Letters in Organic Chemistry

Author(s): Laimujam Sidartha Singh, Sourav Banerjee, Indranil Saha and Chandi Charan Malakar*

DOI: 10.2174/1570178620666221128121925

DownloadDownload PDF Flyer Cite As
Organocatalyzed-Aerobic Oxidation of Arylboronic Acids toward the Synthesis of Phenolic Derivatives

Page: [533 - 540] Pages: 8

  • * (Excluding Mailing and Handling)

Abstract

An effective organocatalyzed ipso-hydroxylation of arylboronic acids for the preparation of phenol derivatives has been demonstrated. The elucidated phenomenon relies on the catalytic performance of 3-nitropyridine under the influence of sub-stoichiometric quantities of KOtBu employing aerobic conditions in DMSO solvent. This method excludes the excess usage of oxidizing agents and bases by providing a user-friendly synthetic tool for the preparation of phenols. It was acclaimed that the 3-nitropyridine acts as an oxygen transferring agent from in situ generated hydrogen peroxide to boronic acid derivatives to furnish the desired molecules. The required hydrogen peroxide was in situ generated from aerial oxygen by the KOtBu-mediated single electron transfer process. The described process is applicable to a variety of arylboronic acids for the preparation of phenols in good yields with considerable resistance of functional moiety.

Keywords: 3-nitropyridine, ipso-hydroxylation, organoborons, organocatalysis, potassium tert-butoxide, arylboronic acids.

Graphical Abstract

[1]
(a) Zhou, Q-L. Angew. Chem. Int. Ed., 2016, 55, 5352-5353.;
(b) Borie, C.; Ackermann, L.; Nechab, M. Chem. Soc. Rev., 2016, 45(5), 1368-1386.
[http://dx.doi.org/10.1039/C5CS00622H] [PMID: 26728953];
(c) Yang, L.; Huang, Z.; Li, G.; Zhang, W.; Cao, R.; Wang, C.; Xiao, J.; Xue, D. Angew. Chem. Int. Ed., 2018, 57(7), 1968-1972.
[http://dx.doi.org/10.1002/anie.201710698]
[2]
Monsigny, L.; Thuéry, P.; Berthet, J-C.; Cantat, T. Chem. Commun. (Camb.), 2017, 53, 11278-11297.
[3]
Voutyritsa, E.; Triandafillidi, I.; Kokotos, C.G. Synthesis, 2017, 49, 917-924.
[4]
(a) Zhan, G.; Du, W. Chem. Soc. Rev., 2017, 46, 1675-1692.
[http://dx.doi.org/10.1039/C6CS00247A] [PMID: 28221384];
(b) Qin, Y.; Zhu, L.; Luo, S. Chem. Rev., 2017, 117(13), 9433-9520.
[http://dx.doi.org/10.1021/acs.chemrev.6b00657] [PMID: 28697602];
(c) Vetica, F.; Chauhan, P.; Dochain, S.; Enders, D. Chem. Soc. Rev., 2017, 46(6), 1661-1674.
[http://dx.doi.org/10.1039/C6CS00757K] [PMID: 28262863]
[5]
(a) Balasundram, N.; Sundram, K.; Samman, S. Food Chem., 2006, 99(1), 191-203.
[http://dx.doi.org/10.1016/j.foodchem.2005.07.042];
(b) Williams, P.; Sorribas, A.; Howes, M.J.R. Nat. Prod. Rep., 2011, 28(1), 48-77.
[http://dx.doi.org/10.1039/C0NP00027B] [PMID: 21072430]
[6]
Pilato, L. React. Funct. Polym., 2013, 73(2), 270-277.
[http://dx.doi.org/10.1016/j.reactfunctpolym.2012.07.008]
[7]
(a) Nandi, S.; Vracko, M.; Bagchi, M.C. Chem. Biol. Drug Des., 2007, 70(5), 424-436.
[http://dx.doi.org/10.1111/j.1747-0285.2007.00575.x] [PMID: 17949360];
(b) Badhani, B.; Sharma, N.; Kakkar, R. RSC Advances, 2015, 5(35), 27540-27557.
[http://dx.doi.org/10.1039/C5RA01911G]
[8]
Tyman, J.H.P. Synthetic and Natural Phenols; Elsevier: Amsterdam, 1996, Vol. 52, pp. 1-699.
[http://dx.doi.org/10.1016/S0165-3253(96)80028-9]
[9]
Lambooy, J.P. J. Am. Chem. Soc., 1950, 72(11), 5327-5328.
[http://dx.doi.org/10.1021/ja01167a523]
[10]
Pallegrini, F. Cliffs Quick Review Organic Chemistry II; Houghton Mifflin Harcourt, 2011, pp. 1-272.
[11]
(a) Sarma, B.B.; Carmieli, R.; Collauto, A.; Efremenko, I.; Martin, J.M.L.; Neumann, R. ACS Catal., 2016, 6(10), 6403-6407.
[http://dx.doi.org/10.1021/acscatal.6b02083];
(b) Han, J.W.; Jung, J.; Lee, Y.M.; Nam, W.; Fukuzumi, S. Chem. Sci. (Camb.), 2017, 8(10), 7119-7125.
[http://dx.doi.org/10.1039/C7SC02495A]
[12]
(a) Wang, D.; Kuang, D.; Zhang, F.; Tang, S.; Jiang, W. Eur. J. Org. Chem., 2014, 2014(2), 315-318.
[http://dx.doi.org/10.1002/ejoc.201301370];
(b) Xia, S.; Gan, L.; Wang, K.; Li, Z.; Ma, D. J. Am. Chem. Soc., 2016, 138(41), 13493-13496.
[http://dx.doi.org/10.1021/jacs.6b08114] [PMID: 27682010]
[13]
(a) Hanson, P.; Jones, J.R.; Taylor, A.B.; Walton, P.H.; Timms, A.W. J. Chem. Soc., Perkin Trans. 2, 2002, (6), 1135-1150.
[http://dx.doi.org/10.1039/b200748g];
(b) Zhang, Y.H.; Yu, J.Q. J. Am. Chem. Soc., 2009, 131(41), 14654-14655.
[http://dx.doi.org/10.1021/ja907198n] [PMID: 19788192]
[14]
(a) Dhakshinamoorthy, A.; Asiri, A.M.; Garcia, H. Tetrahedron, 2016, 72, 2895-2899.;
(b) Borah, R.; Saikia, E.; Bora, S.J.; Chetia, B. Tetrahedron Lett., 2017, 58, 1211-1215.
[15]
(a) Zheng, J.; Lin, S.; Zhu, X.; Jiang, B.; Yang, Z. Pan. Z. Chem. Commun. (Camb.), 2012, 48(50), 6235-6237.
[http://dx.doi.org/10.1039/c2cc31948a] [PMID: 22595867];
(b) Wang, L.; Zhang, W.; Sheng Su, D.; Meng, X.; Xiao, F-S. Chem. Commun. (Camb.), 2012, 48(44), 5476-5478.
[PMID: 22543590]
[16]
Zhaoa, X.; Yanga, B.; Weia, A.; Shenga, J.; Tiana, M.; Lib, Q.; Lub, K. Tetrahedron Lett., 2017, 58, 4255-4259.
[17]
Chowdhury, A.D.; Mobin, S.M.; Mukherjee, S.; Bhaduri, S.; Lahiri, G.K. Eur. J. Inorg. Chem., 2011, 2011(21), 3232-3239.
[http://dx.doi.org/10.1002/ejic.201100240]
[18]
Gogoi, N.; Gogoi, P.K.; Borah, G.; Bora, U. Tetrahedron Lett., 2016, 57(36), 4050-4052.
[http://dx.doi.org/10.1016/j.tetlet.2016.07.070]
[19]
Beyene, H.D.; Werkneh, A.A.; Bezabh, H.K.; Ambayec, T.G. New J. Chem., 2016, 40, 2501-2513.
[20]
(a) Gogoi, A.; Bora, U. Synlett, 2012, 23, 1079-1081.
[http://dx.doi.org/10.1055/s-0031-1290654];
(b) Kianmehr, E.; Yahyaee, M.; Tabatabai, K. Tetrahedron Lett., 2007, 48(15), 2713-2715.
[http://dx.doi.org/10.1016/j.tetlet.2007.02.069];
(c) Mulakayala, N. Tetrahedron Lett., 2012, 53, 6004-6007.
[http://dx.doi.org/10.1016/j.tetlet.2012.08.087];
(d) Muhammad, I.; Balakrishnan, M.H.; Sasidharan, M.; Mannathan, S. New J. Chem., 2019, 43(28), 11065-11068.
[http://dx.doi.org/10.1039/C9NJ02121C];
(e) Castro-Godoy, W.D.; Schmidt, L.C.; Argüello, J.E. 2019, 3035-3039.
[21]
(a) Das, S.K.; Bhattacharjee, P.; Bora, U. ChemistrySelect, 2018, 3, 2131-2134.;
(b) Weng, W-Z.; Liang, H.; Zhang, B. Org. Lett., 2018, 20, 4979-4983.;
(c) Gujjarappa, R.; Vodnala, N.; Garg, A.; Hazra, C.K.; Gupta, S.; Malakar, C.C. ChemistrySelect, 2020, 5(8), 2419-2423.
[http://dx.doi.org/10.1002/slct.201904059]
[22]
(a) Jiang, H.; Lykke, L.; Uttrup Pedersen, S.; Xiao, W.J.; Anker Jørgensen, K. Chem. Commun. (Camb.), 2012, 48(57), 7203-7205.
[http://dx.doi.org/10.1039/c2cc32711b] [PMID: 22692548];
(b) Zou, Y.Q.; Chen, J.R.; Liu, X.P.; Lu, L.Q.; Davis, R.L.; Jørgensen, K.A.; Xiao, W.J. Angew. Chem. Int. Ed., 2012, 51(3), 784-788.
[http://dx.doi.org/10.1002/anie.201107028];
(c) Xie, H.Y.; Han, L.S.; Huang, S.; Lei, X.; Cheng, Y.; Zhao, W.; Sun, H.; Wen, X.; Xu, Q.L. J. Org. Chem., 2017, 82(10), 5236-5241.
[http://dx.doi.org/10.1021/acs.joc.7b00487] [PMID: 28441486];
(d) Sideri, I.K.; Voutyritsa, E.; Kokotos, C.G. Synlett, 2018, 10, 1324-1328.;
(e) Luo, J.; Hu, B.; Sam, A.; Liu, T.L. Org. Lett., 2018, 20(2), 361-364.
[http://dx.doi.org/10.1021/acs.orglett.7b02483] [PMID: 29319321];
(f) Kumar, I.; Sharma, R.; Kumar, R.; Kumar, R.; Sharma, U. 2018, 360, 2013-2019.
[23]
Gujjarappa, R.; Vodnala, N.; Malakar, C.C. ChemistrySelect, 2020, 5, 8745-8758.
[24]
Copéret, C.; Adolfsson, H.; Khuong, T.A.V.; Yudin, A.K.; Sharpless, K.B. J. Org. Chem., 1998, 63(5), 1740-1741.
[http://dx.doi.org/10.1021/jo9723467]