Deep Learning for Clustering Single-cell RNA-seq Data

Page: [193 - 210] Pages: 18

  • * (Excluding Mailing and Handling)

Abstract

The development of single-cell RNA sequencing (scRNA-seq) technology provides an excellent opportunity to explore cell heterogeneity and diversity. With the growing application of scRNA-seq data, many computational clustering methods have been developed to further uncover cell subgroups, and cell dynamics at the group level. Due to the characteristics of high dimension, high sparsity and high noise of the scRNA-seq data, it is challenging to use traditional clustering methods. Fortunately, deep learning technologies characterize the properties of scRNA-seq data well and provide a new perspective for data analysis. This work reviews the most popular computational clustering methods and tools based on deep learning technologies, involving comparison, data collection, code acquisition, results evaluation, and so on. In general, such a presentation points out some progress and limitations of the existing methods and discusses the challenges and directions for further research, which may give new insight to address a broader range of new challenges in dealing with single-cell sequencing data and downstream analysis.

Graphical Abstract

[1]
Regev A, Teichmann SA, Lander ES, et al. Science forum: The human cell atlas. eLife 2017; 6: e27041.
[http://dx.doi.org/10.7554/eLife.27041] [PMID: 29206104]
[2]
Mortazavi A, Williams BA, McCue K, Schaeffer L, Wold B. Mapping and quantifying mammalian transcriptomes by RNA-Seq. Nat Methods 2008; 5(7): 621-8.
[http://dx.doi.org/10.1038/nmeth.1226] [PMID: 18516045]
[3]
Wang Z, Shen X, Shi Q. New advances in single-cell genome sequencing technology and its application in biomedicine. Genetics 2021; 43(02): 108-17.
[4]
Zheng R, Liang Z, Chen X, Tian Y, Cao C, Li M. An adaptive sparse subspace clustering for cell type identification. Front Genet 2020; 11: 407.
[http://dx.doi.org/10.3389/fgene.2020.00407] [PMID: 32425984]
[5]
Eberwine J, Sul JY, Bartfai T, Kim J. The promise of single-cell sequencing. Nat Methods 2014; 11(1): 25-7.
[http://dx.doi.org/10.1038/nmeth.2769] [PMID: 24524134]
[6]
Macaulay IC, Voet T. Single cell genomics: Advances and future perspectives. PLoS Genet 2014; 10(1): e1004126.
[http://dx.doi.org/10.1371/journal.pgen.1004126] [PMID: 24497842]
[7]
Wang Y, Navin NE. Advances and applications of single-cell sequencing technologies. Mol Cell 2015; 58(4): 598-609.
[http://dx.doi.org/10.1016/j.molcel.2015.05.005] [PMID: 26000845]
[8]
Stegle O, Teichmann SA, Marioni JC. Computational and analytical challenges in single-cell transcriptomics. Nat Rev Genet 2015; 16(3): 133-45.
[http://dx.doi.org/10.1038/nrg3833] [PMID: 25628217]
[9]
Yuan GC, Cai L, Elowitz M, et al. Challenges and emerging directions in single-cell analysis. Genome Biol 2017; 18(1): 84.
[http://dx.doi.org/10.1186/s13059-017-1218-y] [PMID: 28482897]
[10]
Stuart T, Satija R. Integrative single-cell analysis. Nat Rev Genet 2019; 20(5): 257-72.
[http://dx.doi.org/10.1038/s41576-019-0093-7] [PMID: 30696980]
[11]
Luecken MD, Theis FJ. Current best practices in single-cell RNA-seq analysis: A tutorial. Mol Syst Biol 2019; 15(6): e8746.
[http://dx.doi.org/10.15252/msb.20188746] [PMID: 31217225]
[12]
Lee J, Hyeon DY, Hwang D. Single-cell multiomics: technologies and data analysis methods. Exp Mol Med 2020; 52(9): 1428-42.
[http://dx.doi.org/10.1038/s12276-020-0420-2] [PMID: 32929225]
[13]
Liu CL, Zhu Y, Zhang H. Cellular similarity based imputation for single cell RNA sequencing data. In: 13th International Conference on Bioinformatics and Biomedical Technology. 2021; pp. 65-70.
[14]
Shapiro E, Biezuner T, Linnarsson S. Single-cell sequencing-based technologies will revolutionize whole-organism science. Nat Rev Genet 2013; 14(9): 618-30.
[http://dx.doi.org/10.1038/nrg3542] [PMID: 23897237]
[15]
Menon V. Clustering single cells: A review of approaches on high-and low-depth single-cell RNA-seq data. Brief Funct Genomics 2018; 17(4): 240-5.
[http://dx.doi.org/10.1093/bfgp/elx044] [PMID: 29236955]
[16]
Lafzi A, Moutinho C, Picelli S, Heyn H. Tutorial: Guidelines for the experimental design of single-cell RNA sequencing studies. Nat Protoc 2018; 13(12): 2742-57.
[http://dx.doi.org/10.1038/s41596-018-0073-y] [PMID: 30446749]
[17]
Kolodziejczyk AA, Kim JK, Svensson V, Marioni JC, Teichmann SA. The technology and biology of single-cell RNA sequencing. Mol Cell 2015; 58(4): 610-20.
[http://dx.doi.org/10.1016/j.molcel.2015.04.005] [PMID: 26000846]
[18]
Gawad C, Koh W, Quake SR. Single-cell genome sequencing: current state of the science. Nat Rev Genet 2016; 17(3): 175-88.
[http://dx.doi.org/10.1038/nrg.2015.16] [PMID: 26806412]
[19]
Kelsey G, Stegle O, Reik W. Single-cell epigenomics: Recording the past and predicting the future. Science 2017; 358(6359): 69-75.
[http://dx.doi.org/10.1126/science.aan6826] [PMID: 28983045]
[20]
Yang Y, Huh R, Culpepper HW, Lin Y, Love MI, Li Y. SAFE-clustering: Single-cell Aggregated (from Ensemble) clustering for single-cell RNA-seq data. Bioinformatics 2019; 35(8): 1269-77.
[http://dx.doi.org/10.1093/bioinformatics/bty793] [PMID: 30202935]
[21]
Wan S, Kim J, Won KJ. SHARP: hyperfast and accurate processing of single-cell RNA-seq data via ensemble random projection. Genome Res 2020; 30(2): 205-13.
[http://dx.doi.org/10.1101/gr.254557.119] [PMID: 31992615]
[22]
Li X, Zhang S, Wong KC. Single-cell RNA-seq interpretations using evolutionary multiobjective ensemble pruning. Bioinformatics 2019; 35(16): 2809-17.
[http://dx.doi.org/10.1093/bioinformatics/bty1056] [PMID: 30596898]
[23]
Tsoucas D, Yuan GC. GiniClust2: a cluster-aware, weighted ensemble clustering method for cell-type detection. Genome Biol 2018; 19(1): 58.
[http://dx.doi.org/10.1186/s13059-018-1431-3] [PMID: 29747686]
[24]
Weber LM, Robinson MD. Comparison of clustering methods for high-dimensional single-cell flow and mass cytometry data. Cytometry A 2016; 89(12): 1084-96.
[http://dx.doi.org/10.1002/cyto.a.23030] [PMID: 27992111]
[25]
Guan J, Li R Y, Wang J. GRACE: A graph-based cluster ensemble approach for single-cell RNA-Seq data clustering. IEEE Access 2020; 8: 166730-41.
[26]
Zhu Y, Zhang DX, Zhang XF, Yi M, Ou-Yang L, Wu M. EC-PGMGR: Ensemble clustering based on probability graphical model with graph regularization for single-cell RNA-seq data. Front Genet 2020; 11: 572242.
[http://dx.doi.org/10.3389/fgene.2020.572242] [PMID: 33329710]
[27]
Petegrosso R, Li Z, Kuang R. Machine learning and statistical methods for clustering single-cell RNA-sequencing data. Brief Bioinform 2020; 21(4): 1209-23.
[http://dx.doi.org/10.1093/bib/bbz063] [PMID: 31243426]
[28]
Ji Y, Lotfollahi M, Wolf FA, Theis FJ. Machine learning for perturbational single-cell omics. Cell Syst 2021; 12(6): 522-37.
[http://dx.doi.org/10.1016/j.cels.2021.05.016] [PMID: 34139164]
[29]
Oller-Moreno S, Kloiber K, Machart P, Bonn S. Algorithmic advances in machine learning for single-cell expression analysis. Curr Opin Syst Biol 2021; 25: 27-33.
[http://dx.doi.org/10.1016/j.coisb.2021.02.002]
[30]
Liu J, Fan Z, Zhao W, Zhou X. Machine intelligence in single-cell data analysis: Advances and new challenges. Front Genet 2021; 12: 655536.
[http://dx.doi.org/10.3389/fgene.2021.655536] [PMID: 34135939]
[31]
Raimundo F, Meng-Papaxanthos L, Vallot C, Vert J-P. Machine learning for single-cell genomics data analysis. Curr Opin Syst Biol 2021; 26: 64-71.
[http://dx.doi.org/10.1016/j.coisb.2021.04.006]
[32]
Konstantinides N, Desplan C. Neuronal differentiation strategies: insights from single-cell sequencing and machine learning. Development 2020; 147(23): dev193631.
[http://dx.doi.org/10.1242/dev.193631] [PMID: 33293292]
[33]
Zhu TJ, Zhu Y, Zhang CK. Incomplete multi-view clustering for single cell RNA sequencing data. 2021 China Automation Congress (CAC) IEEE. 2021; pp. 1651-5.
[34]
Min E, Guo X, Liu Q, et al. A survey of clustering with deep learning: from the perspective of network architecture. IEEE Access 2018; 6: 39501-14.
[http://dx.doi.org/10.1109/ACCESS.2018.2855437]
[35]
Karim MR, Beyan O, Zappa A, et al. Deep learning-based clustering approaches for bioinformatics. Brief Bioinform 2021; 22(1): 393-415.
[http://dx.doi.org/10.1093/bib/bbz170] [PMID: 32008043]
[36]
Flores M, Liu Z, Zhang T, et al. Deep learning tackles single-cell analysis—a survey of deep learning for scRNA-seq analysis. Brief Bioinform 2022; 23(1): bbab531.
[http://dx.doi.org/10.1093/bib/bbab531] [PMID: 34929734]
[37]
Wang J, Zou Q, Lin C. A comparison of deep learning-based pre-processing and clustering approaches for single-cell RNA sequencing data. Brief Bioinform 2022; 23(1): bbab345.
[http://dx.doi.org/10.1093/bib/bbab345] [PMID: 34472590]
[38]
Károly AI, Fullér R, Galambos P. Unsupervised clustering for deep learning: A tutorial survey. Acta Polytech Hung 2018; 15(8): 29-53.
[39]
Andrews TS, Hemberg M. Identifying cell populations with scRNASeq. Mol Aspects Med 2018; 59: 114-22.
[http://dx.doi.org/10.1016/j.mam.2017.07.002] [PMID: 28712804]
[40]
Wang Z, Ding H, Zou Q. Identifying cell types to interpret scRNA-seq data: how, why and more possibilities. Brief Funct Genomics 2020; 19(4): 286-91.
[http://dx.doi.org/10.1093/bfgp/elaa003] [PMID: 32232401]
[41]
Sun X, Lin X, Li Z, Wu H. A comprehensive comparison of supervised and unsupervised methods for cell type identification in single-cell RNA-seq. Brief Bioinform 2022; 23(2): bbab567.
[http://dx.doi.org/10.1093/bib/bbab567] [PMID: 35021202]
[42]
Song M, Greenbaum J, Luttrell JIV, et al. A review of integrative imputation for multi-omics datasets. Front Genet 2020; 11: 570255.
[http://dx.doi.org/10.3389/fgene.2020.570255] [PMID: 33193667]
[43]
Patruno L, Maspero D, Craighero F, Angaroni F, Antoniotti M, Graudenzi A. A review of computational strategies for denoising and imputation of single-cell transcriptomic data. Brief Bioinform 2021; 22(4): bbaa222.
[PMID: 33003202]
[44]
Baek S, Lee I. Single-cell ATAC sequencing analysis: From data preprocessing to hypothesis generation. Comput Struct Biotechnol J 2020; 18: 1429-39.
[http://dx.doi.org/10.1016/j.csbj.2020.06.012] [PMID: 32637041]
[45]
Xie J, Girshick R, Farhadi A. Unsupervised deep embedding for clustering analysis. In: International Conference on Machine Learning PMLR. 2016; pp. 478-87.
[46]
Yang B, Fu X, Sidiropoulos ND, et al. Towards k-means-friendly spaces: simultaneous deep learning and clustering. International Conference on Machine Learning PMLR . Sydney, Australia 2017; pp. 3861-70.
[47]
Huang P, Huang Y, Wang W, et al. Deep embedding network for clustering. In: 22nd International Conference on Pattern Recognition. IEEE 2014; pp. 1532-7.
[48]
Li X, Wang K, Lyu Y, et al. Deep learning enables accurate clustering with batch effect removal in single-cell RNA-seq analysis. Nat Commun 2020; 11(1): 2338.
[http://dx.doi.org/10.1038/s41467-020-15851-3] [PMID: 32393754]
[49]
Yang KD, Belyaeva A, Venkatachalapathy S, et al. Multi-domain translation between single-cell imaging and sequencing data using autoencoders. Nat Commun 2021; 12(1): 31.
[http://dx.doi.org/10.1038/s41467-020-20249-2] [PMID: 33397893]
[50]
Tangherloni A, Ricciuti F, Besozzi D, Liò P, Cvejic A. Analysis of single-cell RNA sequencing data based on autoencoders. BMC Bioinformatics 2021; 22(1): 309.
[http://dx.doi.org/10.1186/s12859-021-04150-3] [PMID: 34103004]
[51]
Eraslan G, Simon LM, Mircea M, Mueller NS, Theis FJ. Single-cell RNA-seq denoising using a deep count autoencoder. Nat Commun 2019; 10(1): 390.
[http://dx.doi.org/10.1038/s41467-018-07931-2] [PMID: 30674886]
[52]
Tian T, Wan J, Song Q, Wei Z. Clustering single-cell RNA-seq data with a model-based deep learning approach. Nat Mach Intell 2019; 1(4): 191-8.
[http://dx.doi.org/10.1038/s42256-019-0037-0]
[53]
Peng J, Wang X, Shang X. Combining gene ontology with deep neural networks to enhance the clustering of single cell RNA-Seq data. BMC Bioinformatics 2019; 20(S8) (Suppl. 8): 284.
[http://dx.doi.org/10.1186/s12859-019-2769-6] [PMID: 31182005]
[54]
Deng Y, Bao F, Dai Q, et al. Massive single-cell RNA- seq analysis and imputation via deep learning. BioRxiv 2018; 315556.
[http://dx.doi.org/10.1101/315556]
[55]
Xia J, Wang L, Zhang G, Zuo C, Chen L. RDAClone: deciphering tumor heterozygosity through single-cell genomics data analysis with robust deep autoencoder. Genes (Basel) 2021; 12(12): 1847.
[http://dx.doi.org/10.3390/genes12121847] [PMID: 34946794]
[56]
Hu H, Li Z, Li X, Yu M, Pan X. ScCAEs: deep clustering of single-cell RNA-seq via convolutional autoencoder embedding and soft K-means. Brief Bioinform 2022; 23(1): bbab321.
[57]
Dong J, Zhang Y, Wang F. scSemiAE: a deep model with semi-supervised learning for single-cell transcriptomics. BMC Bioinform 2022; 23: 161.
[58]
Srinivasan S, Leshchyk A, Johnson NT, Korkin D. A hybrid deep clustering approach for robust cell type profiling using single-cell RNA-seq data. RNA 2020; 26(10): 1303-19.
[59]
Xu L, Xu Y, Xue T, Zhang X, Li J. AdImpute: An imputation method for single-cell RNA-Seq data based on semi-supervised autoencoders. Front Genet 2021; 12: 739677.
[http://dx.doi.org/10.3389/fgene.2021.739677] [PMID: 34567089]
[60]
Zhao J, Wang N, Wang H, Zheng C, Su Y. SCDRHA: A scRNA- seq data dimensionality reduction algorithm based on hierarchical autoencoder. Front Genet 2021; 12: 733906.
[http://dx.doi.org/10.3389/fgene.2021.733906] [PMID: 34512734]
[61]
Li H, Brouwer CR, Luo W. A universal deep neural network for in-depth cleaning of single-cell RNA-Seq data. Nat Commun 2022; 13(1): 1901.
[http://dx.doi.org/10.1038/s41467-022-29576-y] [PMID: 35393428]
[62]
Zhang H, Li P, Zhang R, Li X. Embedding graph auto-encoder for graph clustering. IEEE Trans Neural Netw Learn Syst. 2022; pp. 1-11.
[http://dx.doi.org/10.1109/TNNLS.2022.3158654] [PMID: 35333721]
[63]
Zhang R, Zou Y, Ma J. Hyper-SAGNN: A self-attention based graph neural network for hypergraphs. arXiv preprint 2019.
[64]
Wang T, Bai J, Nabavi S. Single-cell classification using graph convolutional networks. BMC Bioinformatics 2021; 22(1): 364.
[http://dx.doi.org/10.1186/s12859-021-04278-2] [PMID: 34238220]
[65]
Gao W, Li Y, Fang C, et al. SCMAG: A semi-supervised single-cell clustering method based on matrix aggregation graph convolutional neural network. Comput Math Methods Med 2021; 2021: 6842752.
[66]
Lall S, Ray S, Bandyopadhyay S. A copula based topology preserving graph convolution network for clustering of single-cell RNA-seq data. PLOS Comput Biol 2022; 18(3): e1009600.
[http://dx.doi.org/10.1371/journal.pcbi.1009600] [PMID: 35271564]
[67]
Alghamdi N, Chang W, Dang P, et al. A graph neural network model to estimate cell-wise metabolic flux using single-cell RNA-seq data. Genome Res 2021; 31(10): 1867-84.
[http://dx.doi.org/10.1101/gr.271205.120] [PMID: 34301623]
[68]
Shao X, Yang H, Zhuang X, et al. scDeepSort: a pre-trained cell-type annotation method for single-cell transcriptomics using deep learning with a weighted graph neural network. Nucleic Acids Res 2021; 49(21): e122-2.
[http://dx.doi.org/10.1093/nar/gkab775] [PMID: 34500471]
[69]
Bo D, Wang X, Shi C, et al. Structural deep clustering network. The Web Conference. Taipei, Taiwan 2020; pp. 1400-0.
[http://dx.doi.org/10.1145/3366423.3380214]
[70]
Qin Y, Yu ZL, Wang CD, Gu Z, Li Y. A Novel clustering method based on hybrid K-nearest-neighbor graph. Pattern Recognit 2018; 74: 1-14.
[http://dx.doi.org/10.1016/j.patcog.2017.09.008]
[71]
Zeng Y, Zhou X, Rao J, et al. Accurately clustering single-cell RNA-seq data by capturing structural relations between cells through graph convolutional network. In: IEEE International Conference on Bioinformatics and Biomedicine (BIBM) 16-19 December. Seoul, Korea (South); IEEE 2020; pp. 519-22.
[http://dx.doi.org/10.1109/BIBM49941.2020.9313569]
[72]
Rao J, Zhou X, Lu Y, Zhao H, Yang Y. Imputing single-cell RNA-seq data by combining graph convolution and autoencoder neural networks. iScience 2021; 24(5): 102393.
[http://dx.doi.org/10.1016/j.isci.2021.102393] [PMID: 33997678]
[73]
Li J, Jiang W, Han H, Liu J, Liu B, Wang Y. ScGSLC: An unsupervised graph similarity learning framework for single-cell RNA-seq data clustering. Comput Biol Chem 2021; 90: 107415.
[http://dx.doi.org/10.1016/j.compbiolchem.2020.107415] [PMID: 33307360]
[74]
Bai LT, Zhu Y, Yi M. Clustering single-cell RNA sequencing data by deep learning algorithm. In: 9th International Conference on Bioinformatics and Computational Biology (ICBCB). 2021; pp. 118-24.
[75]
Wang J, Ma A, Chang Y, et al. scGNN is a novel graph neural network framework for single-cell RNA-Seq analyses. Nat Commun 2021; 12(1): 1882.
[http://dx.doi.org/10.1038/s41467-021-22197-x] [PMID: 33767197]
[76]
Wang J, Agarwal D, Huang M, et al. Data denoising with transfer learning in single-cell transcriptomics. Nat Methods 2019; 16(9): 875-8.
[http://dx.doi.org/10.1038/s41592-019-0537-1] [PMID: 31471617]
[77]
Gan Y, Huang X, Zou G, Zhou S, Guan J. Deep structural clustering for single-cell RNA-seq data jointly through autoencoder and graph neural network. Brief Bioinform 2022; 23(2): bbac018.
[http://dx.doi.org/10.1093/bib/bbac018] [PMID: 35172334]
[78]
Xu C, Lopez R, Mehlman E, Regier J, Jordan MI, Yosef N. Probabilistic harmonization and annotation of single-cell transcriptomics data with deep generative models. Mol Syst Biol 2021; 17(1): e9620.
[http://dx.doi.org/10.15252/msb.20209620] [PMID: 33491336]
[79]
Hu J, Li X, Hu G, Lyu Y, Susztak K, Li M. Iterative transfer learning with neural network for clustering and cell type classification in single-cell RNA-seq analysis. Nat Mach Intell 2020; 2(10): 607-18.
[http://dx.doi.org/10.1038/s42256-020-00233-7] [PMID: 33817554]
[80]
Chen L, Zhai Y, He Q, Wang W, Deng M. Integrating deep supervised, self-supervised and unsupervised learning for single-cell RNA-seq clustering and annotation. Genes (Basel) 2020; 11(7): 792.
[http://dx.doi.org/10.3390/genes11070792] [PMID: 32674393]
[81]
Lotfollahi M, Naghipourfar M, Luecken MD, et al. Mapping single-cell data to reference atlases by transfer learning. Nat Biotechnol 2022; 40(1): 121-30.
[http://dx.doi.org/10.1038/s41587-021-01001-7] [PMID: 34462589]
[82]
Johnson TS, Yu CY, Huang Z, et al. Diagnostic evidence gauge of single cells (DEGAS): a flexible deep transfer learning framework for prioritizing cells in relation to disease. Genome Med 2022; 14(1): 11.
[http://dx.doi.org/10.1186/s13073-022-01012-2] [PMID: 35105355]
[83]
Peng M, Li Y, Wamsley B, Wei Y, Roeder K. Integration and transfer learning of single-cell transcriptomes via cFIT. Proc Natl Acad Sci USA 2021; 118(10): e2024383118.
[http://dx.doi.org/10.1073/pnas.2024383118] [PMID: 33658382]
[84]
Wang YX, Zhang YJ. Nonnegative matrix factorization: A comprehensive review. IEEE Trans Knowl Data Eng 2013; 25(6): 1336-53.
[http://dx.doi.org/10.1109/TKDE.2012.51]
[85]
Song Q, Su J, Zhang W. scGCN is a graph convolutional networks algorithm for knowledge transfer in single cell omics. Nat Commun 2021; 12(1): 3826.
[http://dx.doi.org/10.1038/s41467-021-24172-y] [PMID: 34158507]
[86]
Park Y, Hauschild AC, Heider D. Transfer learning compensates limited data, batch effects and technological heterogeneity in single-cell sequencing. NAR Genom Bioinform 2021; 3(4): lqab104.
[http://dx.doi.org/10.1093/nargab/lqab104] [PMID: 34805988]
[87]
Zeng P, Lin Z. coupleCoC+: An information-theoretic co-clustering-based transfer learning framework for the integrative analysis of single-cell genomic data. PLOS Comput Biol 2021; 17(6): e1009064.
[http://dx.doi.org/10.1371/journal.pcbi.1009064] [PMID: 34077420]
[88]
Michielsen L, Reinders MJT, Mahfouz A. Hierarchical progressive learning of cell identities in single-cell data. Nat Commun 2021; 12(1): 2799.
[http://dx.doi.org/10.1038/s41467-021-23196-8] [PMID: 33990598]
[89]
Ding J, Condon A, Shah SP. Interpretable dimensionality reduction of single cell transcriptome data with deep generative models. Nat Commun 2018; 9(1): 2002.
[http://dx.doi.org/10.1038/s41467-018-04368-5] [PMID: 29784946]
[90]
Wang D, Gu J. VASC: dimension reduction and visualization of single-cell RNA-seq data by deep variational autoencoder. Genom Proteom Bioinform 2018; 16(5): 320-31.
[http://dx.doi.org/10.1016/j.gpb.2018.08.003] [PMID: 30576740]
[91]
Lopez R, Regier J, Cole MB, Jordan MI, Yosef N. Deep generative modeling for single-cell transcriptomics. Nat Methods 2018; 15(12): 1053-8.
[http://dx.doi.org/10.1038/s41592-018-0229-2] [PMID: 30504886]
[92]
Kopf A, Fortuin V, Somnath VR, Claassen M. Mixture-of-experts variational autoencoder for clustering and generating from similarity-based representations on single cell data. PLOS Comput Biol 2021; 17(6): e1009086.
[http://dx.doi.org/10.1371/journal.pcbi.1009086] [PMID: 34191792]
[93]
Seninge L, Anastopoulos I, Ding H, Stuart J. VEGA is an interpretable generative model for inferring biological network activity in single-cell transcriptomics. Nat Commun 2021; 12(1): 5684.
[http://dx.doi.org/10.1038/s41467-021-26017-0] [PMID: 34584103]
[94]
Ternes L, Dane M, Gross S, et al. A multi-encoder variational autoencoder controls multiple transformational features in single-cell image analysis. Commun Biol 2022; 5(1): 255.
[http://dx.doi.org/10.1038/s42003-022-03218-x] [PMID: 35322205]
[95]
Zuo C, Chen L. Deep-joint-learning analysis model of single cell transcriptome and open chromatin accessibility data. Brief Bioinform 2021; 22(4): bbaa287.
[http://dx.doi.org/10.1093/bib/bbaa287] [PMID: 33200787]
[96]
Minoura K, Abe K, Nam H, Nishikawa H, Shimamura T. A mixture-of-experts deep generative model for integrated analysis of single-cell multiomics data. Cell Reports Methods 2021; 1(5): 100071.
[http://dx.doi.org/10.1016/j.crmeth.2021.100071] [PMID: 35474667]
[97]
Mitra R, MacLean AL. RVAgene: generative modeling of gene expression time series data. Bioinformatics 2021; 37(19): 3252-62.
[http://dx.doi.org/10.1093/bioinformatics/btab260] [PMID: 33974008]
[98]
Ghahramani A, Watt FM, Luscombe NM. Generative adversarial networks uncover epidermal regulators and predict single-cell perturbations. BioRxiv 2018; 262501.
[99]
Bahrami M, Maitra M, Nagy C, Turecki G, Rabiee HR, Li Y. Deep feature extraction of single-cell transcriptomes by generative adversarial network. Bioinformatics 2021; 37(10): 1345-51.
[http://dx.doi.org/10.1093/bioinformatics/btaa976] [PMID: 33226074]
[100]
Amodio M, Krishnaswamy S. MAGAN: Aligning biological manifolds. In: International Conference on Machine Learning. Stockholm, Sweden PMLR; 2018; pp. 215-23.
[101]
Yu H, Welch JD. MichiGAN: sampling from disentangled representations of single-cell data using generative adversarial networks. Genome Biol 2021; 22(1): 158.
[http://dx.doi.org/10.1186/s13059-021-02373-4] [PMID: 34016135]
[102]
Liu Q, Chen S, Jiang R, Wong WH. Simultaneous deep generative modelling and clustering of single-cell genomic data. Nat Mach Intell 2021; 3(6): 536-44.
[http://dx.doi.org/10.1038/s42256-021-00333-y] [PMID: 34179690]
[103]
Wang X, Zhang C, Zhang Y, et al. IMGG: integrating multiple single-cell datasets through connected graphs and generative adversarial networks. Int J Mol Sci 2022; 23(4): 2082.
[http://dx.doi.org/10.3390/ijms23042082] [PMID: 35216199]
[104]
Song Q, Su J. DSTG: deconvoluting spatial transcriptomics data through graph-based artificial intelligence. Brief Bioinform 2021; 22(5): bbaa 414.
[http://dx.doi.org/10.1093/bib/bbaa414]
[105]
Li J, Chen S, Pan X, Yuan Y, Shen H-B. Cell clustering for spatial transcriptomics data with graph neural networks. Nat Comput Sci 2022; 2(6): 399-408.
[http://dx.doi.org/10.1038/s43588-022-00266-5]
[106]
Song Q, Zhu X, Jin L, Chen M, Zhang W, Su J. SMGR: A joint statistical method for integrative analysis of single-cell multi-omics data. NAR Genom Bioinform 2022; 4(3): lqac056.
[http://dx.doi.org/10.1093/nargab/lqac056] [PMID: 35910046]
[107]
Chauvel C, Novoloaca A, Veyre P, Reynier F, Becker J. Evaluation of integrative clustering methods for the analysis of multi-omics data. Brief Bioinform 2020; 21(2): 541-52.
[http://dx.doi.org/10.1093/bib/bbz015] [PMID: 31220206]