Nascent Nanoformulations as an Insight into the Limitations of the Conventional Systemic Antifungal Therapies

Page: [171 - 190] Pages: 20

  • * (Excluding Mailing and Handling)

Abstract

More than 150 million people have significant fungal diseases that greatly impact health care and economic expenditures. The expansion of systemic fungal infections and invasive mycoses is being driven by an increase in the number of immunocompromised patients and the recent COVID-19 patients, especially severely ill. There have been numerous cases of fungal infections linked to COVID-19, with pulmonary aspergillosis dominating at first but with the subsequent appearance of mucormycosis, candidiasis, and endemic mycoses. Candida spp. is the most frequent pathogen, with approximately 1 billion infections yearly, among other species causing the most prevalent invasive fungal infections. The importance of recognizing the epidemiological shifts of invasive fungal infections in patient care cannot be overstated. Despite the enormous antifungal therapies available, these infections are difficult to diagnose and cause high morbidity and mortality rates. Treatment choices for systemic fungal infections are severely limited due to the limitations of conventional therapy effectiveness and drug toxicities. So the researchers are still looking for novel therapeutic options, such as carrier-based approaches that are convenient and cost-effective with high and long-lasting fungal infection cure rates with reduced toxicities. The focus of this study is on summarizing the nanotechnology, immunotherapy methods and the drugs under clinical trials that have been employed in treatment as carrier-based antifungal formulations. Most of these have been reported to be promising strategies with broad-spectrum antifungal action and the potential to overcome antibiotic resistance mechanisms. We speculate that this review summarized the current knowledge to its best that will help the future developments of new antifungal therapies.

Graphical Abstract

[1]
Bongomin F, Gago S, Oladele R, Denning D. Global and multi-national prevalence of fungal diseases-estimate precision. J Fungi 2017; 3(4): 57.
[http://dx.doi.org/10.3390/jof3040057] [PMID: 29371573]
[2]
Seyedmousavi S, Rafati H, Ilkit M, Tolooe A, Hedayati MT, Verweij P. Systemic antifungal agents: current status and projected future developments Human fungal pathogen identification. New York, NY: Humana Press 2017; pp. 107-39.
[http://dx.doi.org/10.1007/978-1-4939-6515-1_5]
[3]
Wall G, Lopez-Ribot JL. Current antimycotics, new prospects, and future approaches to antifungal therapy. Antibiotics 2020; 9(8): 445.
[http://dx.doi.org/10.3390/antibiotics9080445] [PMID: 32722455]
[4]
Sharma S, Grover M, Bhargava S, Samdani S, Kataria T. Post coronavirus disease mucormycosis: a deadly addition to the pandemic spectrum. J Laryngol Otol 2021; 135(5): 442-7.
[http://dx.doi.org/10.1017/S0022215121000992] [PMID: 33827722]
[5]
Mendonça A, Santos H, Franco-Duarte R, Sampaio P. Fungal infections diagnosis - Past, present and future. Res Microbiol 2022; 173(3): 103915.
[http://dx.doi.org/10.1016/j.resmic.2021.103915] [PMID: 34863883]
[6]
Jeong W, Keighley C, Wolfe R, et al. Contemporary management and clinical outcomes of mucormycosis: A systematic review and meta-analysis of case reports. Int J Antimicrob Agents 2019; 53(5): 589-97.
[http://dx.doi.org/10.1016/j.ijantimicag.2019.01.002] [PMID: 30639526]
[7]
Wong-Beringer A, Kriengkauykiat J. Systemic antifungal therapy: new options, new challenges. Pharmacotherapy 2003; 23(11): 1441-62.
[http://dx.doi.org/10.1592/phco.23.14.1441.31938] [PMID: 14620391]
[8]
Yapar N. Epidemiology and risk factors for invasive candidiasis. Ther Clin Risk Manag 2014; 10: 95-105.
[http://dx.doi.org/10.2147/TCRM.S40160] [PMID: 24611015]
[9]
Pfaller MA. Invasive fungal infections and approaches to their diagnosis Methods Microbiol 2015; 42: 219-87.
[http://dx.doi.org/10.1016/bs.mim.2015.05.002]
[10]
Souza ACO, Amaral AC. Antifungal therapy for systemic mycosis and the nanobiotechnology era: improving efficacy, biodistribution and toxicity. Front Microbiol 2017; 8: 336.
[http://dx.doi.org/10.3389/fmicb.2017.00336] [PMID: 28326065]
[11]
Soliman GM. Nanoparticles as safe and effective delivery systems of antifungal agents: Achievements and challenges. Int J Pharm 2017; 523(1): 15-32.
[http://dx.doi.org/10.1016/j.ijpharm.2017.03.019] [PMID: 28323096]
[12]
Chandana T, Saritha ChPS. Comparison of safety and efficacy of luliconazole and other antifungal agents. Int J Pharm Sci Res 2014; 5(1): 1-9.
[13]
Leanse LG, Goh XS, Dai T. Quinine improves the fungicidal effects of antimicrobial blue light: implications for the treatment of cutaneous candidiasis. Lasers Surg Med 2020; 52(6): 569-75.
[http://dx.doi.org/10.1002/lsm.23180] [PMID: 31746024]
[14]
Nami S, Aghebati-Maleki A, Morovati H, Aghebati-Maleki L. Current antifungal drugs and immunotherapeutic approaches as promising strategies to treatment of fungal diseases. Biomed Pharmacother 2019; 110: 857-68.
[http://dx.doi.org/10.1016/j.biopha.2018.12.009] [PMID: 30557835]
[15]
Urban K, Chu S, Scheufele C, et al. The global, regional, and national burden of fungal skin diseases in 195 countries and territories: A cross-sectional analysis from the Global Burden of Disease Study 2017. JAAD international 2021; 2: 22-7.
[16]
Ray TL, Wuepper KD. Experimental cutaneous candidiasis in rodents. J Invest Dermatol 1976; 66(1): 29-33.
[http://dx.doi.org/10.1111/1523-1747.ep12478053] [PMID: 1107433]
[17]
Chandra J, Kuhn DM, Mukherjee PK, Hoyer LL, McCormick T, Ghannoum MA. Biofilm formation by the fungal pathogen Candida albicans: development, architecture, and drug resistance. J Bacteriol 2001; 183(18): 5385-94.
[http://dx.doi.org/10.1128/JB.183.18.5385-5394.2001] [PMID: 11514524]
[18]
Enoch DA, Ludlam HA, Brown NM. Invasive fungal infections: a review of epidemiology and management options. J Med Microbiol 2006; 55(7): 809-18.
[http://dx.doi.org/10.1099/jmm.0.46548-0] [PMID: 16772406]
[19]
Wisplinghoff H, Bischoff T, Tallent SM, Seifert H, Wenzel RP, Edmond MB. Nosocomial bloodstream infections in US hospitals: analysis of 24,179 cases from a prospective nationwide surveillance study. Clin Infect Dis 2004; 39(3): 309-17.
[http://dx.doi.org/10.1086/421946] [PMID: 15306996]
[20]
Chu JH, Feudtner C, Heydon K, Walsh TJ, Zaoutis TE. Hospitalizations for endemic mycoses: a population-based national study. Clin Infect Dis 2006; 42(6): 822-5.
[http://dx.doi.org/10.1086/500405] [PMID: 16477560]
[21]
Marr KA, Carter RA, Crippa F, Wald A, Corey L. Epidemiology and outcome of mould infections in hematopoietic stem cell transplant recipients. Clin Infect Dis 2002; 34(7): 909-17.
[http://dx.doi.org/10.1086/339202] [PMID: 11880955]
[22]
McNeil MM, Nash SL, Hajjeh RA, et al. Trends in mortality due to invasive mycotic diseases in the United States, 1980-1997. Clin Infect Dis 2001; 33(5): 641-7.
[http://dx.doi.org/10.1086/322606] [PMID: 11486286]
[23]
Marr KA, Carter RA, Boeckh M, Martin P, Corey L. Invasive aspergillosis in allogeneic stem cell transplant recipients: changes in epidemiology and risk factors. Blood 2002; 100(13): 4358-66.
[http://dx.doi.org/10.1182/blood-2002-05-1496] [PMID: 12393425]
[24]
Benedict K, Richardson M, Vallabhaneni S, Jackson BR, Chiller T. Emerging issues, challenges, and changing epidemiology of fungal disease outbreaks. Lancet Infect Dis 2017; 17(12): e403-11.
[http://dx.doi.org/10.1016/S1473-3099(17)30443-7] [PMID: 28774697]
[25]
Steinbach WJ. Epidemiology of invasive fungal infections in neonates and children. Clin Microbiol Infect 2010; 16(9): 1321-7.
[http://dx.doi.org/10.1111/j.1469-0691.2010.03288.x] [PMID: 20840541]
[26]
Ben-Ami R, Lewis RE, Leventakos K, Latgé JP, Kontoyiannis DP. Cutaneous model of invasive aspergillosis. Antimicrob Agents Chemother 2010; 54(5): 1848-54.
[http://dx.doi.org/10.1128/AAC.01504-09] [PMID: 20145078]
[27]
Hidron AI, Edwards JR, Patel J, et al. NHSN annual update: antimicrobial-resistant pathogens associated with healthcare-associated infections: annual summary of data reported to the national healthcare safety network at the centers for disease control and prevention, 2006-2007. Infect Control Hosp Epidemiol 2008; 29(11): 996-1011.
[http://dx.doi.org/10.1086/591861] [PMID: 18947320]
[28]
Segal BH, Kwon-Chung J, Walsh TJ, et al. Immunotherapy for fungal infections. Clin Infect Dis 2006; 42(4): 507-15.
[http://dx.doi.org/10.1086/499811] [PMID: 16421795]
[29]
Edmond MB, Wallace SE, McClish DK, Pfaller MA, Jones RN, Wenzel RP. Nosocomial bloodstream infections in United States hospitals: A three-year analysis. Clin Infect Dis 1999; 29(2): 239-44.
[http://dx.doi.org/10.1086/520192] [PMID: 10476719]
[30]
Chayakulkeeree M, Perfect JR. Cryptococcosis. Diagnosis and treatment of human mycoses. 2008; 255-76.
[31]
Vonberg RP, Gastmeier P. Nosocomial aspergillosis in outbreak settings. J Hosp Infect 2006; 63(3): 246-54.
[http://dx.doi.org/10.1016/j.jhin.2006.02.014] [PMID: 16713019]
[32]
Naggie S, Perfect JR. Molds: hyalohyphomycosis, phaeohyphomycosis, and zygomycosis. Clin Chest Med 2009; 30(2): 337-53. [vii-viii.
[http://dx.doi.org/10.1016/j.ccm.2009.02.009] [PMID: 1937563]
[33]
Richardson M, Lass-Flörl C. Changing epidemiology of systemic fungal infections. Clin Microbiol Infect 2008; 14(S4): 5-24.
[http://dx.doi.org/10.1111/j.1469-0691.2008.01978.x] [PMID: 18430126]
[34]
Groll AH, Gea-Banacloche JC, Glasmacher A, Just-Nuebling G, Maschmeyer G, Walsh TJ. Clinical pharmacology of antifungal compounds. Infect Dis Clin North Am 2003; 17(1): 159-91.
[http://dx.doi.org/10.1016/S0891-5520(02)00068-5] [PMID: 12751265]
[35]
Laniado-Laborín R, Cabrales-Vargas MN. Amphotericin B: side effects and toxicity. Rev Iberoam Micol 2009; 26(4): 223-7.
[http://dx.doi.org/10.1016/j.riam.2009.06.003] [PMID: 19836985]
[36]
Vermes A, Guchelaar HJ, Dankert J. Flucytosine: a review of its pharmacology, clinical indications, pharmacokinetics, toxicity and drug interactions. J Antimicrob Chemother 2000; 46(2): 171-9.
[http://dx.doi.org/10.1093/jac/46.2.171] [PMID: 10933638]
[37]
Nett JE, Andes DR. Antifungal Agents. Infect Dis Clin North Am 2016; 30(1): 51-83.
[http://dx.doi.org/10.1016/j.idc.2015.10.012] [PMID: 26739608]
[38]
Novelli V, Holzel H. Safety and tolerability of fluconazole in children. Antimicrob Agents Chemother 1999; 43(8): 1955-60.
[http://dx.doi.org/10.1128/AAC.43.8.1955] [PMID: 10428919]
[39]
Falci DR, dos Santos RP, Wirth F, Goldani LZ. Continuous infusion of amphotericin B deoxycholate: an innovative, low-cost strategy in antifungal treatment. Mycoses 2011; 54(2): 91-8.
[http://dx.doi.org/10.1111/j.1439-0507.2009.01805.x] [PMID: 19878457]
[40]
Lat A, Thompson GR III. Update on the optimal use of voriconazole for invasive fungal infections. Infect Drug Resist 2011; 4: 43-53.
[PMID: 21694908]
[41]
Miceli MH, Kauffman CA. Isavuconazole: a new broad-spectrum triazole antifungal agent. Clin Infect Dis 2015; 61(10): 1558-65.
[http://dx.doi.org/10.1093/cid/civ571] [PMID: 26179012]
[42]
Balkovec JM, Hughes DL, Masurekar PS, Sable CA, Schwartz RE, Singh SB. Discovery and development of first in class antifungal caspofungin (CANCIDAS®)-A case study. Nat Prod Rep 2014; 31(1): 15-34.
[http://dx.doi.org/10.1039/C3NP70070D] [PMID: 24270605]
[43]
Wilke MH. Invasive fungal infections in infants-focus on Anidulafungin Clin med insights Pediatr 2013; 7: CMPed-S8028.
[44]
Denning DW, Hope WW. Therapy for fungal diseases: opportunities and priorities. Trends Microbiol 2010; 18(5): 195-204.
[http://dx.doi.org/10.1016/j.tim.2010.02.004] [PMID: 20207544]
[45]
Georgopapadakou NH. Antifungals: mechanism of action and resistance, established and novel drugs. Curr Opin Microbiol 1998; 1(5): 547-57.
[PMID: 10066533]
[46]
Herbrecht R, Denning DW, Patterson TF, et al. Voriconazole versus amphotericin B for primary therapy of invasive aspergillosis. N Engl J Med 2002; 347(6): 408-15.
[http://dx.doi.org/10.1056/NEJMoa020191] [PMID: 12167683]
[47]
Walsh TJ, Anaissie EJ, Denning DW, et al. Treatment of aspergillosis: clinical practice guidelines of the infectious diseases society of america. Clin Infect Dis 2008; 46(3): 327-60.
[http://dx.doi.org/10.1086/525258] [PMID: 18177225]
[48]
Arnold TM, Dotson E, Sarosi GA, Hage CA. Traditional and emerging antifungal therapies. Proc Am Thorac Soc 2010; 7(3): 222-8.
[http://dx.doi.org/10.1513/pats.200906-048AL] [PMID: 20463252]
[49]
Odds FC, Brown AJP, Gow NAR. Antifungal agents: mechanisms of action. Trends Microbiol 2003; 11(6): 272-9.
[http://dx.doi.org/10.1016/S0966-842X(03)00117-3] [PMID: 12823944]
[50]
Chen SCA, Sorrell TC. Antifungal agents. Med J Aust 2007; 187(7): 404-9.
[http://dx.doi.org/10.5694/j.1326-5377.2007.tb01313.x] [PMID: 17908006]
[51]
Ryder NS, Mieth H. Allylamine antifungal drugs. Curr Top Med Mycol 1992; 4: 158-88.
[http://dx.doi.org/10.1007/978-1-4612-2762-5_6] [PMID: 1732066]
[52]
Allen U. Antifungal agents for the treatment of systemic fungal infections in children. Paediatr Child Health 2010; 15(9): 603-15.
[PMID: 22043144]
[53]
dos Santos RMA, dos Santos KC, da Silva PB, et al. Nanotechnological strategies for systemic microbial infections treatment: A review. Int J Pharm 2020; 589: 119780.
[http://dx.doi.org/10.1016/j.ijpharm.2020.119780] [PMID: 32860856]
[54]
Stiufiuc R, Iacovita C, Stiufiuc G, Florea A, Achim M, Lucaciu CM. A new class of pegylated plasmonic liposomes: Synthesis and characterization. J Colloid Interface Sci 2015; 437: 17-23.
[http://dx.doi.org/10.1016/j.jcis.2014.09.023] [PMID: 25310578]
[55]
Fernández-García R, de Pablo E, Ballesteros MP, Serrano DR. Unmet clinical needs in the treatment of systemic fungal infections: The role of amphotericin B and drug targeting. Int J Pharm 2017; 525(1): 139-48.
[http://dx.doi.org/10.1016/j.ijpharm.2017.04.013] [PMID: 28400291]
[56]
Wijnant GJ, Van Bocxlaer K, Yardley V, et al. Comparative efficacy, toxicity and biodistribution of the liposomal amphotericin B formulations Fungisome® and AmBisome® in murine cutaneous leishmaniasis. Int J Parasitol Drugs Drug Resist 2018; 8(2): 223-8.
[http://dx.doi.org/10.1016/j.ijpddr.2018.04.001] [PMID: 29673889]
[57]
Wang X, Mohammad IS, Fan L, et al. Delivery strategies of amphotericin B for invasive fungal infections. Acta Pharm Sin B 2021; 11(8): 2585-604.
[http://dx.doi.org/10.1016/j.apsb.2021.04.010] [PMID: 34522599]
[58]
Tollemar J, Klingspor L, Ringdén O. Liposomal amphotericin B (AmBisome) for fungal infections in immunocompromised adults and children. Clin Microbiol Infect 2001; 7(S2): 68-79.
[http://dx.doi.org/10.1111/j.1469-0691.2001.tb00012.x] [PMID: 11525221]
[59]
Sheikh S, Ali SM, Ahmad MU, et al. Nanosomal Amphotericin B is an efficacious alternative to Ambisome® for fungal therapy. Int J Pharm 2010; 397(1-2): 103-8.
[http://dx.doi.org/10.1016/j.ijpharm.2010.07.003] [PMID: 20621173]
[60]
Jung SH, Lim DH, Jung SH, et al. Amphotericin B-entrapping lipid nanoparticles and their in vitro and in vivo characteristics. Eur J Pharm Sci 2009; 37(3-4): 313-20.
[http://dx.doi.org/10.1016/j.ejps.2009.02.021] [PMID: 19491021]
[61]
Burgess BL, He Y, Baker MM, et al. NanoDisk containing super aggregated amphotericin B: a high therapeutic index antifungal formulation with enhanced potency. Int J Nanomedicine 2013; 8: 4733-43.
[PMID: 24379661]
[62]
Tang X, Zhu H, Sun L, et al. Enhanced antifungal effects of amphotericin B-TPGS-b-(PCL-ran-PGA) nanoparticles in vitro and in vivo. Int J Nanomedicine 2014; 9: 5403-13.
[PMID: 25473279]
[63]
Van de Ven H, Paulussen C, Feijens PB, et al. PLGA nanoparticles and nanosuspensions with amphotericin B: Potent in vitro and in vivo alternatives to Fungizone and AmBisome. J Control Release 2012; 161(3): 795-803.
[http://dx.doi.org/10.1016/j.jconrel.2012.05.037] [PMID: 22641062]
[64]
Tang X, Dai J, Xie J, et al. Enhanced antifungal activity by Ab-modified amphotericin B-loaded nanoparticles using a pH-responsive block copolymer. Nanoscale Res Lett 2015; 10(1): 256.
[http://dx.doi.org/10.1186/s11671-015-0969-1] [PMID: 26061446]
[65]
Serrano DR, Lalatsa A, Dea-Ayuela MA, et al. Oral particle uptake and organ targeting drives the activity of amphotericin B nanoparticles. Mol Pharm 2015; 12(2): 420-31.
[http://dx.doi.org/10.1021/mp500527x] [PMID: 25558881]
[66]
Xu N, Julin G, Yuanjie Z, Hai W, Qiushi R, Jianghan C. Efficacy of intravenous amphotericin B-polybutylcyanoacrylate nanoparticles against cryptococcal meningitis in mice. Int J Nanomedicine 2011; 6: 905-13.
[http://dx.doi.org/10.2147/IJN.S17503] [PMID: 21720503]
[67]
Tang X, Zhu Y, Dai J, et al. Anti-transferrin receptor-modified amphotericin B-loaded PLA-PEG nanoparticles cure Candidal meningitis and reduce drug toxicity. Int J Nanomedicine 2015; 10: 6227-41.
[http://dx.doi.org/10.2147/IJN.S84656] [PMID: 26491294]
[68]
Saldanha CA, Garcia MP, Iocca DC, et al. Antifungal activity of amphotericin B conjugated to nanosized magnetite in the treatment of paracoccidioidomycosis. PLoS Negl Trop Dis 2016; 10(6): e0004754.
[http://dx.doi.org/10.1371/journal.pntd.0004754] [PMID: 27303789]
[69]
Zia Q, Khan AA, Swaleha Z, Owais M. Self-assembled amphotericin B-loaded polyglutamic acid nanoparticles: preparation, characterization and in vitro potential against Candida albicans. Int J Nanomedicine 2015; 10: 1769-90.
[PMID: 25784804]
[70]
Pandey R, Ahmad Z, Sharma S, Khuller GK. Nano-encapsulation of azole antifungals: Potential applications to improve oral drug delivery. Int J Pharm 2005; 301(1-2): 268-76.
[http://dx.doi.org/10.1016/j.ijpharm.2005.05.027] [PMID: 16023808]
[71]
Moazeni M, Kelidari HR, Saeedi M, et al. Time to overcome fluconazole resistant Candida isolates: Solid lipid nanoparticles as a novel antifungal drug delivery system. Colloids Surf B Biointerfaces 2016; 142: 400-7.
[http://dx.doi.org/10.1016/j.colsurfb.2016.03.013] [PMID: 26974361]
[72]
Domingues Bianchin M, Borowicz SM, da Rosa Monte Machado G, et al. Lipid core nanoparticles as a broad strategy to reverse fluconazole resistance in multiple Candida species. Colloids Surf B Biointerfaces 2019; 175: 523-9.
[http://dx.doi.org/10.1016/j.colsurfb.2018.12.011] [PMID: 30579053]
[73]
Essa S, Louhichi F, Raymond M, Hildgen P. Improved antifungal activity of itraconazole-loaded PEG/PLA nanoparticles. J Microencapsul 2013; 30(3): 205-17.
[http://dx.doi.org/10.3109/02652048.2012.714410] [PMID: 22894166]
[74]
Qiu L, Hu B, Chen H, et al. Antifungal efficacy of itraconazole-loaded TPGS-b-(PCL-ran-PGA) nanoparticles. Int J Nanomedicine 2015; 10: 1415-23.
[PMID: 25733833]
[75]
Cunha-Azevedo EP, Py-Daniel KR, Siqueira-Moura MP, et al. In vivo evaluation of the efficacy, toxicity and biodistribution of PLGA-DMSA nanoparticles loaded with itraconazole for treatment of paracoccidioidomycosis. J Drug Deliv Sci Technol 2018; 45: 135-41.
[http://dx.doi.org/10.1016/j.jddst.2018.02.014]
[76]
Sinha B, Mukherjee B, Pattnaik G. Poly-lactide-co-glycolide nanoparticles containing voriconazole for pulmonary delivery: in vitro and in vivo study. Nanomedicine 2013; 9(1): 94-104.
[http://dx.doi.org/10.1016/j.nano.2012.04.005] [PMID: 22633899]
[77]
Peng H, Liu X, Lv G, et al. Voriconazole into PLGA nanoparticles: Improving agglomeration and antifungal efficacy. Int J Pharm 2008; 352(1-2): 29-35.
[http://dx.doi.org/10.1016/j.ijpharm.2007.10.009] [PMID: 18053659]
[78]
Veloso DFMC, Benedetti NIGM, Ávila RI, et al. Intravenous delivery of a liposomal formulation of voriconazole improves drug pharmacokinetics, tissue distribution, and enhances antifungal activity. Drug Deliv 2018; 25(1): 1585-94.
[http://dx.doi.org/10.1080/10717544.2018.1492046] [PMID: 30044149]
[79]
Ostrosky-Zeichner L, Casadevall A, Galgiani JN, Odds FC, Rex JH. An insight into the antifungal pipeline: selected new molecules and beyond. Nat Rev Drug Discov 2010; 9(9): 719-27.
[http://dx.doi.org/10.1038/nrd3074] [PMID: 20725094]
[80]
Aguirre JP, Hamid AM. Amphotericin B deoxycholate versus liposomal amphotericin B: effects on kidney function. Cochrane Database Syst Rev 2015; 2015: 11.
[81]
Dupont B. Overview of the lipid formulations of amphotericin B. J Antimicrob Chemother 2002; 49(S1): 31-6.
[http://dx.doi.org/10.1093/jac/49.suppl_1.31] [PMID: 11801578]
[82]
Takemoto K, Yamamoto Y, Ueda Y, Sumita Y, Yoshida K, Niki Y. Comparative study on the efficacy of AmBisome and Fungizone in a mouse model of pulmonary aspergillosis. J Antimicrob Chemother 2006; 57(4): 724-31.
[http://dx.doi.org/10.1093/jac/dkl005] [PMID: 16446374]
[83]
Andes D, Safdar N, Marchillo K, Conklin R. Pharmacokinetic-pharmacodynamic comparison of amphotericin B (AMB) and two lipid-associated AMB preparations, liposomal AMB and AMB lipid complex, in murine candidiasis models. Antimicrob Agents Chemother 2006; 50(2): 674-84.
[http://dx.doi.org/10.1128/AAC.50.2.674-684.2006] [PMID: 16436726]
[84]
Niemirowicz K. Durnaś B, Tokajuk G, et al. Magnetic nanoparticles as a drug delivery system that enhance fungicidal activity of polyene antibiotics. Nanomedicine 2016; 12(8): 2395-404.
[http://dx.doi.org/10.1016/j.nano.2016.07.006] [PMID: 27464757]
[85]
Mohammadi G, Shakeri A, Fattahi A, et al. Preparation, physicochemical characterization and anti-fungal evaluation of nystatin-loaded PLGA-glucosamine nanoparticles. Pharm Res 2017; 34(2): 301-9.
[http://dx.doi.org/10.1007/s11095-016-2062-6] [PMID: 27928646]
[86]
a) Ruhnke M, Schmidt-Westhausen A, Trautmann M. In vitro activities of voriconazole (UK-109,496) against fluconazole-susceptible and-resistant Candida albicans isolates from oral cavities of patients with human immunodeficiency virus infection. Antimicrob Agents Chemother 1997; Mar 41(3): 575-7.;
b) Das PJ, Paul P, Mukherjee B. Mazumder B, Mondal L, Baishya R, Debnath MC, Dey KS Pulmonary delivery of voriconazole loaded nanoparticles providing a prolonged drug level in lungs: a promise for treating fungal infection. Mol Pharm 2015; 12(8): 2651-64.
[PMID: 25941882]
[87]
Percival KM, Bergman SJ. Update on posaconazole pharmacokinetics: comparison of old and new formulations. Curr Fungal Infect Rep 2014; 8(2): 139-45.
[http://dx.doi.org/10.1007/s12281-014-0185-y]
[88]
Brunet K, Rammaert B. Mucormycosis treatment: Recommendations, latest advances, and perspectives. J Mycol Med 2020; 30(3): 101007.
[http://dx.doi.org/10.1016/j.mycmed.2020.101007] [PMID: 32718789]
[89]
Beredaki MI, Arendrup MC, Mouton JW, Meletiadis J. In-vitro pharmacokinetic/pharmacodynamic model data suggest a potential role of new formulations of posaconazole against Candida krusei but not Candida glabrata infections. Int J Antimicrob Agents 2021; 57(3): 106291.
[http://dx.doi.org/10.1016/j.ijantimicag.2021.106291] [PMID: 33508404]
[90]
Ademe M. Immunomodulation for the treatment of fungal infections: opportunities and challenges. Front Cell Infect Microbiol 2020; 10: 469.
[http://dx.doi.org/10.3389/fcimb.2020.00469] [PMID: 33042859]
[91]
Pathakumari B, Liang G, Liu W. Immune defence to invasive fungal infections: A comprehensive review. Biomed Pharmacother 2020; 130: 110550.
[http://dx.doi.org/10.1016/j.biopha.2020.110550] [PMID: 32739740]
[92]
Armstrong-James D, Brown GD, Netea MG, et al. Immunotherapeutic approaches to treatment of fungal diseases. Lancet Infect Dis 2017; 17(12): e393-402.
[http://dx.doi.org/10.1016/S1473-3099(17)30442-5] [PMID: 28774700]
[93]
Panopoulos AD, Watowich SS. Granulocyte colony-stimulating factor: Molecular mechanisms of action during steady state and ‘emergency’ hematopoiesis. Cytokine 2008; 42(3): 277-88.
[http://dx.doi.org/10.1016/j.cyto.2008.03.002] [PMID: 18400509]
[94]
Voigt J, Hünniger K, Bouzani M, et al. Human natural killer cells acting as phagocytes against Candida albicans and mounting an inflammatory response that modulates neutrophil antifungal activity. J Infect Dis 2014; 209(4): 616-26.
[http://dx.doi.org/10.1093/infdis/jit574] [PMID: 24163416]
[95]
Nami S, Mohammadi R, Vakili M, Khezripour K, Mirzaei H, Morovati H. Fungal vaccines, mechanism of actions and immunology: A comprehensive review. Biomed Pharmacother 2019; 109: 333-44.
[http://dx.doi.org/10.1016/j.biopha.2018.10.075] [PMID: 30399567]
[96]
Roilides E, Gil Lamaignere C, Farmaki E. Cytokines in immunodeficient patients with invasive fungal infections: an emerging therapy. Int J Infect Dis 2002; 6(3): 154-63.
[http://dx.doi.org/10.1016/S1201-9712(02)90104-9] [PMID: 12718828]
[97]
Medici NP, Del Poeta M. New insights on the development of fungal vaccines: from immunity to recent challenges. Mem Inst Oswaldo Cruz 2015; 110(8): 966-73.
[http://dx.doi.org/10.1590/0074-02760150335] [PMID: 26602871]
[98]
Rybak JM, Marx KR, Nishimoto AT, Rogers PD. Isavuconazole: pharmacology, pharmacodynamics, and current clinical experience with a new triazole antifungal agent. Pharmacotherapy. Pharmacotherapy 2015; 35(11): 1037-51.
[http://dx.doi.org/10.1002/phar.1652] [PMID: 26598096]
[99]
Sofjan AK, Mitchell A, Shah DN, et al. Rezafungin (CD101), a next-generation echinocandin: A systematic literature review and assessment of possible place in therapy. J Glob Antimicrob Resist 2018; 14: 58-64.
[http://dx.doi.org/10.1016/j.jgar.2018.02.013] [PMID: 29486356]
[100]
Sesana AM, Monti-Rocha R, Vinhas SA, Morais CG, Dietze R, Lemos EM. In vitro activity of amphotericin B cochleates against Leishmania chagasi. Mem Inst Oswaldo Cruz 2011; 106(2): 251-3.
[http://dx.doi.org/10.1590/S0074-02762011000200022] [PMID: 21537689]
[101]
Wiederhold NP. Review of the novel investigational antifungal olorofim. J Fungi 2020; 6(3): 122.
[http://dx.doi.org/10.3390/jof6030122] [PMID: 32751765]
[102]
Perfect JR. The antifungal pipeline: a reality check. Nat Rev Drug Discov 2017; 16(9): 603-16.
[http://dx.doi.org/10.1038/nrd.2017.46] [PMID: 28496146]
[103]
Brand SR, Sobel JD, Nyirjesy P, Ghannoum MA, Schotzinger RJ, Degenhardt TP. A randomized phase 2 study of VT-1161 for the treatment of acute vulvovaginal Candidiasis. Clin Infect Dis 2021; 73(7): e1518-24.
[http://dx.doi.org/10.1093/cid/ciaa1204] [PMID: 32818963]
[104]
Shibata T, Takahashi T, Yamada E, et al. T-2307 causes collapse of mitochondrial membrane potential in yeast. Antimicrob Agents Chemother 2012; 56(11): 5892-7.
[http://dx.doi.org/10.1128/AAC.05954-11] [PMID: 22948882]
[105]
Wiederhold NP, Najvar LK, Fothergill AW, et al. The novel arylamidine T-2307 demonstrates in vitro and in vivo activity against echinocandin-resistant Candida glabrata. J Antimicrob Chemother 2016; 71(3): 692-5.
[http://dx.doi.org/10.1093/jac/dkv398] [PMID: 26620102]
[106]
Samaddar A, Sharma A. Emergomycosis, an emerging systemic mycosis in immunocompromised patients: current trends and future prospects. Front Med 2021; 8: 670731.
[http://dx.doi.org/10.3389/fmed.2021.670731] [PMID: 33968970]
[107]
Warrilow AGS, Parker JE, Price CL, et al. The investigational drug VT-1129 is a highly potent inhibitor of Cryptococcus species CYP51 but only weakly inhibits the human enzyme. Antimicrob Agents Chemother 2016; 60(8): 4530-8.
[http://dx.doi.org/10.1128/AAC.00349-16] [PMID: 27161631]