[3]
Wang Z, Shen X, Shi Q. New advances in single-cell genome sequencing technology and its application in biomedicine. Genetics 2021; 43(02): 108-17.
[13]
Liu CL, Zhu Y, Zhang H. Cellular similarity based imputation for single cell RNA sequencing data. In: 13th International Conference on Bioinformatics and Biomedical Technology. 2021; pp. 65-70.
[25]
Guan J, Li R Y, Wang J. GRACE: A graph-based cluster ensemble
approach for single-cell RNA-Seq data clustering. IEEE Access 2020; 8: 166730-41.
[33]
Zhu TJ, Zhu Y, Zhang CK. Incomplete multi-view clustering for single cell RNA sequencing data. 2021 China Automation Congress
(CAC) IEEE. 2021; pp. 1651-5.
[38]
Károly AI, Fullér R, Galambos P. Unsupervised clustering for deep learning: A tutorial survey. Acta Polytech Hung 2018; 15(8): 29-53.
[45]
Xie J, Girshick R, Farhadi A. Unsupervised deep embedding for clustering analysis. In: International Conference on Machine Learning PMLR. 2016; pp. 478-87.
[46]
Yang B, Fu X, Sidiropoulos ND, et al. Towards k-means-friendly spaces: simultaneous deep learning and clustering. International Conference on Machine Learning PMLR . Sydney, Australia 2017; pp. 3861-70.
[47]
Huang P, Huang Y, Wang W, et al. Deep embedding network for clustering. In: 22nd International Conference on Pattern Recognition. IEEE 2014; pp. 1532-7.
[56]
Hu H, Li Z, Li X, Yu M, Pan X. ScCAEs: deep clustering of single-cell RNA-seq via convolutional autoencoder embedding and soft K-means. Brief Bioinform 2022; 23(1): bbab321.
[57]
Dong J, Zhang Y, Wang F. scSemiAE: a deep model with semi-supervised learning for single-cell transcriptomics. BMC Bioinform 2022; 23: 161.
[58]
Srinivasan S, Leshchyk A, Johnson NT, Korkin D. A hybrid deep clustering approach for robust cell type profiling using single-cell RNA-seq data. RNA 2020; 26(10): 1303-19.
[63]
Zhang R, Zou Y, Ma J. Hyper-SAGNN: A self-attention based
graph neural network for hypergraphs. arXiv preprint 2019.
[65]
Gao W, Li Y, Fang C, et al. SCMAG: A semi-supervised single-cell clustering method based on matrix aggregation graph convolutional neural network. Comput Math Methods Med 2021; 2021: 6842752.
[74]
Bai LT, Zhu Y, Yi M. Clustering single-cell RNA sequencing data by deep learning algorithm. In: 9th International Conference on Bioinformatics and Computational Biology (ICBCB). 2021; pp. 118-24.
[98]
Ghahramani A, Watt FM, Luscombe NM. Generative adversarial networks uncover epidermal regulators and predict single-cell perturbations. BioRxiv 2018; 262501.
[100]
Amodio M, Krishnaswamy S. MAGAN: Aligning biological manifolds. In: International Conference on Machine Learning. Stockholm, Sweden PMLR; 2018; pp. 215-23.