterocycl. Chem., 1993, 30(3), 653-658.
[http://dx.doi.org/10.1002/jhet.5570300312]
[102]
Luo, J.K.; Federspiel, R.F.; Castle, R.N. The synthesis of novel polycyclic heterocyclic ring system via photocyclization. 18. Benzo[ h]naphtho-[1′2′4,5]thieno[2,3- c]quinoline and benzo[ h]naphtho-[1′2′4,5]thieno[2,3- c] [1,2,4]triazolo[4,3- a]quinoline. J. Heterocycl. Chem., 1996, 33(3), 923-926.
[http://dx.doi.org/10.1002/jhet.5570330361]
[103]
Brown, H.C.; Krishnamurthy, S. Selective reductions. XIV. Fast reaction of aryl bromides and iodides with lithium aluminum hydride in tetrahydrofuran. Simple convenient procedure for the hydrogenolysis of aryl bromides and iodides. J. Org. Chem., 1969, 34(12), 3918-3923.
[http://dx.doi.org/10.1021/jo01264a037]
[104]
Halverson, A.P.; Castle, L.W.; Castle, R.N. Synthesis and total 1H-NMR assignment of naphtho[1′2′4,5]thieno[2,3-c][1,10]phenan-throline and naphtho[2′1′4,5]-thieno[2,3-c] [1,10]phenanthroline. J. Heterocycl. Chem., 1996, 33(1), 179-183.
[http://dx.doi.org/10.1002/jhet.5570330131]
[105]
Musmar, M.J.; Zektzer, A.S.; Castle, R.N.; Kent Dalley, N. The synthesis of novel polycyclic heterocyclic ring systems via photocyclization. 10. Synthesis and structure determination of naphtho[1′2′4,5]thieno[3,2-a]-4,7-phenanthroline. J. Heterocycl. Chem., 1993, 30(2), 487-492.
[http://dx.doi.org/10.1002/jhet.5570300235]
[106]
Luo, J.K.; Cabal, M.P.; Federspiel, R.F.; Castle, R.N. The synthesis of novel polycyclic heterocyclic ring systems via photocyclization. 23. Naphtho[2′1′4,5]thieno-[2,3- c]naphtho[2,1- f]quinoline. J. Heterocycl. Chem., 2001, 38(1), 137-140.
[http://dx.doi.org/10.1002/jhet.5570380119]
[107]
Luo, J.K.; Federspiel, R.F.; Castle, R.N. The synthesis of novel polycyclic heterocyclic ring systems via photocyclization. 21. Naphtho[2′1′4,5]thieno[2,3-c]naphtho[1,2-f]-quinoline, naphtha [2′1′4,5]thieno[2,3-c]naphtho[1,2-f][1,2,4]-triazolo[4,3-a]quino-line and naphtho[2′1′4,5]thieno[2,3-c. J. Heterocycl. Chem., 2000, 37(1), 171-174.
[http://dx.doi.org/10.1002/jhet.5570370128]
[108]
Camoutsis, C.; Castle, R.N. The synthesis of novel polycyclic heterocyclic ring systems via photocyclization. 9. Phenanthro [9′10′4,5]thieno[2,3-c]quinoline, benzo[f]phenanthro[9′10′4,5] thieno[2,3-c]quinoline, and benzo[h]-phenanthro[9′10′ 4,5]thieno [2,3-c]quinoline. J. Heterocycl. Chem., 1993, 30(1), 153-156.
[http://dx.doi.org/10.1002/jhet.5570300127]
[109]
Luo, J.K.; Castle, R.N. The synthesis of novel polycyclic heterocyclic ring systems via photocyclization. 13. Dibenzo-[ f,h]phenanthro[9′10′4,5]thieno[2,3- c]quinoline. J. Heterocycl. Chem., 1993, 30(5), 1167-1172.
[http://dx.doi.org/10.1002/jhet.5570300501]
[110]
Luo, J.K.; Federspiel, R.F.; Castle, R.N. The synthesis of novel polycyclic heterocyclic ring systems via photocyclization. 16. [1]benzothieno[2′3′4,5]thieno[2,3-c]quinoline and [1]benzothieno [2′3′4,5]thieno[2,3-c]naphtho[1,2-f]quinoline. J. Heterocycl. Chem., 1995, 32(2), 659-664.
[http://dx.doi.org/10.1002/jhet.5570320247]