Understanding the Potential Function of Perivascular Adipose Tissue in Abdominal Aortic Aneurysms: Current Research Status and Future Expectation

Page: [4554 - 4568] Pages: 15

  • * (Excluding Mailing and Handling)

Abstract

An abdominal aortic aneurysm (AAA) is a progressive dilatation of the vascular wall occurring below the aortic fissure, preferably occurring below the renal artery. The molecular mechanism of AAA has not yet been elucidated. In the past few decades, research on abdominal aortic aneurysm has been mainly focused on the vessel wall, and it is generally accepted that inflammation and middle layer fracture of the vessel wall is the core steps in the development of AAA. However, perivascular adipose tissue plays a non-negligible role in the occurrence and development of AAA. The position of PVAT plays a supporting and protective role on the vascular wall, but the particularity of the location makes it not only have the physiological function of visceral fat; but also can regulate the vascular function by secreting a large number of adipokines and cytokines. An abdominal aortic aneurysm is getting higher and higher, with a vascular rupture, low rescue success rate, and extremely high lethality rate. At present, there is no drug to control the progression or reverse abdominal aortic aneurysm. Therefore, it is critical to deeply explore the mechanism of abdominal aortic aneurysms and find new therapeutic ways to inhibit abdominal aortic aneurysm formation and disease progression. An abdominal aortic aneurysm is mainly characterized by inflammation of the vessel wall and matrix metalloprotein degradation. In this review, we mainly focus on the cytokines released by the perivascular adipose tissue, summarize the mechanisms involved in the regulation of abdominal aortic aneurysms, and provide new research directions for studying abdominal aortic aneurysms.

[1]
Kumar, R.; Boon, R.A.; Maegdefessel, L.; Dimmeler, S.; Jo, H. Role of noncoding RNAs in the pathogenesis of abdominal aortic aneurysm. Circ. Res., 2019, 124(4), 619-630.
[2]
Quintana, R.A.; Taylor, W.R.J.C.R. Cellular mechanisms of aortic aneurysm formation. Circ Res., 2019, 124(4), 607-618.
[3]
Tromp, G.; Kuivaniemi, H.; Hinterseher, I.; Carey, D.J. Novel genetic mechanisms for aortic aneurysms. Curr. Atheroscler. Rep., 2010, 12(4), 259-266.
[4]
Wiegreffe, C.; Christ, B.; Huang, R.; Scaal, M. J. D. D. Remodeling of aortic smooth muscle during avian embryonic development. Dev. Dyn., 2010, 238(3), 624-21.
[5]
Kuivaniemi, H.; Ryer, E.J.; Elmore, J.R.; Tromp, G. Understanding the pathogenesis of abdominal aortic aneurysms. Expert. Rev. Cardiovasc. Ther., 2015, 13(9), 975-987.
[http://dx.doi.org/10.1586/14779072.2015.1074861] [PMID: 26308600]
[6]
Ruddy, J.M.; Jones, J.A.; Spinale, F.G.; Ikonomidis, J.S. Regional heterogeneity within the aorta: Relevance to aneurysm disease. J. Thorac. Cardiovas.c Surg., 2008, 136(5), 1123-1130.
[7]
Wolinsky, H.; Glagov, S.J. Comparison of abdominal and thoracic aortic medial structure in mammals. Deviation of man from the usual pattern. Circ. Res., 1970, 25(6), 677-686.
[8]
Steed, M.M.; Tyagi, S.C.; Signaling, R. Mechanisms of cardiovascular remodeling in hyperhomocysteinemia. Antioxid. Redox Signal., 2011, 15(7), 1927-43.
[http://dx.doi.org/10.1089/ars.2010.3721]
[9]
Ji, Z.; Austin, R. C. J. B. Contributions of hyperhomocysteinemia to atherosclerosis: Causal relationship and potential mechanisms. Biofactors., 2010, 35(2), 120-129.
[10]
Dalton, M.L.; Gadson, P.F.; Wrenn, R.W.; Rosenquist, T. H. Homocysteine signal cascade: production of phospholipids, activation of protein kinase C, and the induction of c-fos and c-myb in smooth muscle cells. FASEB J., 1997, 11(8), 703-11.
[http://dx.doi.org/10.1096/fasebj.11.8.9240971]
[11]
Rateri, D.L.; Howatt, D.A.; Moorleghen, J.J.; Charnigo, R.; Cassis, L.A.; Daugherty, A.J. Prolonged infusion of angiotensin II in apoE(-/-) mice promotes macrophage recruitment with continued expansion of abdominal aortic aneurysm. Am. J. Pathol., 2011, 179(3), 1542-1548.
[12]
Gadson, P.F., Jr; Dalton, M.L.; Patterson, E.; Svoboda, D.D.; Hutchinson, L.; Schram, D.; Rosenquist, T.H. Differential response of mesoderm- and neural crest-derived smooth muscle to TGF-β1: regulation of c-myb and α1 (I) procollagen genes. Exp. Cell Res., 1997, 230(2), 169-180.
[http://dx.doi.org/10.1006/excr.1996.3398] [PMID: 9024776]
[13]
Staffan, H.; Jasmin, S.; Alexander, P.J. PVAT and its relation to brown, beige, and white adipose tissue in development and function. Front. Physiol., 2018, 9, 70.
[14]
Fan, H.; Zhang, Y.; Zhang, J.; Yao, Q.; Chang, Y. J. D. Cold-inducible KLF9 regulates thermogenesis of brown and beige fat. Diabetes., 2020, 69(12), 2603-2618.
[http://dx.doi.org/10.2337/db19-1153]
[15]
Ye, T.; Zhang, G.; Liu, H.; Shi, J.; Qiu, H.; Liu, Y.; Han, F.; Hou, N.J.F.E. Relationships between perivascular adipose tissue and abdominal aortic aneurysms. Front. Endocrinol., 2021, (12), 704845.
[16]
Fitzgibbons, T. P.; Kogan, S.; Aouadi, M.; Hendricks, G. M.; Czech, M. P. J. A. H.; Physiology, C. Similarity of mouse perivascular and brown adipose tissues and their resistance to diet-induced inflammation. Am. J. Physiol. Heart Circ. Physiol., 2011, 301(4), H1425-37.
[http://dx.doi.org/10.1152/ajpheart.00376.2011]
[17]
Li, X.; Ma, Z.; Zhu, Y.Z. Regional heterogeneity of perivascular adipose tissue: morphology, origin, and secretome. Front. Pharmacol., 2021, 12, 697720.
[18]
Padilla, J.; Jenkins, N.T. Divergent phenotype of rat thoracic and abdominal perivascular adipose tissues. Am. J. Physiol. Regul. Integr. Comp. Physiol., 2013, 304(7), R543-R552.
[19]
Elkhatib, M.A.W.; Mroueh, A.; Rafeh, R.W.; Sleiman, F.; Fouad, H.; Saad, E.I.; Fouda, M.A.; Elgaddar, O.; Issa, K.; Eid, A.H.; Eid, A.A.; Abd-Elrahman, K.S.; El-Yazbi, A.F. Amelioration of perivascular adipose inflammation reverses vascular dysfunction in a model of nonobese prediabetic metabolic challenge: potential role of antidiabetic drugs. Transl. Res., 2019, 214, 121-143.
[http://dx.doi.org/10.1016/j.trsl.2019.07.009] [PMID: 31408626]
[20]
Wenhao, X.; Xiangjie, Z.; Garcia-Barrio, M.T.; Jifeng, Z.; Jiandie, L.; Eugene, C.Y.; Zhisheng, J.; Lin, C. MitoNEET in perivascular adipose tissue blunts atherosclerosis under mild cold condition in mice. Front. Physiol., 2017, 8, 1032.
[21]
Boa, B.; Yudkin, J. S.; Hinsbergh, V.; Bouskela, E.; Eringa, E. Exercise effects on perivascular adipose tissue: endocrine and paracrine determinants of vascular function. Br J Pharmacol., 2017, 174(20), 3466-3481.
[http://dx.doi.org/10.1111/bph.13732]
[22]
Bussey, C.E.; Withers, S.B.; Saxton, S.N.; Bodagh, N.; Aldous, R.G.; Heagerty, A.M. β 3 -Adrenoceptor stimulation of perivascular adipocytes leads to increased fat cell-derived NO and vascular relaxation in small arteries. Br. J. Pharmacol., 2018, 175(18), 3685-3698.
[http://dx.doi.org/10.1111/bph.14433] [PMID: 29980164]
[23]
Al-Assi, O.; Ghali, R.; Mroueh, A.; Kaplan, A.; Mougharbil, N.; Eid, A.H.; Zouein, F.A.; El-Yazbi, A.F. Cardiac autonomic neuropathy as a result of mild hypercaloric challenge in absence of signs of diabetes: modulation by antidiabetic drugs. Oxid. Med. Cell. Longev., 2018, 2018, 9389784.
[http://dx.doi.org/10.1155/2018/9389784] [PMID: 29643979]
[24]
Dwaib, H.S.; Ajouz, G.; AlZaim, I.; Rafeh, R.; Mroueh, A.; Mougharbil, N.; Ragi, M.E.; Refaat, M.; Obeid, O.; El-Yazbi, A.F. Phosphorus supplementation mitigates perivascular adipose inflammation–induced cardiovascular consequences in early metabolic impairment. J. Am. Heart Assoc., 2021, 10(24), e023227.
[http://dx.doi.org/10.1161/JAHA.121.023227] [PMID: 34873915]
[25]
Modulation of thiopental-induced vascular relaxation and contraction by perivascular adipose tissue and endothelium. Br J Anaesth., 2012, 109(2), 177-84.
[26]
Fontes, M. T.; Paula, S. M.; Lino, C. A.; Senger, N.; Rossoni, L. V. J. C. S. Renin–angiotensin system overactivation in perivascular adipose tissue contributes to vascular dysfunction in heart failure. 2020, 134(23), 3195-3211.
[http://dx.doi.org/10.1042/CS20201099]
[27]
Dias-Neto, M.; Meekel, J.; Schaik, T.G.V.; Hoozemans, J.; Yeung, K.K.J.E.J.V.; Surgery, E. High density of periaortic adipose tissue in abdominal aortic aneurysm. Eur. J. Vasc. Endovasc. Surg., 2018, 56(5), 663-671.
[28]
Kugo, H.; Moriyama, T.; Zaima, N. J. A. The role of perivascular adipose tissue in the appearance of ectopic adipocytes in the abdominal aortic aneurysmal wall. Adipocyte, 2019, 8(1), 229-239.
[http://dx.doi.org/10.1080/21623945.2019.1636625]
[29]
Blose, K. J.; Ennis, T. L.; Arif, B.; Weinbaum, J. S.; Curci, J. A.; Vorp, D. Periadventitial adipose-derived stem cell treatment halts elastase-induced abdominal aortic aneurysm progression. Regen. Med., 2014, 9(6), 733-741.
[http://dx.doi.org/10.2217/rme.14.61]
[30]
Lu, H.Y.; Huang, C.Y.; Shih, C.M.; Lin, Y.W.; Tsai, C.S.; Lin, F.Y.; Surgery, C.S. A potential contribution of dipeptidyl peptidase-4 by the mediation of monocyte differentiation in the development and progression of abdominal aortic aneurysms. Regen. Med., 2017, 66(4), 1217-1226.e1.
[http://dx.doi.org/10.1016/j.jvs.2016.05.093]
[31]
Wagster, D.; Vorkapic, E.; Stijn, C.M.W.V.; Kim, J.; Lusis, A.J.; Eriksson, P.; Tangirala, R.K.J.S.R. Elevated adiponectin levels suppress perivascular and aortic inflammation and prevent angii-induced advanced abdominal aortic aneurysms. Sci. Rep., 2016, (6), 31414.
[32]
Feijóo-Bandín, S.; Aragón-Herrera, A.; Moraña-Fernández, S.; Anido-Varela, L.; Tarazón, E.; Roselló-Lletí, E.; Portolés, M.; Moscoso, I.; Gualillo, O.; González-Juanatey, J.R.; Lago, F. Adipokines and Inflammation. Int. J. Mol. Sci., 2020, 21(20), 7711.
[http://dx.doi.org/10.3390/ijms21207711] [PMID: 33081064]
[33]
Yun, H.; Xi, F.W.; Zhi, Q.L.; Yin, C.J.; Lian, S.Z.J.B.J.M.B.R. Adiponectin is protective against endoplasmic reticulum stress-induced apoptosis of endothelial cells in sepsis. Braz. J. Med. Biol. Res., 2018, 51(12), e7747.
[34]
Cao, Y.; Ling, T.; Yuan, Y.; Jiao, X.; Lau, W. B.; Wang, Y.; Christopher, T.; Lopez, B.; Chan, L.; Goldstein, B. J. J. o. M.; Cardiology, C. Endothelial dysfunction in adiponectin deficiency and its mechanisms involved. J. Mol. Cell. Cardiol., 2009, 46(3), 413-419.
[http://dx.doi.org/10.1016/j.yjmcc.2008.10.014]
[35]
Wang, Y.; Liang, B.; Lau, W. B.; Du, Y.; Guo, R.; Yan, Z.; Gan, L.; Yan, W.; Zhao, J.; Gao, E.J.A. Restoring diabetes-induced autophagic flux arrest in ischemic/reperfused heart by ADIPOR (adiponectin receptor) activation involves both AMPK-dependent and AMPK-independent signaling. Autophagy, 2017, 13(11), 1855-1869.
[36]
Li, J. M.; Lu, W.; Ye, J.; Han, Y.; Wang, L. S. Association between expression of AMPK pathway and adiponectin, leptin, and vascular endothelial function in rats with coronary heart disease. Eur. Rev. Med. Pharmacol. Sci., 2020, 24(2), 905-914.
[37]
Thanigaimani, S.; Golledge, J. Role of adipokines and perivascular adipose tissue in abdominal aortic aneurysm: A systematic review and meta-analysis of animal and human observational studies. Front. Endocrinol. (Lausanne), 2021, 12, 618434.
[http://dx.doi.org/10.3389/fendo.2021.618434]
[38]
Liu, C. L.; Ren, J.; Wang, Y.; Zhang, X.; Sukhova, G. K.; Liao, M.; Marcela, S.; Luo, S.; Yang, D.; Xia, M. J. E. H. J. Adipocytes promote interleukin-18 binding to its receptors during abdominal aortic aneurysm formation in mice. Eur. Heart J., 2020, 41(26), 2456-2468.
[http://dx.doi.org/10.1093/eurheartj/ehz856]
[39]
Belik, E.; Gruzdeva, O. V.; Dyleva, Y.; Brel, N. K.; Borodkina, D. A.; Barbarash, O.L. Relationship between morphometric parameters of epicardial adipose tissue and adipocytokine profile in patients with myocardial infarction. J. Pers. Med., 2022, 12(2), 129.
[http://dx.doi.org/10.1093/eurheartj/ehab724.2499]
[40]
Ying, Z.; Yuan, H.; Bu, P.; Shen, Y. H.; Liu, T.; Song, S.; Hou, X. J. B.; Communications, B. R. Recombinant leptin attenuates abdominal aortic aneurysm formation in angiotensin II-infused apolipoprotein E-deficient mice. Biochem. Biophys. Res. Commun., 2018, 503, 1450-1456.
[41]
Yu, W.; Ait-Oufella, H.; Herbin, O.; Bonnin, P.; Ramkhelawon, B.; Taleb, S.; Jin, H.; Offenstadt, G.; Combadière, C.; Investigation, L. TGF-β activity protects against inflammatory aortic aneurysm progression and complications in angiotensin II–infused mice. J. Clin. Invest., 2010, 120(2), 422-32.
[42]
Szabo, S.J.; Kim, S.T.; Costa, G.L.; Zhang, X.; Fathman, C.G.; Glimcher, L.H. A novel transcription factor, T-bet, directs th1 lineage commitment. Cell, 2015, 100(6), 655-669.
[43]
Rami, A.Z.A.; Hamid, A.A.; Anuar, N.N.M.; Aminuddin, A.; Ugusman, A. Exploring the relationship of perivascular adipose tissue inflammation and the development of vascular pathologies. Mediators Inflamm., 2022, 2022, 2734321.
[http://dx.doi.org/10.1155/2022/2734321] [PMID: 35177953]
[44]
Luo, J.; Huang, L.; Wang, A.; Liu, Y.; Cai, R.; Li, W.; Zhou, M.S. Resistin-induced endoplasmic reticulum stress contributes to the impairment of insulin signaling in endothelium. Front. Pharmacol., 2018, 9, 1226.
[http://dx.doi.org/10.3389/fphar.2018.01226] [PMID: 30416448]
[45]
Meng, X.; Zhang, K.; Kong, J.; Xu, L.; Zhang, Y. J. O. Deletion of resistin-like molecule-beta attenuates angiotensin II-induced abdominal aortic aneurysm. Oncotarget., 2017, 8(61), 104171-104181.
[http://dx.doi.org/10.18632/oncotarget.22042]
[46]
Zhou, H.; Zhang, Z.; Qian, G.; Zhou, J. J. F.; Pharmacology, C. Omentinattenuates adipose tissue inflammation via restoration of TXNIP/NLRP3 signaling in high-fat diet induced obese mice. Fundam. Clin. Pharmacol., 2020, 34(6), 721-735.
[47]
Wang, Y.; Sun, M.; Wang, Z.; Li, X.; Zhu, Y.; Li, Y.J. Omentin-1 ameliorates the attachment of the leukocyte THP-1 cells to HUVECs by targeting the transcriptional factor KLF2. Biochem. Biophys. Res. Commun., 2018, 498(1), 152-156.
[48]
Fang, L.; Koji, O.; Naoya, O.; Hayato, O.; Mizuho, H.I.; Hiroshi, K.; Bando, Y.K.; Rei, S.; Yuuki, S.; Katsuhiro, K.J.C.R. Omentin attenuates angiotensin II-induced abdominal aortic aneurysm formation in apolipoprotein E-knockout mice. Cardiovasc. Res., 2021, 118(6), 1597-1610.
[49]
Dakroub, A.; Nasser, S. A.; Younis, N. K.; Baghni, H.; Eid, A. H. J. C. Visfatin: A possible role in cardiovasculo-metabolic disorders. Cells, 2020, 9(11), 2444.
[http://dx.doi.org/10.3390/cells9112444]
[50]
Hida, K.; Wada, J.; Zhang, H.; Hiragushi, K.; Makino, H. J. J. o. L. R. Identification of genes specifically expressed in the accumulated visceral adipose tissue of OLETF rats. J Lipid Res., 2000, 41(10), 1615-1622.
[http://dx.doi.org/10.1016/S0022-2275(20)31994-5]
[51]
Nicholson, T.; Church, C.; Tsintzas, K.; Jones, R.; Breen, L.; Davis, E.T.; Baker, D.J.; Jones, S.W. Vaspin promotes insulin sensitivity in elderly muscle and is upregulated in obesity. J. Endocrinol., 2019, 241(1), 31-43.
[http://dx.doi.org/10.1530/JOE-18-0528] [PMID: 30721136]
[52]
Jiang, Y. K.; Deng, H. Y.; Qiao, Z. Y.; Gong, F. X. J. A. o. P. Biochemistry, Visfatin level and gestational diabetes mellitus: A systematic review and meta-analysis. 2021, (5), 468-478.
[53]
Kalantarhormozi, M.; Jouyan, N.; Asadipooya, K.; Nabipour, I.; Mirzaei, K. J. J. o. E. I. Evaluation of adipokines, adiponectin, visfatin, and omentin, in uncomplicated type I diabetes patients before and after treatment of diabetic ketoacidosis. J. Endocrinol. Invest., 2020, 43(12), 1723-1727.
[http://dx.doi.org/10.1007/s40618-020-01259-9]
[54]
Abu-Shahba, N.; Mahmoud, M.; El-Erian, A.M.; Husseiny, M.I.; Nour-Eldeen, G.; Helwa, I.; Amr, K.; ElHefnawi, M.; Othman, A.I.; Ibrahim, S.A.; Azmy, O. Impact of type 2 diabetes mellitus on the immunoregulatory characteristics of adipose tissue-derived mesenchymal stem cells. Int. J. Biochem. Cell Biol., 2021, 140, 106072.
[http://dx.doi.org/10.1016/j.biocel.2021.106072] [PMID: 34455058]
[55]
Chang, Y.H.; Chang, D.M.; Lin, K.C.; Shin, S.J.; Lee, Y.J. Visfatin in overweight/obesity, type 2 diabetes mellitus, insulin resistance, metabolic syndrome and cardiovascular diseases: a meta-analysis and systemic review. Diabetes Metab. Res. Rev., 2011, 27(6), 515-527.
[http://dx.doi.org/10.1002/dmrr.1201] [PMID: 21484978]
[56]
Dakroub, A.; Nasser, S.A.; Kobeissy, F.; Yassine, H.M.; Orekhov, A.; Sharifi-Rad, J.; Iratni, R.; El-Yazbi, A.F.; Eid, A.H. Visfatin: An emerging adipocytokine bridging the gap in the evolution of cardiovascular diseases. J. Cell. Physiol., 2021, 236(9), 6282-6296.
[http://dx.doi.org/10.1002/jcp.30345] [PMID: 33634486]
[57]
Kumari, B.; Yadav, U.C.S. Adipokine visfatin’s role in pathogenesis of diabesity and related metabolic derangements. Curr. Mol. Med., 2018, 18(2), 116-125.
[PMID: 29974830]
[58]
Kengo, S.; Remina, S.; Maho, Y.; Tomoyuki, Y.; Koichiro, S.; Taisuke, O.; Yusaku, M.; Taka-Aki, M.; Hatsue, I.U.; Tsutomu, H.J. Anti-atherogenic effects of vaspin on human aortic smooth muscle cell/macrophage responses and hyperlipidemic mouse plaque phenotype. Int J Mol Sci., 2018, 19(6), 1732.
[59]
Anfossi, G.; Russo, I.; Doronzo, G.; Pomero, A.; Trovati, M. Adipocytokines in atherothrombosis: focus on platelets and vascular smooth muscle cells. Mediators Inflamm., 2010, 2010(1), 1-26.
[http://dx.doi.org/10.1155/2010/174341] [PMID: 20652043]
[60]
Liu, S.; Dong, Y.; Wang, T.; Zhao, S.; Yang, K.; Chen, X.; Zheng, C. Vaspin inhibited proinflammatory cytokine induced activation of nuclear factor-kappa B and its downstream molecules in human endothelial EA.hy926 cells. Diabetes Res. Clin. Pract., 2014, 103(3), 482-488.
[61]
Xiao, J.; Xiao, Z.-J.; Liu, Z.-G.; Gong, H.-Y.; Yuan, Q.; Wang, S.; Li, Y.-J..; Jiang, D.-J. Involvement of dimethylarginine dimethylaminohydrolase-2 in visfatin-enhanced angiogenic function of endothelial cells. Diabetes Metab. Res. Rev., 2009, 25(3), 242-9.
[62]
Watson, A.; Nong, Z.; Yin, H.; O'Neil, C.; Fox, S.; Balint, B.; Guo, L.; Leo, O.; Chu, M.W.A.; Gros, R.J.; Pickering, G. Nicotinamide phosphoribosyltransferase in smooth muscle cells maintains genome integrity, resists aortic medial degeneration, and is suppressed in human thoracic aortic aneurysm disease. Circ Res., 2017, 120(12), 1889-1902.
[63]
Xu, W.; Chao, Y.; Liang, M.; Huang, K.; Wang, C. CTRP13 mitigates abdominal aortic aneurysm formation via NAMPT1. Mol. Ther., 2021, 29(1), 324-337.
[64]
Nóbrega, N.; Araújo, N.F.; Reis, D.; Facine, L.M.; Miranda, C.A.S.; Mota, G.C.; Aires, R.D.; Capettini, L.; Cruz, J.D.S.; Bonaventura, D. Hydrogen peroxide and nitric oxide induce anticontractile effect of perivascular adipose tissue via renin angiotensin system activation. Nitric Oxide, 2019, 84, 50-59.
[65]
Bussey, C.E.; Withers, S.B.; Saxton, S.N.; Mbchb, N.B.; Bsc, R.G.A.; Heagerty, A.M. β 3 -adrenoceptor stimulation of perivascular adipocytes leads to increased fat cell-derived nitric oxide and vascular relaxation in small arteries running title: vasodilator pvat function in small arteries. Br. J. Pharmacol., 2018, 175(18), 3685-3698.
[66]
Liao, J.; Yin, H.; Huang, J.; Hu, M. J. C.; Pharmacology, E. Physiology, Dysfunction of perivascular adipose tissue in mesenteric artery is restored by aerobic exercise in high-fat diet induced obesity. Clin. Exp. Pharmacol. Physiol., 2020, 48(5), 697-703.
[67]
Wang, M.; Xing, J.; Liu, M.; Gao, M.; Liu, Y.; Li, X.; Hu, L.; Zhao, X.; Liao, J.; Liu, G.; Dong, J. Deletion of Seipin attenuates vascular function and the anticontractile effect of perivascular adipose tissue. Front. Cardiovasc. Med., 2021, 8, 706924.
[http://dx.doi.org/10.3389/fcvm.2021.706924] [PMID: 34409079]
[68]
Zou, L.; Wang, W.; Liu, S.; Zhao, X.; Lyv, Y.; Du, C.; Su, X.; Geng, B.; Xu, G. J. B. B. A. Spontaneous hypertension occurs with adipose tissue dysfunction in perilipin-1 null mice. Biochim. Biophys. Acta, 2016, 1862(2), 182-191.
[http://dx.doi.org/10.1016/j.bbadis.2015.10.024]
[69]
Beech, D.J.; Xiao, B.J. Piezo channel mechanisms in health and disease. J. Physiol., 2018, 596(6), 965-967.
[http://dx.doi.org/10.1113/JP274395]
[70]
Fang, X. Z.; Zhou, T.; Xu, J. Q.; Wang, Y. X.; Shang, Y. J. C. Bioscience, Structure, kinetic properties and biological function of mechanosensitive Piezo channels. Cell. Biosci., 2021, 11(1), 13.
[71]
Xiao, C.; Wang, L.; Zhou, Q.; Huang, X. Hazards of bisphenol A (BPA) exposure: A systematic review of plant toxicology studies. J. Hazard. Mater., 2020, 384(1), 121488.
[http://dx.doi.org/10.1016/j.jhazmat.2019.121488] [PMID: 31699483]
[72]
Zeng, W.-Z.; Marshall, K.L.; Min, S.; Daou, I.; Chapleau, M.W.; Abboud, F.M.; Liberles, S.D.; Patapoutian, A. PIEZOs mediate neuronal sensing of blood pressure and the baroreceptor reflex. Science, 2018, 362(6413), 464-467..
[73]
Miron, T.R.; Flood, E.D.; Tykocki, N.R.; Thompson, J.M.; Watts, S.W. Identification of Piezo1 channels in perivascular adipose tissue (PVAT) and their potential role in vascular function. Pharmacol. Res., 2022, 175, 105995.
[http://dx.doi.org/10.1016/j.phrs.2021.105995] [PMID: 34818570]
[74]
Yiannikouris, F.; Karounos, M.; Charnigo, R.; English, V.L.; Rateri, D.L.; Daugherty, A.; Lisa, A. CassisAdipocyte-specific deficiency of angiotensinogen decreases plasma angiotensinogen concentration and systolic blood pressure in mice. Am. J. Physiol. Regul. Integr. Comp. Physiol, 2012, 302(2), R244-51.
[75]
Yiannikouris, F.; Wang, Y.; Shoemaker, R.; Larian, N.; Thompson, J.; English, V.L.; Charnigo, R.; Su, W.; Gong, M.; Cassis, L. Deficiency of angiotensinogen in hepatocytes markedly decreases blood pressure in lean and obese male mice. Hypertension., 2015, 836-42.
[http://dx.doi.org/10.1161/HYPERTENSIONAHA.115.06040]
[76]
Koizumi, M.; Niimura, F.; Fukagawa, M.; Matsusaka, T.J. Adipocytes do not significantly contribute to plasma angiotensinogen. J. Renin. Angiotensin Aldosterone Syst., 2016, 17(4), 1470320316672348.
[http://dx.doi.org/10.1177/1470320316672348]
[77]
Mullick, A.E.; Yeh, S.T.; Graham, M.J.; Engelhardt, J.A.; Crooke, R.M.J.H. Blood pressure lowering and safety improvements with liver angiotensinogen inhibition in models of hypertension and kidney injury. Hypertension, 2017, 70(3), 566-576.
[78]
Uijl, E.; Colafella, K.; Sun, Y.; Ren, L.; Danser, A.J.H. Strong and sustained antihypertensive effect of small interfering RNA targeting liver angiotensinogen. Hypertension, 2019, 73(6), 1249-1257.
[79]
Chang, L.; Xiong, W.; Zhao, X.; Fan, Y.; Guo, Y.; Garcia-Barrio, M.; Zhang, J.; Jiang, Z.; Lin, J. D.; Chen, Y. E. J. C. Bmal1 in perivascular adipose tissue regulates resting phase blood pressure through transcriptional regulation of angiotensinogen. Circulation., 2018, 138(1), 67-79.
[80]
Folkesson, M.; Vorkapic, E.; Gulbins, E.; Japtok, L.; Kleuser, B.; Welander, M.; Länne, T.; Wågsäter, D. Inflammatory cells, ceramides, and expression of proteases in perivascular adipose tissue adjacent to human abdominal aortic aneurysms. J. Vasc. Surg., 2017, 65(4), 1171-1179.
[81]
Jpmab, C.; Dnd, E.; Nba, B.; Gc, E.; Sm, E.; Grs, B.; Lm, E.; Jha, B.; Dm, F.; Ece, B. J. E. J. o. V.; Surgery, E. Jorn P.M., Marina D.-N., Natalija B., Gloria C., Claudia S.-M., Gawin R. S., Adelino L.-M., Jennifer H., Dimitra M., Etto C. E., Ron B., Jan D. B., Kak K. Y. Inflammatory gene expression of human perivascular adipose tissue in abdominal aortic aneurysms. ScienceDirect., 2021, 61(6), 1008-1016.
[82]
Rossi, C.; Santini, E.; Chiarugi, M.; Salvati, A.; Comassi, M.; Vitolo, E.; Madec, S.; Solini, A. The complex P2X7receptor/inflammasome in perivascular fat tissue of heavy smokers. Eur. J. Clin. Invest., 2014, 44(3), 295-302.
[83]
Wang, C.N.; Yang, G.H.; Wang, Z.Q.; Liu, C.W.; Li, T.J.; Lai, Z.C.; Miao, S.Y.; Wang, L.F.; Liu, B.J. Role of perivascular adipose tissue in nicotineinduced endothelial cell inflammatory responses. Mol. Med. Rep., 2016, 14(6), 5713-5718.
[84]
McLaughlin, T.; Ackerman, S.E.; Shen, L.; Engleman, E. Role of innate and adaptive immunity in obesity-associated metabolic disease. J. Clin. Invest., 2017, 127(1), 5-13.
[http://dx.doi.org/10.1172/JCI88876] [PMID: 28045397]
[85]
Saxton, S.N.; Withers, S.B.; Heagerty, A.M.J.C.D. Therapy. emerging roles of sympathetic nerves and inflammation in perivascular adipose tissue. Cardiovasc. Drugs Ther., 2019, 33(2), 245-259.
[86]
Trayhurn, P.; Wang, B.; Wood, S.I. Hypoxia in adipose tissue: A basis for the dysregulation of tissue function in obesity? Br. J. Nutr., 2014, 100(2), 227-35.
[87]
Greenstein, A.S.; Khavandi, K.; Withers, S.B.; Sonoyama, K.; Clancy, O.; Jeziorska, M.; Laing, I.; Yates, A.P.; Pemberton, P.W.; Malik, R.A.J.C. Local inflammation and hypoxia abolish the protective anticontractile properties of perivascular fat in obese patients. Circulation, 2009, 119(12), 1661-1670.
[88]
Mao, N.; Gu, T.; Shi, E.; Zhang, G.; Yu, L.; Wang, C. J. I. C.; Surgery, T. Phenotypic switching of vascular smooth muscle cells in animal model of rat thoracic aortic aneurysm. Interact. Cardiovasc. Thorac. Surg., 2015, 21(1), 62-70.
[http://dx.doi.org/10.1093/icvts/ivv074]
[89]
Li, H.; Wang, Y. P.; Zhang, L. N.; Tian, G. J. E. B. Perivascular adipose tissue-derived leptin promotes vascular smooth muscle cell phenotypic switching via p38 mitogen-activated protein kinase in metabolic syndrome rats. Exp. Biol. Med. (Maywood)., 2014, 239(8), 954-965.
[90]
Chen, J.Y.; Wu, Y.P.; Li, C.Y.; Jheng, H.F.; Tsai, Y.S. PPARγ activation improves the microenvironment of perivascular adipose tissue and attenuates aortic stiffening in obesity. J. Biomed. Sci., 2021, 28(1), 22.
[http://dx.doi.org/10.1186/s12929-021-00720-y]
[91]
Nakamura, T.; Miyamoto, K.; Kugo, H.; Sutoh, K.; Kiriyama, K.; Moriyama, T.; Zaima, N. Ovariectomy causes degeneration of perivascular adipose tissue. J. Oleo Sci., 2021, 70(11), 1651-1659.
[http://dx.doi.org/10.5650/jos.ess21179] [PMID: 34645749]