As a global health problem, chronic pain is one of the leading causes of disability, and it imposes a huge economic and public health burden on families and society. Opioids represent the cornerstone of analgesic drugs. However, opioid tolerance caused by long-term application of opioids is a major factor leading to drug withdrawal, serious side effects caused by dose increases, and even the death of patients, placing an increasing burden on individuals, medicine, and society. Despite efforts to develop methods to prevent and treat opioid tolerance, no effective treatment has yet been found. Therefore, understanding the mechanism underlying opioid tolerance is crucial for finding new prevention and treatment strategies. Noncoding RNAs (ncRNAs) are important parts of mammalian gene transcriptomes, and there are thousands of unique noncoding RNA sequences in cells. With the rapid development of high-throughput genome technology, research on ncRNAs has become a hot topic in biomedical research. In recent years, studies have shown that ncRNAs mediate physiological and pathological processes, including chromatin remodeling, transcription, posttranscriptional modification and signal transduction, which are key regulators of physiological processes in developmental and disease environments and have become biomarkers and potential therapeutic targets for various diseases. An increasing number of studies have found that ncRNAs are closely related to the development of opioid tolerance. In this review, we have summarized the evidence that ncRNAs play an important role in opioid tolerance and that ncRNAs may be novel targets for opioid tolerance.