Insight into the Various Approaches for the Enhancement of Bioavailability and Pharmacological Potency of Terpenoids: A Review

Page: [1228 - 1244] Pages: 17

  • * (Excluding Mailing and Handling)

Abstract

Terpenoids are naturally occurring secondary metabolites that consist of isoprene units (i.e., 2-methyl-1,3-butadiene). Terpenoids became recognized because of their diverse pharmacological benefits, such as anti-cancer, anti-inflammatory, antioxidant, analgesic, antibacterial, antifungal, hepatoprotective, antiviral, and antiparasitic activities. But most of these compounds have limited lipophilicity, dissolution rate, aqueous solubility, and drug permeability, so they are not used effectively. The low bioavailability significantly interferes with the performance of terpenoids to cure diseases, and the absorption process of terpenoids also becomes disrupted; therefore, their bioavailability in the blood becomes insufficient to achieve optimal treatment activity. Thus, to overcome this limitation, some strategies are used, such as nanotechnology (nanoparticles, carrier complexation), cocrystal, and glycosylation. Thus, this review summarizes the chemistry of terpenoids, factors that limit the bioavailability of terpenoids, and strategies employed to date with their design principles and outcomes possibly increasing their bioactivity.

Graphical Abstract

[1]
Yang, W; Chen, X; Li, Y; Guo, S; Wang, Z; Yu, X. Advances in pharmacological activities of terpenoids. Nat. Prod. Commun., 2020, 15(3), 1934578X20903555.
[http://dx.doi.org/10.1177/1934578X20903555]
[2]
Benkeblia, N. Ganoderma lucidum polysaccharides and Terpenoids: profile and health benefits. J. Food Nutr. Diet., 2015, 1, 1-6.
[3]
Lasoń, E. Topical administration of terpenes encapsulated in nanostructured lipid-based systems. Molecules, 2020, 25(23), 5758.
[http://dx.doi.org/10.3390/molecules25235758] [PMID: 33297317]
[4]
Saeidnia, S. Anticancer terpenoids. In: New Approaches to Natural Anticancer Drugs; Springer: Cham, 2015; pp. 67-92.
[5]
Negi, K.; Singh, S.; Gahlot, M.S.; Tyagi, S.; Gupta, A. Terpenoids from medicinal plants beneficial for human health care. Int. J. Botany Stud., 2020, 5(4), 135-138.
[6]
Bergman, M.E.; Davis, B.; Phillips, M.A. Medically useful plant terpenoids: biosynthesis, occurrence, and mechanism of action. Molecules, 2019, 24(21), 3961.
[http://dx.doi.org/10.3390/molecules24213961] [PMID: 31683764]
[7]
Schmidt-Dannert, C. Biosynthesis of terpenoid natural products in fungi. Biotechnol. Isoprenoids, 2014, 2014, 19-61.
[http://dx.doi.org/10.1007/10_2014_283]
[8]
Gozari, M.; Alborz, M.; El-Seedi, H.R.; Jassbi, A.R. Chemistry, biosynthesis and biological activity of terpenoids and meroterpenoids in bacteria and fungi isolated from different marine habitats. Eur. J. Med. Chem., 2021, 210, 112957.
[http://dx.doi.org/10.1016/j.ejmech.2020.112957] [PMID: 33160760]
[9]
Cox-Georgian, D.; Ramadoss, N.; Dona, C.; Basu, C. Therapeutic and medicinal uses of terpenes. In: Medicinal Plants; Springer: Cham, 2019; pp. 333-359.
[10]
Kamran, S.; Sinniah, A.; Abdulghani, M.A.M.; Alshawsh, M.A. Therapeutic potential of certain terpenoids as anticancer agents: a scoping review. Cancers, 2022, 14(5), 1100.
[http://dx.doi.org/10.3390/cancers14051100] [PMID: 35267408]
[11]
Prakash, V.E. Terpenoids a source of anti-inflammatory compounds. Asian J. Pharm. Clin. Res., 2017, 10(3), 68-76.
[http://dx.doi.org/10.22159/ajpcr.2017.v10i3.16435]
[12]
Wang, C.Y.; Chen, Y.W.; Hou, C.Y. Antioxidant and antibacterial activity of seven predominant terpenoids. Int. J. Food Prop., 2019, 22(1), 230-238.
[http://dx.doi.org/10.1080/10942912.2019.1582541]
[13]
Parshikov, I.A.; Netrusov, A.I.; Sutherland, J.B. Microbial transformation of antimalarial terpenoids. Biotechnol. Adv., 2012, 30(6), 1516-1523.
[http://dx.doi.org/10.1016/j.biotechadv.2012.03.010] [PMID: 22484051]
[14]
Guimarães, A.C.; Meireles, L.M.; Lemos, M.F.; Guimarães, M.C.C.; Endringer, D.C.; Fronza, M.; Scherer, R. Antibacterial activity of ter-penes and terpenoids present in essential oils. Molecules, 2019, 24(13), 2471.
[http://dx.doi.org/10.3390/molecules24132471] [PMID: 31284397]
[15]
Alqasoumi, S.I.; Abdel-Kader, M.S. Terpenoids from Juniperus procera with hepatoprotective activity. Pak. J. Pharm. Sci., 2012, 25(2), 315-322.
[PMID: 22459455]
[16]
Wen, C.C.; Kuo, Y.H.; Jan, J.T.; Liang, P.H.; Wang, S.Y.; Liu, H.G.; Lee, C.K.; Chang, S.T.; Kuo, C.J.; Lee, S.S.; Hou, C.C.; Hsiao, P.W.; Chien, S.C.; Shyur, L.F.; Yang, N.S. Specific plant terpenoids and lignoids possess potent antiviral activities against severe acute respirato-ry syndrome coronavirus. J. Med. Chem., 2007, 50(17), 4087-4095.
[http://dx.doi.org/10.1021/jm070295s] [PMID: 17663539]
[17]
Saxena, G.; Kalra, S.S.; Gupta, N.E. Antimicrobial activity pattern of certain terpenoids. Int. J. Pharm Bio Sci., 2011, 2(1), 87-91.
[18]
Grassmann, J.; Hippeli, S.; Elstner, E.F. Plant’s defense and its benefits for animals and medicine: role of phenolics and terpenoids in avoiding oxygen stress. Plant Physiol. Biochem., 2002, 40(6-8), 471-478.
[http://dx.doi.org/10.1016/S0981-9428(02)01395-5]
[19]
Kohlert, C.; van Rensen, I.; März, R.; Schindler, G.; Graefe, E.U.; Veit, M. Bioavailability and pharmacokinetics of natural volatile ter-penes in animals and humans. Planta Med., 2000, 66(6), 495-505.
[http://dx.doi.org/10.1055/s-2000-8616] [PMID: 10985073]
[20]
Bonifácio, B.V.; Silva, P.B.; Ramos, M.A.; Negri, K.M.; Bauab, T.M.; Chorilli, M. Nanotechnology-based drug delivery systems and herb-al medicines: A review. Int. J. Nanomedicine, 2014, 9, 1-15.
[PMID: 24363556]
[21]
Wang, Z.; Chen, Y.; Wu, F. Oligo-polyethene glycol (PEG)-modified 14-deoxy-11, 12-didehydroandrographolide derivatives: Synthesis, solubility, and anti-bacterial activity. Tetrahedron, 2016, 72(18), 2265-2270.
[http://dx.doi.org/10.1016/j.tet.2016.03.025]
[22]
de las Heras, B.; Rodríguez, B.; Boscá, L.; Villar, A.M. Terpenoids: sources, structure elucidation and therapeutic potential in inflamma-tion. Curr. Top. Med. Chem., 2003, 3(2), 171-185.
[http://dx.doi.org/10.2174/1568026033392462] [PMID: 12570772]
[23]
Ludwiczuk, A.; Skalicka-Woźniak, K.; Georgiev, M.I. Terpenoids. In: Pharmacognosy; Academic Press, 2017; pp. 233-266.
[24]
Ruzicka, L. The isoprene rule and the biogenesis of terpenic compounds. Experientia, 1953, 9(10), 357-367.
[http://dx.doi.org/10.1007/BF02167631] [PMID: 13116962]
[25]
Martin-Smith; -Smith, M.; Khatoon, T. Biological Activity of the Terpenoids and Their Derivatives. In: Jucker, E. (eds). Progress in Drug Research, Advances in Drug Research. Pharmaceutiques; , 1963, 6, pp. 279-346.
[http://dx.doi.org/10.1007/978-3-0348-7050-4_4]
[26]
Pichersky, E.; Raguso, R.A. Why do plants produce so many terpenoid compounds? New Phytol., 2018, 220(3), 692-702.
[http://dx.doi.org/10.1111/nph.14178] [PMID: 27604856]
[27]
Park, Y.D.; Jin, C.H.; Choi, D.S.; Byun, M.W.; Jeong, I.Y. Biological evaluation of isoegomaketone isolated from Perilla frutescens and its synthetic derivatives as anti-inflammatory agents. Arch. Pharm. Res., 2011, 34(8), 1277-1282.
[http://dx.doi.org/10.1007/s12272-011-0806-8] [PMID: 21910048]
[28]
Souza, M.T.; Almeida, J.R.; Araujo, A.A.; Duarte, M.C.; Gelain, D.P.; Moreira, J.C.; dos Santos, M.R.; Quintans-Júnior, L.J. Structure–activity relationship of terpenes with anti-inflammatory profile - a systematic review. Basic Clin. Pharmacol. Toxicol., 2014, 115(3), 244-256.
[http://dx.doi.org/10.1111/bcpt.12221] [PMID: 25275147]
[29]
Kumar, G.; Singh, D.; Tali, J.A.; Dheer, D.; Shankar, R. Andrographolide: Chemical modification and its effect on biological activities. Bioorg. Chem., 2020, 95, 103511.
[http://dx.doi.org/10.1016/j.bioorg.2019.103511] [PMID: 31884143]
[30]
Baltina, L.A. Chemical modification of glycyrrhizic acid as a route to new bioactive compounds for medicine. Curr. Med. Chem., 2003, 10(2), 155-171.
[http://dx.doi.org/10.2174/0929867033368538] [PMID: 12570715]
[31]
Jahangeer, M.; Fatima, R.; Ashiq, M.; Basharat, A.; Qamar, S.A.; Bilal, M.; Iqbal, H.M. Therapeutic and biomedical potentialities of terpe-noids-A Review. J. Pure Appl. Microbiol., 2021, 15, 471-483.
[http://dx.doi.org/10.22207/JPAM.15.2.04]
[32]
Bhargava, V.V.; Patel, S.C.; Desai, K.S. Importance of terpenoids and essential oils in chemotaxonomic approach. Int. J. Herb. Med., 2013, 1(2), 2321-187.
[33]
Pattanaik, B.; Lindberg, P. Terpenoids and their biosynthesis in cyanobacteria. Life, 2015, 5(1), 269-293.
[http://dx.doi.org/10.3390/life5010269] [PMID: 25615610]
[34]
Salha, G.B.; Abderrabba, M.; Labidi, J. A status review of terpenes and their separation methods. Rev. Chem. Eng., 2021, 37(3), 433-447.
[http://dx.doi.org/10.1515/revce-2018-0066]
[35]
Wagner, K.H.; Elmadfa, I. Biological relevance of terpenoids. Overview focusing on mono-, di- and tetraterpenes. Ann. Nutr. Metab., 2003, 47(3-4), 95-106.
[http://dx.doi.org/10.1159/000070030] [PMID: 12743459]
[36]
Huang, M.; Lu, J.J.; Huang, M.Q.; Bao, J.L.; Chen, X.P.; Wang, Y.T. Terpenoids: Natural products for cancer therapy. Expert Opin. Investig. Drugs, 2012, 21(12), 1801-1818.
[http://dx.doi.org/10.1517/13543784.2012.727395] [PMID: 23092199]
[37]
Chadwick, M.; Trewin, H.; Gawthrop, F.; Wagstaff, C. Sesquiterpenoids lactones: benefits to plants and people. Int. J. Mol. Sci., 2013, 14(6), 12780-12805.
[http://dx.doi.org/10.3390/ijms140612780] [PMID: 23783276]
[38]
Ikram, N.K.B.K.; Simonsen, H.T. A review of biotechnological artemisinin production in plants. Front. Plant Sci., 2017, 8, 1966.
[http://dx.doi.org/10.3389/fpls.2017.01966] [PMID: 29187859]
[39]
Devarenne, T. P Terpenoids: higher. In: eLS; John Wiley & Sons, 2009.
[40]
Heinig, U.; Jennewein, S. Taxol: A complex diterpenoid natural product with an evolutionarily obscure origin. Afr. J. Biotechnol., 2009, 8(8)
[41]
Wei, M.; Zhou, P.; Huang, L.; Yin, J.; Li, Q.; Dai, C.; Wang, J.; Gu, L.; Tong, Q.; Zhu, H.; Zhang, Y.; Spectanoids, A. Spectanoids A-H: Eight undescribed sesterterpenoids from Aspergillus spectabilis. Phytochemistry, 2021, 191, 112910.
[http://dx.doi.org/10.1016/j.phytochem.2021.112910] [PMID: 34481345]
[42]
Wang, L.; Yang, B.; Lin, X.P.; Zhou, X.F.; Liu, Y. Sesterterpenoids. Nat. Prod. Rep., 2013, 30(3), 455-473.
[http://dx.doi.org/10.1039/c3np20089b] [PMID: 23385977]
[43]
Dzubak, P.; Hajduch, M.; Vydra, D.; Hustova, A.; Kvasnica, M.; Biedermann, D.; Markova, L.; Urban, M.; Sarek, J. Pharmacological ac-tivities of natural triterpenoids and their therapeutic implications. Nat. Prod. Rep., 2006, 23(3), 394-411.
[http://dx.doi.org/10.1039/b515312n] [PMID: 16741586]
[44]
Yang, H.; Dou, Q.P. Targeting apoptosis pathway with natural terpenoids: implications for treatment of breast and prostate cancer. Curr. Drug Targets, 2010, 11(6), 733-744.
[http://dx.doi.org/10.2174/138945010791170842] [PMID: 20298150]
[45]
Mooibroek, H.; Cornish, K. Alternative sources of natural rubber. Appl. Microbiol. Biotechnol., 2000, 53(4), 355-365.
[http://dx.doi.org/10.1007/s002530051627] [PMID: 10803889]
[46]
Klimek-Szczykutowicz, M.; Szopa, A.; Ekiert, H. Citrus limon (Lemon) phenomenon-A review of the chemistry, pharmacological proper-ties, applications in the modern pharmaceutical, food, and cosmetics industries, and biotechnological studies. Plants, 2020, 9(1), 119.
[http://dx.doi.org/10.3390/plants9010119] [PMID: 31963590]
[47]
Ganjewala, D.; Gupta, A.K.; Muhury, R. An update on bioactive potential of a monoterpene aldehyde citral. J. Biolog. Active Products from Nature., 2012, 2(4), 186-199.
[http://dx.doi.org/10.1080/22311866.2012.10719126]
[48]
Corsello, M.A.; Garg, N.K. Synthetic chemistry fuels interdisciplinary approaches to the production of artemisinin. Nat. Prod. Rep., 2015, 32(3), 359-366.
[http://dx.doi.org/10.1039/C4NP00113C] [PMID: 25342519]
[49]
Triemer, S.; Gilmore, K.; Vu, G.T.; Seeberger, P.H.; Seidel-Mor-genstern, A. Literally green chemical synthesis of artemisinin from plant extracts. Angew. Chem. Int. Ed. Engl., 2018, 57(19), 5525-5528.
[http://dx.doi.org/10.1002/anie.201801424] [PMID: 29465820]
[50]
Patil, R.; Jain, V. Andrographolide: A review of analytical methods. J. Chromatogr. Sci., 2021, 59(2), 191-203.
[http://dx.doi.org/10.1093/chromsci/bmaa091] [PMID: 33221827]
[51]
Islam, M.T. Andrographolide, a new hope in the prevention and treatment of metabolic syndrome. Front. Pharmacol., 2017, 8, 571.
[http://dx.doi.org/10.3389/fphar.2017.00571] [PMID: 28878680]
[52]
Zhu, L.; Chen, L. Progress in research on paclitaxel and tumor immunotherapy. Cell. Mol. Biol. Lett., 2019, 24(1), 40.
[http://dx.doi.org/10.1186/s11658-019-0164-y] [PMID: 31223315]
[53]
Yang, Y.H.; Mao, J.W.; Tan, X.L. Research progress on the source, production, and anti-cancer mechanisms of paclitaxel. Chin. J. Nat. Med., 2020, 18(12), 890-897.
[http://dx.doi.org/10.1016/S1875-5364(20)60032-2] [PMID: 33357719]
[54]
Fukuda, T.; Kurihara, Y.; Kanamoto, A.; Tomoda, H. Terretonin G, a new sesterterpenoid antibiotic from marine-derived Aspergillus sp. OPMF00272. J. Antibiot., 2014, 67(8), 593-595.
[http://dx.doi.org/10.1038/ja.2014.46] [PMID: 24802208]
[55]
Kaur, N.; Chaudhary, J.; Jain, A.; Kishore, L. Stigmasterol: A comprehensive review. Int. J. Pharm. Sci. Res., 2011, 2(9), 2259.
[56]
Shi, J.; Li, J.; Xu, Z.; Chen, L.; Luo, R.; Zhang, C.; Gao, F.; Zhang, J.; Fu, C. Celastrol: A review of useful strategies overcoming its limita-tion in anticancer application. Front. Pharmacol., 2020, 11, 558741.
[http://dx.doi.org/10.3389/fphar.2020.558741] [PMID: 33364939]
[57]
He, Q.W.; Feng, J.H.; Hu, X.L.; Long, H.; Huang, X.F.; Jiang, Z.Z.; Zhang, X.Q.; Ye, W.C.; Wang, H. Synthesis and biological evaluation of celastrol derivatives as potential immunosuppressive agents. J. Nat. Prod., 2020, 83(9), 2578-2586.
[http://dx.doi.org/10.1021/acs.jnatprod.0c00067] [PMID: 32822186]
[58]
Becerra, M.O.; Contreras, L.M.; Lo, M.H.; Díaz, J.M.; Herrera, G.C. Lutein as a functional food ingredient: Stability and bioavailability. J. Funct. Foods, 2020, 66, 103771.
[http://dx.doi.org/10.1016/j.jff.2019.103771]
[59]
van Beilen, J.B.; Poirier, Y. Guayule and Russian dandelion as alternative sources of natural rubber. Crit. Rev. Biotechnol., 2007, 27(4), 217-231.
[http://dx.doi.org/10.1080/07388550701775927] [PMID: 18085463]
[60]
Paduch, R.; Kandefer-Szerszeń, M.; Trytek, M.; Fiedurek, J. Terpenes: Substances useful in human healthcare. Arch. Immunol. Ther. Exp., 2007, 55(5), 315-327.
[http://dx.doi.org/10.1007/s00005-007-0039-1] [PMID: 18219762]
[61]
Wu, M.; Ni, L.; Lu, H.; Xu, H.; Zou, S.; Zou, X. Terpenoids and their biological activities from cinnamomum. Rev. J. Chem., 2020, 2020
[62]
Kim, T.; Song, B.; Cho, K.S.; Lee, I.S. Therapeutic potential of volatile terpenes and terpenoids from forests for inflammatory diseases. Int. J. Mol. Sci., 2020, 21(6), 2187.
[http://dx.doi.org/10.3390/ijms21062187] [PMID: 32235725]
[63]
Manayi, A.; Nabavi, S.M.; Daglia, M.; Jafari, S. Natural terpenoids as a promising source for modulation of GABAergic system and treat-ment of neurological diseases. Pharmacol. Rep., 2016, 68(4), 671-679.
[http://dx.doi.org/10.1016/j.pharep.2016.03.014] [PMID: 27110875]
[64]
El-Baba, C.; Baassiri, A.; Kiriako, G.; Dia, B.; Fadlallah, S.; Moodad, S.; Darwiche, N. Terpenoids’ anti-cancer effects: focus on autopha-gy. Apoptosis, 2021, 26(9-10), 491-511.
[http://dx.doi.org/10.1007/s10495-021-01684-y] [PMID: 34269920]
[65]
Kesarwani, K.; Gupta, R.; Mukerjee, A. Bioavailability enhancers of herbal origin: An overview. Asian Pac. J. Trop. Biomed., 2013, 3(4), 253-266.
[http://dx.doi.org/10.1016/S2221-1691(13)60060-X] [PMID: 23620848]
[66]
Odeh, F; Al-Jaber, H; Khater, D Nanoflora-how nanotechnology enhanced the use of active phytochemicals. App. Nanotechnol. Drug Delivery., 2014, 343-68.
[67]
Kaltschmidt, B.P.; Ennen, I.; Greiner, J.F.W.; Dietsch, R.; Patel, A.; Kaltschmidt, B.; Kaltschmidt, C.; Hütten, A. Preparation of terpenoid-invasomes with selective activity against S. aureus and characterization by cryo transmission electron microscopy. Biomedicines, 2020, 8(5), 105.
[http://dx.doi.org/10.3390/biomedicines8050105] [PMID: 32369920]
[68]
Arulanandraj, N.; Dhivya, S.; Gopal, V. A review on herbal nanoparticles. PharmaTutor., 2018, 6(5), 32-37.
[http://dx.doi.org/10.29161/PT.v6.i5.2018.32]
[69]
Li, Z.; Jiang, H.; Xu, C.; Gu, L. A review: Using nanoparticles to enhance absorption and bioavailability of phenolic phytochemicals. Food Hydrocoll., 2015, 43, 153-164.
[http://dx.doi.org/10.1016/j.foodhyd.2014.05.010]
[70]
Mody, V.V.; Siwale, R.; Singh, A.; Mody, H.R. Introduction to metallic nanoparticles. J. Pharm. Bioallied Sci., 2010, 2(4), 282-289.
[http://dx.doi.org/10.4103/0975-7406.72127] [PMID: 21180459]
[71]
Hu, L.; Xing, Q.; Meng, J.; Shang, C. Preparation and enhanced oral bioavailability of cryptotanshinone-loaded solid lipid nanoparticles. AAPS PharmSciTech, 2010, 11(2), 582-587.
[http://dx.doi.org/10.1208/s12249-010-9410-3] [PMID: 20352534]
[72]
Chen, M.; Wang, S.; Tan, M.; Wang, Y. Applications of nanoparticles in herbal medicine: zedoary turmeric oil and its active compound β-elemene. Am. J. Chin. Med., 2011, 39(6), 1093-1102.
[http://dx.doi.org/10.1142/S0192415X11009421] [PMID: 22083983]
[73]
Ajazuddin; Saraf, S. Applications of novel drug delivery system for herbal formulations. Fitoterapia, 2010, 81(7), 680-689.
[http://dx.doi.org/10.1016/j.fitote.2010.05.001] [PMID: 20471457]
[74]
Pérez-Sánchez, A.; Borrás-Linares, I.; Barrajón-Catalán, E.; Arráez-Román, D.; González-Álvarez, I.; Ibáñez, E.; Segura-Carretero, A.; Bermejo, M.; Micol, V. Evaluation of the intestinal permeability of rosemary (Rosmarinus officinalis L.) extract polyphenols and terpe-noids in Caco-2 cell monolayers. PLoS One, 2017, 12(2), e0172063.
[http://dx.doi.org/10.1371/journal.pone.0172063] [PMID: 28234919]
[75]
Crosasso, P.; Ceruti, M.; Brusa, P.; Arpicco, S.; Dosio, F.; Cattel, L. Preparation, characterization and properties of sterically stabilized paclitaxel-containing liposomes. J. Control. Release, 2000, 63(1-2), 19-30.
[http://dx.doi.org/10.1016/S0168-3659(99)00166-2] [PMID: 10640577]
[76]
Beltrán-Gracia, E.; López-Camacho, A.; Higuera-Ciapara, I.; Velázquez-Fernández, J.B.; Vallejo-Cardona, A.A. Nanomedicine review: Clinical developments in liposomal applications. Cancer Nanotechnol., 2019, 10(1), 1-40.
[http://dx.doi.org/10.1186/s12645-019-0055-y]
[77]
Sharma, D.; Bhujbale, A.A. Phytosomes is a novel drug delivery system based herbal formulation: A review. PharmaTutor., 2018, 6(3), 23-26.
[http://dx.doi.org/10.29161/PT.v6.i3.2018.23]
[78]
Chivte, P.S.; Pardhi, V.S.; Joshi, V.A.; Rani, A. A review on therapeutic applications of phytosomes. J. Drug Deliv. Ther., 2017, 7(5), 17-21.
[http://dx.doi.org/10.22270/jddt.v7i5.1513]
[79]
Lu, M; Qiu, Q; Luo, X; Liu, X; Sun, J; Wang, C; Lin, X; Deng, Y; Song, Y Phyto-phospholipid complexes (phytosomes): A novel strategy to improve the bioavailability of active constituents. As. J. Pharm. Sci., 2019, 14(3), 265-274.
[80]
Awasthi, R.; Kulkarni, G.T.; Pawar, V.K. Phytosomes: An approach to increase the bioavailability of plant extracts. Int. J. Pharm. Pharm. Sci., 2011, 3(2), 1-3.
[81]
Kareparamban, J.A.; Nikam, P.H.; Jadhav, A.P.; Kadam, V.J. Phytosome: a novel revolution in herbal drugs. IJRPC, 2012, 2(2), 299-310.
[82]
Hetal, T.; Bindesh, P.; Sneha, T. A review on techniques for oral bioavailability enhancement of drugs. Int. J. Pharm. Sci. Rev. Res., 2010, 4(3), 203-3.
[83]
Anjana, R.; Kumar, S.; Sharma, H.; Khar, R. Phytosome drug delivery of natural products: A promising technique for enhancing bioavail-ability. Int. J. Drug Delivery Technol., 2017, 7(03), 157-165.
[http://dx.doi.org/10.25258/ijddt.v7i03.9559]
[84]
Jaiswal, M; Dudhe, R; Sharma, PK Nanoemulsion: An advanced mode of drug delivery system. 3 Biotech., 2015, 5(2), 123-7.
[85]
Miastkowska, M.; Śliwa, P. Influence of terpene type on the release from an O/W nanoemulsion: Experimental and theoretical studies. Molecules, 2020, 25(12), 2747.
[http://dx.doi.org/10.3390/molecules25122747] [PMID: 32545817]
[86]
Yen, C.C.; Chen, Y.C.; Wu, M.T.; Wang, C.C.; Wu, Y.T. Nanoemulsion as a strategy for improving the oral bioavailability and anti-inflammatory activity of andrographolide. Int. J. Nanomedicine, 2018, 13, 669-680.
[http://dx.doi.org/10.2147/IJN.S154824] [PMID: 29440893]
[87]
Nagavarma, B.V.; Yadav, H.K.; Ayaz, A.V.; Vasudha, L.S.; Shivakumar, H.G. Different techniques for preparation of polymeric nanopar-ticles-A review. Asian J. Pharm. Clin. Res., 2012, 5(3), 16-23.
[88]
Li, B.; Li, Q.; Mo, J.; Dai, H. Drug-loaded polymeric nanoparticles for cancer stem cell targeting. Front. Pharmacol., 2017, 8, 51.
[http://dx.doi.org/10.3389/fphar.2017.00051] [PMID: 28261093]
[89]
Zielińska, A.; Carreiró, F.; Oliveira, A.M.; Neves, A.; Pires, B.; Venkatesh, D.N.; Durazzo, A.; Lucarini, M.; Eder, P.; Silva, A.M.; Santini, A.; Souto, E.B. Polymeric nanoparticles: Production, characterization, toxicology, and ecotoxicology. Molecules, 2020, 25(16), 3731.
[http://dx.doi.org/10.3390/molecules25163731] [PMID: 32824172]
[90]
Wilczewska, A.Z.; Niemirowicz, K.; Markiewicz, K.H.; Car, H. Nanoparticles as drug delivery systems. Pharmacol. Rep., 2012, 64(5), 1020-1037.
[http://dx.doi.org/10.1016/S1734-1140(12)70901-5] [PMID: 23238461]
[91]
El-Hammadi, M.M.; Small-Howard, A.L.; Fernández-Arévalo, M.; Martín-Banderas, L. Development of enhanced drug delivery vehicles for three cannabis-based terpenes using poly (lactic-co-glycolic acid) based nanoparticles. Ind. Crops Prod., 2021, 164, 113345.
[http://dx.doi.org/10.1016/j.indcrop.2021.113345]
[92]
Sur, S.; Rathore, A.; Dave, V.; Reddy, K.R.; Chouhan, R.S.; Sadhu, V. Recent developments in functionalized polymer nanoparticles for efficient drug delivery system. Nano-Structures & Nano-Objects., 2019, 20, 100397.
[http://dx.doi.org/10.1016/j.nanoso.2019.100397]
[93]
Yih, T.C.; Al-Fandi, M. Engineered nanoparticles as precise drug delivery systems. J. Cell. Biochem., 2006, 97(6), 1184-1190.
[http://dx.doi.org/10.1002/jcb.20796] [PMID: 16440317]
[94]
Jamkhande, P.G.; Ghule, N.W.; Bamer, A.H.; Kalaskar, M.G. Metal nanoparticles synthesis: An overview on methods of preparation, advantages and disadvantages, and applications. J. Drug Deliv. Sci. Technol., 2019, 53, 101174.
[http://dx.doi.org/10.1016/j.jddst.2019.101174]
[95]
Ovais, M.; Khalil, A.T.; Islam, N.U.; Ahmad, I.; Ayaz, M.; Saravanan, M.; Shinwari, Z.K.; Mukherjee, S. Role of plant phytochemicals and microbial enzymes in biosynthesis of metallic nanoparticles. Appl. Microbiol. Biotechnol., 2018, 102(16), 6799-6814.
[http://dx.doi.org/10.1007/s00253-018-9146-7] [PMID: 29882162]
[96]
Milligan, J.J.; Saha, S. A Nanoparticle’s journey to the tumor: strategies to overcome first-pass metabolism and their limitations. Cancers, 2022, 14(7), 1741.
[http://dx.doi.org/10.3390/cancers14071741] [PMID: 35406513]
[97]
Yang, T.; Cui, F.D.; Choi, M.K.; Lin, H.; Chung, S.J.; Shim, C.K.; Kim, D.D. Liposome formulation of paclitaxel with enhanced solubility and stability. Drug Deliv., 2007, 14(5), 301-308.
[http://dx.doi.org/10.1080/10717540601098799] [PMID: 17613018]
[98]
Zhang, J.; Liang, H.; Yao, H.; Qiu, Z.; Chen, X.; Hu, X.; Hu, J.; Zheng, G. The preparation, characterization of lupeol PEGylated liposome and its functional evaluation in vitro as well as pharmacokinetics in rats. Drug Dev. Ind. Pharm., 2019, 45(7), 1052-1060.
[http://dx.doi.org/10.1080/03639045.2019.1569038] [PMID: 30939950]
[99]
Naik, S.R.; Panda, V.S. Antioxidant and hepatoprotective effects of Ginkgo biloba phytosomes in carbon tetrachloride-induced liver injury in rodents. Liver Int., 2007, 27(3), 393-399.
[http://dx.doi.org/10.1111/j.1478-3231.2007.01463.x] [PMID: 17355462]
[100]
Han, L.; Fu, Y.; Cole, A.J.; Liu, J.; Wang, J. Co-encapsulation and sustained-release of four components in ginkgo terpenes from injectable PELGE nanoparticles. Fitoterapia, 2012, 83(4), 721-731.
[http://dx.doi.org/10.1016/j.fitote.2012.02.014] [PMID: 22414318]
[101]
Zhao, Y.; Xiong, S.; Liu, P.; Liu, W.; Wang, Q.; Liu, Y.; Tan, H.; Chen, X.; Shi, X.; Wang, Q.; Chen, T. Polymeric nanoparticles-based brain delivery with improved therapeutic efficacy of ginkgolide B in Parkinson’s disease. Int. J. Nanomedicine, 2020, 15, 10453-10467.
[http://dx.doi.org/10.2147/IJN.S272831] [PMID: 33380795]
[102]
Kavitha, S.; Dhamodaran, M.; Prasad, R.; Ganesan, M. Synthesis, and characterization of zinc oxide nanoparticles using terpenoid frac-tions of Andrographis paniculata leaves. Int. Nano Lett., 2017, 7(2), 141-147.
[http://dx.doi.org/10.1007/s40089-017-0207-1]
[103]
Adnan, M.; Patel, M.; Reddy, M.N.; Alshammari, E. Formulation, evaluation, and bioactive potential of Xylaria primorskensis terpenoid nanoparticles from its major compound xylaranic acid. Sci. Rep., 2018, 8(1), 1-2.
[http://dx.doi.org/10.1038/s41598-018-20237-z] [PMID: 29311619]
[104]
Gidwani, B.; Vyas, A. A comprehensive review on cyclodextrin-based carriers for delivery of chemotherapeutic cytotoxic anticancer drugs. BioMed Res. Int., 2015, 2015, 198268.
[http://dx.doi.org/10.1155/2015/198268] [PMID: 26582104]
[105]
Kumar, S.K.; Sushma, M.; Raju, P.Y. Dissolution enhancement of poorly soluble drugs by using complexation technique-A review. J. Pharm. Sci. Res., 2013, 5(5), 120.
[106]
Wang, S.; Tan, M.; Zhong, Z.; Chen, M.; Wang, Y. Nanotechnologies for curcumin: An ancient puzzler meets modern solutions. J. Nanomater., 2011, 2011
[http://dx.doi.org/10.1155/2011/723178]
[107]
Mura, P. Advantages of the combined use of cyclodextrins and nanocarriers in drug delivery: A review. Int. J. Pharm., 2020, 579, 119181.
[http://dx.doi.org/10.1016/j.ijpharm.2020.119181] [PMID: 32112928]
[108]
Savjani, K.T.; Gajjar, A.K.; Savjani, J.K. Drug solubility: importance and enhancement techniques. Int. Scholarly Res. Not., 2012, 2012, 1-11.
[http://dx.doi.org/10.5402/2012/195727]
[109]
Pawar, A.; Rajalakshmi, S.; Mehta, P.; Shaikh, K.; Bothiraja, C. Strategies for formulation development of andrographolide. RSC Advances, 2016, 6(73), 69282-69300.
[http://dx.doi.org/10.1039/C6RA12161F]
[110]
Lima, P.S.S.; Lucchese, A.M.; Araújo-Filho, H.G.; Menezes, P.P.; Araújo, A.A.S.; Quintans-Júnior, L.J.; Quintans, J.S.S. Inclusion of terpenes in cyclodextrins: Preparation, characterization and pharmacological approaches. Carbohydr. Polym., 2016, 151, 965-987.
[http://dx.doi.org/10.1016/j.carbpol.2016.06.040] [PMID: 27474645]
[111]
Aytac, Z.; Yildiz, Z.I.; Kayaci-Senirmak, F.; Tekinay, T.; Uyar, T. Electrospinning of cyclodextrin/linalool-inclusion complex nanofibers: Fast-dissolving nanofibrous web with prolonged release and antibacterial activity. Food Chem., 2017, 231, 192-201.
[http://dx.doi.org/10.1016/j.foodchem.2017.03.113] [PMID: 28449997]
[112]
Mazzobre, M.F.; Dos Santos, C.I.; Buera, M.D. Solubility, and stability of β-cyclodextrin-terpineol inclusion complex as affected by wa-ter. Food Biophys., 2011, 6(2), 274-280.
[http://dx.doi.org/10.1007/s11483-011-9208-1]
[113]
Miguel, M.G.; Dandlen, S.A.; Figueiredo, A.C.; Pedro, L.G.; Barroso, J.G.; Marques, M.H. Comparative evaluation of the antioxidant activities of thymol and carvacrol and the corresponding β-cyclodextrin complexes. Int. Sym. Med. Arom. Plants-SIPAM., 2009, 853, 363-368.
[114]
Gujar, S.; Telange, D.; Pethe, A. Supramolecular complexes of phospholipids and β-cyclodextrin with bioactive β-carotene: A comparative physico-chemical and functional evaluation. Indian J. Pharm. Educ. Res., 2020, 54(2), 220-229.
[http://dx.doi.org/10.5530/ijper.54.2s.78]
[115]
Yen, C.C.; Liang, Y.K.; Cheng, C.P.; Hsu, M.C.; Wu, Y.T. Oral bioavailability enhancement and anti-fatigue assessment of the andro-grapholide loaded solid dispersion. Int. J. Mol. Sci., 2020, 21(7), 2506.
[http://dx.doi.org/10.3390/ijms21072506] [PMID: 32260319]
[116]
Wu, X.; Huo, Q.; Quan, Q.; Yang, X.; Yu, N.; Wang, Y. Optimizing the formulation for ginkgolide b solid dispersion. Open Life Sci., 2018, 13(1), 253-262.
[http://dx.doi.org/10.1515/biol-2018-0031] [PMID: 33817091]
[117]
Dong, L.; Mai, Y.; Liu, Q.; Zhang, W.; Yang, J. Mechanism, and improved dissolution of glycyrrhetinic acid solid dispersion by alkalizers. Pharmaceutics, 2020, 12(1), 82.
[http://dx.doi.org/10.3390/pharmaceutics12010082] [PMID: 31968604]
[118]
Guan, D.; Xuan, B.; Wang, C.; Long, R.; Jiang, Y.; Mao, L.; Kang, J.; Wang, Z.; Chow, S.F.; Zhou, Q. Improving the physicochemical and biopharmaceutical properties of active pharmaceutical ingredients derived from traditional chinese medicine through cocrystal engineering. Pharmaceutics, 2021, 13(12), 2160.
[http://dx.doi.org/10.3390/pharmaceutics13122160] [PMID: 34959440]
[119]
Patole, T.; Deshpande, A. Co-crystallization-A technique for solubility enhancement. Int. J. Pharm. Sci. Res., 2014, 5(9), 3566.
[120]
Thakuria, R.; Delori, A.; Jones, W.; Lipert, M.P.; Roy, L.; Rodríguez-Hornedo, N. Pharmaceutical cocrystals and poorly soluble drugs. Int. J. Pharm., 2013, 453(1), 101-125.
[http://dx.doi.org/10.1016/j.ijpharm.2012.10.043] [PMID: 23207015]
[121]
Ngilirabanga, J.B.; Samsodien, H. Pharmaceutical co‐crystal: An alternative strategy for enhanced physicochemical properties and drug synergy. Nano Select, 2021, 2(3), 512-526.
[http://dx.doi.org/10.1002/nano.202000201]
[122]
Gong, N.; Yu, H.; Wang, Y.; Xing, C.; Hu, K.; Du, G.; Lu, Y. Crystal structures, stability, and solubility evaluation of a 2: 1 diosgenin–piperazine cocrystal. Nat. Prod. Bioprospect., 2020, 10(4), 261-267.
[http://dx.doi.org/10.1007/s13659-020-00256-y] [PMID: 32632767]
[123]
Sirikun, W.; Chatchawalsaisin, J.; Sutanthavibul, N. Cocrystallization of Artemisinin and Amodiaquine Hydrochloride. Thaiphesatchasan, 2015, 39(4)
[124]
Sanphui, P.; Goud, N.R.; Khandavilli, U.R.; Nangia, A. Fast dissolving curcumin cocrystals. Cryst. Growth Des., 2011, 11(9), 4135-4145.
[http://dx.doi.org/10.1021/cg200704s]
[125]
Suresh, K.; Goud, N.R.; Nangia, A. Andrographolide: solving chemical instability and poor solubility by means of cocrystals. Chem. Asian J., 2013, 8(12), 3032-3041.
[http://dx.doi.org/10.1002/asia.201300859] [PMID: 24027244]
[126]
Caputi, L.; Lim, E.K.; Bowles, D.J. Discovery of new biocatalysts for the glycosylation of terpenoid scaffolds. Chemistry, 2008, 14(22), 6656-6662.
[http://dx.doi.org/10.1002/chem.200800548] [PMID: 18561352]
[127]
Chen, H.; Yang, S.; Xu, A.; Jiang, R.; Tang, Z.; Wu, J.; Zhu, L.; Liu, S.; Chen, X.; Lu, Y. Insight into the glycosylation and hydrolysis kinetics of alpha-glucosidase in the synthesis of glycosides. Appl. Microbiol. Biotechnol., 2019, 103(23-24), 9423-9432.
[http://dx.doi.org/10.1007/s00253-019-10205-6] [PMID: 31713673]
[128]
Chang, T.S.; Wang, T.Y.; Chiang, C.M.; Lin, Y.J.; Chen, H.L.; Wu, Y.W.; Ting, H.J.; Wu, J.Y. Biotransformation of celastrol to a novel, well-soluble, low-toxic, and anti-oxidative celastrol-29-O-b-glucoside by Bacillus glycosyltransferases. Inflammation, 2020, 1-e5.
[129]
Qiao, Y.; Huang, Y.; Feng, F.; Chen, Z.G. Efficient enzymatic synthesis and antibacterial activity of andrographolide glycoside. Process Biochem., 2016, 51(5), 675-680.
[http://dx.doi.org/10.1016/j.procbio.2016.02.008]
[130]
Chen, K.; He, J.; Hu, Z.; Song, W.; Yu, L.; Li, K.; Qiao, X.; Ye, M. Enzymatic glycosylation of oleanane-type triterpenoids. J. Asian Nat. Prod. Res., 2018, 20(7), 615-623.
[http://dx.doi.org/10.1080/10286020.2018.1478818] [PMID: 29911425]
[131]
Yang, L.; Zhu, J.; Song, L.; Shi, X.; Li, X.; Yu, R. Three sesquiterpene compounds biosynthesised from artemisinic acid using suspen-sion-cultured cells of Averrhoa carambola (Oxalidaceae). Nat. Prod. Res., 2012, 26(15), 1388-1394.
[http://dx.doi.org/10.1080/14786419.2011.589055] [PMID: 22011141]
[132]
Chang, T.S.; Chiang, C.M.; Wang, T.Y.; Lee, C.H.; Lee, Y.W.; Wu, J.Y. New triterpenoid from novel triterpenoid 15-O-glycosylation on ganoderic acid A by intestinal bacteria of zebrafish. Molecules, 2018, 23(9), 2345.
[http://dx.doi.org/10.3390/molecules23092345] [PMID: 30217066]