[1]
Farshbaf, S.; Sreerama, L.; Khodayari, T.; Vessally, E. Chemical review and letters propargylic ureas as powerful and versatile building blocks in the synthesis of various key medicinal heterocyclic compounds. Chem. Rev. Lett., 2018, 1, 56-67.
[2]
a) Biginelli, P. Synthesis of 3,4-dihydropyrimidin-2(1H)-ones. Gazz. Chim. Ital., 1893, 23, 360-416.;
b) Panda, S.S. Biginelli Reaction A green perspective Biginelli reaction A green perspective. Curr. Org. Chem., 2012, 16, 507-520.;
c) Heravi, M.M.; Ghavidel, M.; Heidari, B. Microwave-assisted biginelli reaction: An old reaction, a new perspective. Curr. Org. Synth., 2016, 13, 569-600.
[9]
(a) Franklin, A.S.; Ly, S.K.; Mackin, G.H.; Overman, L.E.; Shaka, A.J. Application of the tethered biginelli reaction for enantioselective synthesis of batzelladine alkaloids. absolute configuration of the tricyclic guanidine portion of batzelladine B.
J. Org. Chem., 1999,
64(5), 1512-1519.
[
http://dx.doi.org/10.1021/jo981971o] [PMID:
11674213];
(b) Atwal, K.S.; Swanson, B.N.; Unger, S.E.; Floyd, D.M.; Moreland, S.; Hedberg, A.; O’Reilly, C. Dihydropyrimidine calcium channel blockers. 3. 3-Carbamoyl-4-aryl-1,2,3,4-tetrahydro-6-methyl-5-pyrimidinecarboxylic acid esters as orally effective antihypertensive agents.
J. Med. Chem., 1991,
34, 806-811.
[
http://dx.doi.org/10.1021/jm00106a048] [PMID:
1995904];
(c) Grover, G.J.; Dzwonczyk, S.; McMullen, D.M.; Normandin, D.E.; Parham, C.S.; Sleph, P.G.; Moreland, S. Pharmacologic profile of the dihydropyrimidine calcium channel blockers SQ 32,547 and SQ 32,926 [correction of SQ 32,946].
J. Cardiovasc. Pharmacol., 1995,
26, 286-289.;
(d) Kappe, C.O. Biologically active dihydropyrimidones of the Biginelli-type-A literature survey.
Eur. J. Med. Chem., 2000,
35(12), 1043-1052.
[
http://dx.doi.org/10.1016/S0223-5234(00)01189-2] [PMID:
11248403];
(e) Rovnyak, G.C.; Kimball, S.D.; Beyer, B.; Cucinotta, G.; DiMarco, J.D.; Gougoutas, J.; Hedberg, A.; Malley, M.; McCarthy, J.P.; Zhang, R. Calcium entry blockers and activators: Conformational and structural determinants of dihydropyrimidine calcium channel modulators.
J. Med. Chem., 1995,
38(1), 119-129.
[
http://dx.doi.org/10.1021/jm00001a017] [PMID:
7837222];
(f) Hu, E.H.; Sidler, D.R.; Dolling, U.H. Unprecedented catalytic three component one-pot condensation reaction: An efficient synthesis of 5-alkoxycarbonyl- 4-aryl-3,4-dihydropyrimidin-2(1H)-ones.
J. Org. Chem., 1998,
63(10), 3454-3457.
[
http://dx.doi.org/10.1021/jo970846u];
(g) Kappe, C.O.; Fabian, W.M.F.; Semones, M.A. Conformational analysis of 4-aryl-dihydropyrimidine calcium channel modulators. A comparison of ab initio, semiempirical and X-ray crystallographic studies.
Tetrahedron, 1997,
53(8), 2803-2816.
[
http://dx.doi.org/10.1016/S0040-4020(97)00022-7];
(h) Matos, L.H.S.; Masson, F.T.; Simeoni, L.A.; Homem-de-Mello, M. Biological activity of dihydropyrimidinone (DHPM) derivatives: A systematic review.
Eur. J. Med. Chem., 2018,
143, 1779-1789.
[
http://dx.doi.org/10.1016/j.ejmech.2017.10.073] [PMID:
29133039];
(i) Zangade, S.; Patil, P.
A review on solvent-free methods in organic synthesis. Curr. Org. Chem., 2020,
23(21), 2295-2318.
[
http://dx.doi.org/10.2174/1385272823666191016165532];
(j) Khasimbi, S.; Ali, F.; Manda, K.; Sharma, A.; Chauhan, G.; Wakode, S. Dihydropyrimidinones scaffold as a promising nucleus for synthetic profile and various therapeutic targets: A review.
Curr. Org. Synth., 2021,
18(3), 270-293.
[
http://dx.doi.org/10.2174/1570179417666201207215710] [PMID:
33290199]
[10]
a) Sheykhan, M.; Yahyazadeh, A.; Rahemizadeh, Z. Cu–EDTA-modified APTMS-Fe3O4 @SiO2 core-shell nanocatalyst: A novel magnetic recoverable catalyst for the Biginelli reaction.
RSC Advances, 2016,
6(41), 34553-34563.
[
http://dx.doi.org/10.1039/C6RA02415G];
b) Shen, P.; Xu, M.; Yin, D.; Xie, S.; Zhou, C.; Li, F. Halogenated macroporous sulfonic resins as efficient catalysts for the Biginelli reaction.
Catal. Commun., 2016,
77, 18-21.
[
http://dx.doi.org/10.1016/j.catcom.2016.01.010];
c) Mondal, J.; Sen, T.; Bhaumik, A. Fe3O4@mesoporous SBA-15: a robust and magnetically recoverable catalyst for one-pot synthesis of 3,4-dihydropyrimidin-2(1H)-ones via the Biginelli reaction.
Dalton Trans., 2012,
41(20), 6173-6181.
[
http://dx.doi.org/10.1039/c2dt30106g] [PMID:
22475989];
d) Alvim, H.G.O.; Lima, T.B.; de Oliveira, A.L.; de Oliveira, H.C.B.; Silva, F.M.; Gozzo, F.C.; Souza, R.Y.; da Silva, W.A.; Neto, B.A.D. Facts, presumptions, and myths on the solvent-free and catalyst-free Biginelli reaction. What is catalysis for?
J. Org. Chem., 2014,
79(8), 3383-3397.
[
http://dx.doi.org/10.1021/jo5001498] [PMID:
24665975];
e) Phukan, M.; Kalita, M.K.; Borah, R. A new protocol for Biginelli (or like) reaction under solvent-free grinding method using Fe (NO3)3. 9H2O as catalyst.
Green Chem. Lett. Rev., 2010,
3(4), 329-334.
[
http://dx.doi.org/10.1080/17518253.2010.487841];
f) Reddy, O.; Suryanarayana, C.; Sharmila, N.; Ramana, G.; Anuradha, V.; Babu, B. Synthesis and cytotoxic evaluation for some new dihydropyrimidinone derivatives for anticancer activity.
Lett. Drug Des. Discov., 2013,
10(8), 699-705.
[
http://dx.doi.org/10.2174/15701808113109990007]
[25]
a) Shylesh, S.; Schünemann, V.; Thiel, W.R. Magnetically separable nanocatalysts: Bridges between homogeneous and heterogeneous catalysis.
Angew. Chem. Int. Ed., 2010,
49(20), 3428-3459.
[
http://dx.doi.org/10.1002/anie.200905684];
b) Polshettiwar, V.; Luque, R.; Fihri, A.; Zhu, H.; Bouhrara, M.; Basset, J.M. Magnetically recoverable nanocatalysts.
Chem. Rev., 2011,
111(5), 3036-3075.
[
http://dx.doi.org/10.1021/cr100230z] [PMID:
21401074];
c) Lu, A.H.; Salabas, E.L.; Schüth, F. Magnetic nanoparticles: Synthesis, protection, functionalization, and application.
Angew. Chem. Int. Ed., 2007,
46(8), 1222-1244.
[
http://dx.doi.org/10.1002/anie.200602866];
d) Nasir Baig, R.B.; Varma, R.S. Magnetically retrievable catalysts for organic synthesis.
Chem. Commun. (Camb.), 2013,
49, 752-770.
[
http://dx.doi.org/10.1039/C2CC35663E] [PMID:
23212208];
e) Lim, C.W.; Lee, I.S. Magnetically recyclable nanocatalyst systems for the organic reactions.
Nano Today, 2010,
5(5), 412-434.
[
http://dx.doi.org/10.1016/j.nantod.2010.08.008];
f) Gawande, M.B.; Branco, P.S.; Varma, R.S. Nano-magnetite (Fe3O4) as a support for recyclable catalysts in the development of sustainable methodologies.
Chem. Soc. Rev., 2013,
42(8), 3371-3393.
[
http://dx.doi.org/10.1039/c3cs35480f] [PMID:
23420127];
g) Rossi, L.M.; Costa, N.J.S.; Silva, F.P.; Wojcieszak, R. Magnetic nanomaterials in catalysis: Advanced catalysts for magnetic separation and beyond.
Green Chem., 2014,
16(6), 2906-2933.
[
http://dx.doi.org/10.1039/c4gc00164h];
h) Wang, D.; Astruc, D. Fast-growing field of magnetically recyclable nanocatalysts.
Chem. Rev., 2014,
114(14), 6949-6985.
[
http://dx.doi.org/10.1021/cr500134h] [PMID:
24892491]
[27]
Maddali, N.K.; Viswanath, I.V.K.; Murthy, Y.L.N.; Malkhed, V.; Kondaparthi, V.; Brahman, P.K.; Govindh, B. Novel pyrimidinone linked 1,2,3-triazole scaffolds as anti-microbial and antioxidant agents: Synthesis, in-vitro and in-silico studies. J. Pharm. Res. Int., 2022, 2021, 477-491.
[56]
CO. K. A Reexamination of the mechanism of the biginelli dihydropyrimidine synthesis. Support for an n-acyliminium ion intermediate1. J. Org. Chem., 1997, 62(21), 7201-7204.
[64]
Cruickshank, R.; Duguid, J.P.; Marion, B.P.; Swain, R.H.A. Medicinal Microbiology, London. Churchil Livingstone, 1975, 2, 196.
[72]
El-Hamouly, W.S.; Amine, K.M.; Tawfik, H.A.; Dawood, D.H.; Moharam, M.E. Synthesis and antimicrobial activity of new 3, 4- dihydropyrimidinones. Int. J. Pharm. Sci. Res., 2011, 2(4), 1054-1062.
[73]
Ramesh, B.; Bharathi, D.R.; Basavaraj, H.S.; Jayadevaiah, K.V. Synthesis and antimicrobial activity of trisubstituted 1,6-dihydropyrimidines. Asian J. Chem., 2008, 20, 2591-2596.
[78]
Furniss, B.S.; Hannaford, A.J.; Smith, P.W.G.; Tatchell, A.R. Vogel’s text book of practical organic chemistry. Longman Sci. Technical, 1989, 5, 1, 1540.
[79]
Tumma, R.; Shaik, N.B. Synthesis and anti-inflammatory activity of some 5-phenyl-(Acyl)-1, 2, 3, 4-tetrazole. Inter. J. Chem. Analyt. Sci., 2010, 1(16), 127-129.
[81]
Kumar, R.; Malik, S.; Chandra, R. Synthesis and antimicrobial activity of 4- [5-dihydropyridines and 4- [ 5-chloro-3-methyl-1-. Indian J. Chem., 2009, 48, 718-724.
[85]
El-bendary, E.R.; Badria, F.A. Synthesis, DNA-binding, and antiviral activity of certain pyrazolo; Pyrimidine Derivatives, 2000, pp. 99-103. 3, 4- d.
[91]
Solanki, M.J.; Chavda, M.M. Synthesis and antimicrobial activity of some novel derivatives of Thiazolo[2,3-b] dihydropyrimidine containing 4-pyrazolyl moiety. Rasayan J. Chem., 2011, 4(3), 605-608.
[95]
Stull, R.E.; Jobe, P.C.; Seiger, P.F. Brain areas involved in the catecholamine mediated regulation of electroshock seizure intensity. J. Pharm. (Cairo), 1977, 161(3), 5-10.
[103]
Shaaban, M.K.; Soliman, A.M.; El-Remaily, M.A.A. Eco-friendly synthesis of pyrimidine and dihydropyrimidinone derivatives under solvent free condition and their anti-microbial activity. Chem. Sci. J., 2013, 2013(110), 1-9.
[114]
Kaur, H.; Persoons, L.; Andrei, G.; Singh, K. Quinoline‐Dihydropyrimidin‐2(1 H)‐one Hybrids: Synthesis, biological activity, and mechanistic studies. ChemMedChem, 2022, 2, 1-11.
[119]
Naik, P.; Naik, B.; Aravinda, T. Nano-titanium dioxide (TiO2) mediated simple and efficient modification to biginelli reaction. African J. Pure Appl. Chem., 2009, 3(9), 202-207.