Development of Neuroprotective Agents for the Treatment of Alzheimer's Disease using Conjugates of Serotonin with Sesquiterpene Lactones

Page: [529 - 551] Pages: 23

  • * (Excluding Mailing and Handling)

Abstract

Background: Sesquiterpene lactones are secondary plant metabolites with a wide variety of biological activities. The process of lactone conjugation to other pharmacophores can increase the efficacy and specificity of the conjugated agent effect on molecular targets in various diseases, including brain pathologies. Derivatives of biogenic indoles, including neurotransmitter serotonin, are of considerable interest as potential pharmacophores. Most of these compounds have neurotropic activity and, therefore, can be used in the synthesis of new drugs with neuroprotective properties.

Aim: The aim of this experimental synthesis was to generate potential treatment agents for Alzheimer's disease using serotonin conjugated with natural sesquiterpene lactones.

Methods: Three novel compounds were obtained via the Michael reaction and used for biological testing. The obtained conjugates demonstrated complex neuroprotective activities. Serotonin conjugated to isoalantolactone exhibited strong antioxidant and mitoprotective activities.

Results: The agent was also found to inhibit β-site amyloid precursor protein cleaving enzyme 1 (BACE-1), prevent the aggregation of β-amyloid peptide 1-42, and protect SH-SY5Y neuroblastoma cells from neurotoxins such as glutamate and H2O2. In a transgenic animal model of Alzheimer's disease (5xFAD line), the conjugated agent restored declined cognitive functions and improved learning and memory.

Conclusion: In conclusion, the obtained results indicate that serotonin conjugates to sesquiterpene lactones are promising agents for the treatment of symptoms associated with Alzheimer's disease.

[1]
Hou, Y.; Dan, X.; Babbar, M.; Wei, Y.; Hasselbalch, S.G.; Croteau, D.L.; Bohr, V.A. Ageing as a risk factor for neurodegenerative disease. Nat. Rev. Neurol., 2019, 15(10), 565-581.
[http://dx.doi.org/10.1038/s41582-019-0244-7] [PMID: 31501588]
[2]
Alzhimer’s Disease International. Dementia Statistics. Available from: https://www.alzint.org/about/dementia- facts-figures/dementia-statistics/
[3]
Serrano-Pozo, A.; Growdon, J.H. Is Alzheimer’s disease risk modifiable? J. Alzheimers Dis., 2019, 67(3), 795-819.
[http://dx.doi.org/10.3233/JAD181028] [PMID: 30776012]
[4]
Masters, C.L.; Bateman, R.; Blennow, K.; Rowe, C.C.; Sperling, R.A.; Cummings, J.L. Alzheimer’s disease. Nat. Rev. Dis. Primers, 2015, 1(1), 15056.
[http://dx.doi.org/10.1038/nrdp.2015.56] [PMID: 27188934]
[5]
Weller, J.; Budson, A. Current understanding of Alzheimer’s disease diagnosis and treatment. F1000 Res., 2018, 7, 1161.
[http://dx.doi.org/10.12688/f1000research.14506.1] [PMID: 30135715]
[6]
Gabr, M.T.; Ibrahim, M.M. Multitarget therapeutic strategies for Alzheimer’s disease. Neural Regen. Res., 2019, 14(3), 437-440.
[http://dx.doi.org/10.4103/1673-5374.245463] [PMID: 30539809]
[7]
Pohanka, M. Oxidative stress in Alzheimer disease as a target for therapy. Bratisl. Med. J., 2018, 119(9), 535-543.
[http://dx.doi.org/10.4149/BLL_2018_097] [PMID: 30226062]
[8]
Perez Ortiz, J.M.; Swerdlow, R.H. Mitochondrial dysfunction in Alzheimer’s disease: Role in pathogenesis and novel therapeutic opportunities. Br. J. Pharmacol., 2019, 176(18), 3489-3507.
[http://dx.doi.org/10.1111/bph.14585] [PMID: 30675901]
[9]
Gallardo, G.; Holtzman, D.M. Amyloid-β and tau at the crossroads of Alzheimer’s disease. Adv. Exp. Med. Biol., 2019, 1184, 187-203.
[http://dx.doi.org/10.1007/978-981-32-9358-8_16] [PMID: 32096039]
[10]
Neganova, M.E.; Klochkov, S.G.; Afanasieva, S.V.; Serkova, T.P.; Chudinova, E.S.; Bachurin, S.O.; Reddy, V.P.; Aliev, G.; Shevtsova, E.F. Neuroprotective effects of the securinine-analogues: Identification of allomargaritarine as a lead compound. CNS Neurol. Disord. Drug Targets, 2016, 15(1), 102-107.
[http://dx.doi.org/10.2174/1871527314666150821111812] [PMID: 26295814]
[11]
Alghamdi, B.S. The neuroprotective role of melatonin in neurological disorders. J. Neurosci. Res., 2018, 96(7), 1136-1149.
[http://dx.doi.org/10.1002/jnr.24220] [PMID: 29498103]
[12]
Yoo, J.M.; Lee, B.D.; Sok, D.E.; Ma, J.Y.; Kim, M.R. Neuroprotective action of N-acetyl serotonin in oxidative stress-induced apoptosis through the activation of both TrkB/CREB/BDNF pathway and Akt/Nrf2/Antioxidant enzyme in neuronal cells. Redox Biol., 2017, 11, 592-599.
[http://dx.doi.org/10.1016/j.redox.2016.12.034] [PMID: 28110215]
[13]
Keller, S.; Polanski, W.H.; Enzensperger, C.; Reichmann, H.; Hermann, A.; Gille, G. 9-Methyl-β-carboline inhibits monoamine oxidase activity and stimulates the expression of neurotrophic factors by astrocytes. J. Neural Transm. (Vienna), 2020, 127(7), 999-1012.
[http://dx.doi.org/10.1007/s00702-020-02189-9] [PMID: 32285253]
[14]
Schwarthoff, S.; Tischer, N.; Sager, H.; Schätz, B.; Rohrbach, M.M.; Raztsou, I.; Robaa, D.; Gaube, F.; Arndt, H.D.; Winckler, T. Evaluation of γ-carboline-phenothiazine conjugates as simultaneous NMDA receptor blockers and cholinesterase inhibitors. Bioorg. Med. Chem., 2021, 46, 116355.
[http://dx.doi.org/10.1016/j.bmc.2021.116355] [PMID: 34391122]
[15]
Fatani, A.J.; Al-Hosaini, K.A.; Ahmed, M.M.; Abuohashish, H.M.; Parmar, M.Y.; Al-Rejaie, S.S. Carvedilol attenuates inflammatory biomarkers and oxidative stress in a rat model of ulcerative colitis. Drug Dev. Res., 2015, 76(4), 204-214.
[http://dx.doi.org/10.1002/ddr.21256] [PMID: 26109469]
[16]
Liu, J.; Wang, M. Carvedilol protection against endogenous Aβ-induced neurotoxicity in N2a cells. Cell Stress Chaperones, 2018, 23(4), 695-702.
[http://dx.doi.org/10.1007/s12192-018-0881-6] [PMID: 29435723]
[17]
Neganova, M.E.; Klochkov, S.G.; Petrova, L.N.; Shevtsova, E.F.; Afanasieva, S.V.; Chudinova, E.S.; Fisenko, V.P.; Bachurin, S.O.; Barreto, G.E.; Aliev, G. Securinine derivatives as potential anti-amyloid therapeutic approach. CNS Neurol. Disord. Drug Targets, 2017, 16(3), 351-355.
[http://dx.doi.org/10.2174/1871527315666161107090525] [PMID: 27823572]
[18]
Skvortsova, V.I.; Bachurin, S.O.; Ustyugov, A.A.; Kukharsky, M.S.; Deikin, A.V.; Buchman, V.L.; Ninkina, N.N. Gamma-carbolines derivatives as promising agents for the development of pathogenic therapy for proteinopathy. Acta Nat. (Engl. Ed.), 2018, 10(4), 59-62.
[http://dx.doi.org/10.32607/20758251-2018-10-4-59-62] [PMID: 30713762]
[19]
Li, Y.; Zhang, J.; Wan, J.; Liu, A.; Sun, J. Melatonin regulates Aβ production/clearance balance and Aβ neurotoxicity: A potential therapeutic molecule for Alzheimer’s disease. Biomed. Pharmacother., 2020, 132, 110887.
[http://dx.doi.org/10.1016/j.biopha.2020.110887] [PMID: 33254429]
[20]
Shukla, M.; Govitrapong, P.; Boontem, P.; Reiter, R.J.; Satayavivad, J. Mechanisms of melatonin in alleviating Alzheimer’s disease. Curr. Neuropharmacol., 2017, 15(7), 1010-1031.
[PMID: 28294066]
[21]
Tang, J.J.; Huang, L.F.; Deng, J.L.; Wang, Y.M.; Guo, C.; Peng, X.N.; Liu, Z.; Gao, J.M. Cognitive enhancement and neuroprotective effects of OABL, a sesquiterpene lactone in 5xFAD Alzheimer’s disease mice model. Redox Biol., 2022, 50, 102229.
[http://dx.doi.org/10.1016/j.redox.2022.102229] [PMID: 35026701]
[22]
Li, Q.; Wang, Z.; Xie, Y.; Hu, H. Antitumor activity and mechanism of costunolide and dehydrocostus lactone: Two natural sesquiterpene lactones from the Asteraceae family. Biomed. Pharmacother., 2020, 125, 109955.
[http://dx.doi.org/10.1016/j.biopha.2020.109955] [PMID: 32014691]
[23]
Sims, N.R. Rapid isolation of metabolically active mitochondria from rat brain and subregions using Percoll density gradient centrifugation. J. Neurochem., 1990, 55(2), 698-707.
[http://dx.doi.org/10.1111/j.1471-4159.1990.tb04189.x] [PMID: 2164576]
[24]
Gornall, A.G.; Bardawill, C.J.; David, M.M. Determination of serum proteins by means of the biuret reaction. J. Biol. Chem., 1949, 177(2), 751-766.
[http://dx.doi.org/10.1016/S0021-9258(18)57021-6] [PMID: 18110453]
[25]
Milackova, I.; Kovacikova, L.; Veverka, M.; Gallovic, J.; Stefek, M. Screening for antiradical efficiency of 21 semi-synthetic derivatives of quercetin in a DPPH assay. Interdiscip. Toxicol., 2013, 6(1), 13-17.
[http://dx.doi.org/10.2478/intox-2013-0003] [PMID: 24170974]
[26]
Åkerman, K.E.O.; Wikström, M.K.F. Safranine as a probe of the mitochondrial membrane potential. FEBS Lett., 1976, 68(2), 191-197.
[http://dx.doi.org/10.1016/0014-5793(76)80434-6] [PMID: 976474]
[27]
Phan, H.; Samarat, K.; Takamura, Y.; Azo-Oussou, A.; Nakazono, Y.; Vestergaard, M. Polyphenols modulate Alzheimer’s amyloid beta aggregation in a structure-dependent manner. Nutrients, 2019, 11(4), 756.
[http://dx.doi.org/10.3390/nu11040756] [PMID: 30935135]
[28]
Präbst, K.; Engelhardt, H.; Ringgeler, S.; Hübner, H. Basic colorimetric proliferation assays: MTT, WST, and Resazurin. Methods Mol. Biol., 2017, 1601, 1-17.
[http://dx.doi.org/10.1007/978-1-4939-6960-9_1] [PMID: 28470513]
[29]
Kraeuter, A.K.; Guest, P.C.; Sarnyai, Z. The open field test for measuring locomotor activity and anxiety-like behavior. Methods Mol. Biol., 2019, 1916, 99-103.
[http://dx.doi.org/10.1007/978-1-4939-8994-2_9] [PMID: 30535687]
[30]
Morris, R. Developments of a water-maze procedure for studying spatial learning in the rat. J. Neurosci. Methods, 1984, 11(1), 47-60.
[http://dx.doi.org/10.1016/0165-0270(84)90007-4] [PMID: 6471907]
[31]
Neganova, M.; Aleksandrova, Y.; Suslov, E.; Mozhaitsev, E.; Munkuev, A.; Tsypyshev, D.; Chicheva, M.; Rogachev, A.; Sukocheva, O.; Volcho, K.; Klochkov, S. Novel multitarget hydroxamic acids with a natural origin CAP group against Alzheimer’s disease: synthesis, docking and biological evaluation. Pharmaceutics, 2021, 13(11), 1893.
[http://dx.doi.org/10.3390/pharmaceutics13111893] [PMID: 34834312]
[32]
Borgulya, J.; Bernauer, K. A practicable synthesis of 3-(2-aminoethyl)-1 h-indol-5-yl hydrogen sulfate (serotonin O-sulfate). Synthesis, 1983, 1983(1), 29-30.
[http://dx.doi.org/10.1055/s-1983-30205]
[33]
Semakov, A.V.; Anikina, L.V.; Pukhov, S.A.; Afanas’eva, S.V.; Klochkov, S.G. Conjugates of alantolactone with anthracycline antibiotics. Chem. Nat. Compd., 2016, 52, 695-696.
[http://dx.doi.org/10.1007/s10600-016-1744-y]
[34]
Chiurchiù, V.; Orlacchio, A.; Maccarrone, M. Is modulation of oxidative stress an answer? the state of the art of redox therapeutic actions in neurodegenerative diseases. Oxid. Med. Cell. Longev., 2016, 2016, 1-11.
[http://dx.doi.org/10.1155/2016/7909380] [PMID: 26881039]
[35]
Luo, J.; Mills, K.; le Cessie, S.; Noordam, R.; van Heemst, D. Ageing, age-related diseases and oxidative stress: What to do next? Ageing Res. Rev., 2020, 57, 100982.
[http://dx.doi.org/10.1016/j.arr.2019.100982] [PMID: 31733333]
[36]
Zhang, J.; Wang, X.; Vikash, V.; Ye, Q.; Wu, D.; Liu, Y.; Dong, W. ROS and ROS-mediated cellular signaling. Oxid. Med. Cell. Longev., 2016, 2016, 1-18.
[http://dx.doi.org/10.1155/2016/4350965] [PMID: 26998193]
[37]
Singh, A.; Kukreti, R.; Saso, L.; Kukreti, S. Oxidative stress: a key modulator in neurodegenerative diseases. Molecules, 2019, 24(8), 1583.
[http://dx.doi.org/10.3390/molecules24081583] [PMID: 31013638]
[38]
Neganova, M.E.; Aleksandrova, Y.R.; Nebogatikov, V.O.; Klochkov, S.; Ustyugov, A.A. Promising molecular targets for pharmacological therapy of neurodegenerative pathologies. Acta Nat. (Engl. Ed.), 2020, 12(3), 60-80.
[http://dx.doi.org/10.32607/actanaturae.10925] [PMID: 33173597]
[39]
von Arnim, C.A.F.; Gola, U.; Biesalski, H.K. More than the sum of its parts? Nutrition in Alzheimer’s disease. Nutrition, 2010, 26(7-8), 694-700.
[http://dx.doi.org/10.1016/j.nut.2009.11.009] [PMID: 20381316]
[40]
El-Bachá, R.S.; De-Lima-Filho, J.L.; Guedes, R.C.A. Dietary antioxidant deficiency facilitates cortical spreading depression induced by photoactivated riboflavin. Nutr. Neurosci., 1998, 1(3), 205-212.
[http://dx.doi.org/10.1080/1028415X.1998.11747230] [PMID: 27406199]
[41]
Mandel, S.; Grünblatt, E.; Riederer, P.; Gerlach, M.; Levites, Y.; Youdim, M.B. Neuroprotective strategies in Parkinson’s disease: An update on progress. CNS Drugs, 2003, 17(10), 729-762.
[http://dx.doi.org/10.2165/00023210-200317100-00004] [PMID: 12873156]
[42]
Yu, Y.C.; Kuo, C.L.; Cheng, W.L.; Liu, C.S.; Hsieh, M. Decreased antioxidant enzyme activity and increased mitochondrial DNA damage in cellular models of Machado-Joseph disease. J. Neurosci. Res., 2009, 87(8), 1884-1891.
[http://dx.doi.org/10.1002/jnr.22011] [PMID: 19185026]
[43]
Shevtsova, E.; Vinogradova, D.; Neganova, M.; Shevtsov, P.; Lednev, B.; Bachurin, S. Mitochondria are an important target in the search for new drugs for the treatment of Alzheimer′s disease and senile dementia. Biomed. Chem., 2018, 1(3), e00058.
[44]
Lin, M.T.; Simon, D.K.; Ahn, C.H.; Kim, L.M.; Beal, M.F. High aggregate burden of somatic mtDNA point mutations in aging and Alzheimer’s disease brain. Hum. Mol. Genet., 2002, 11(2), 133-145.
[http://dx.doi.org/10.1093/hmg/11.2.133] [PMID: 11809722]
[45]
Su, B.; Wang, X.; Bonda, D.; Perry, G.; Smith, M.; Zhu, X. Abnormal mitochondrial dynamics-a novel therapeutic target for Alzheimer’s disease? Mol. Neurobiol., 2010, 41(2-3), 87-96.
[http://dx.doi.org/10.1007/s12035-009-8095-7] [PMID: 20101529]
[46]
Reddy, P.H.; Reddy, T.P. Mitochondria as a therapeutic target for aging and neurodegenerative diseases. Curr. Alzheimer Res., 2011, 8(4), 393-409.
[http://dx.doi.org/10.2174/156720511795745401] [PMID: 21470101]
[47]
Swerdlow, R.H.; Khan, S.M. A “mitochondrial cascade hypothesis” for sporadic Alzheimer’s disease. Med. Hypotheses, 2004, 63(1), 8-20.
[http://dx.doi.org/10.1016/j.mehy.2003.12.045] [PMID: 15193340]
[48]
Bradley-Whitman, M.A.; Lovell, M.A. Epigenetic changes in the progression of Alzheimer’s disease. Mech. Ageing Dev., 2013, 134(10), 486-495.
[http://dx.doi.org/10.1016/j.mad.2013.08.005] [PMID: 24012631]
[49]
Jodeiri Farshbaf, M.; Ghaedi, K.; Megraw, T.L.; Curtiss, J.; Shirani Faradonbeh, M.; Vaziri, P.; Nasr-Esfahani, M.H. Does PGC1α/FNDC5/BDNF elicit the beneficial effects of exercise on neurodegenerative disorders? Neuromol. Med., 2016, 18(1), 1-15.
[http://dx.doi.org/10.1007/s12017-015-8370-x] [PMID: 26611102]
[50]
Yan, M.H.; Wang, X.; Zhu, X. Mitochondrial defects and oxidative stress in Alzheimer disease and Parkinson disease. Free Radic. Biol. Med., 2013, 62, 90-101.
[http://dx.doi.org/10.1016/j.freeradbiomed.2012.11.014] [PMID: 23200807]
[51]
Yao, P.J.; Eren, E.; Goetzl, E.J.; Kapogiannis, D. Mitochondrial electron transport chain protein abnormalities detected in plasma extracellular vesicles in Alzheimer’s disease. Biomedicines, 2021, 9(11), 1587.
[http://dx.doi.org/10.3390/biomedicines9111587] [PMID: 34829816]
[52]
Long, J.; He, P.; Shen, Y.; Li, R. New evidence of mitochondria dysfunction in the female Alzheimer’s disease brain: deficiency of estrogen receptor-β. J. Alzheimers Dis., 2012, 30(3), 545-558.
[http://dx.doi.org/10.3233/JAD-2012-120283] [PMID: 22451324]
[53]
Damiano, M.; Diguet, E.; Malgorn, C.; D’Aurelio, M.; Galvan, L.; Petit, F.; Benhaim, L.; Guillermier, M.; Houitte, D.; Dufour, N.; Hantraye, P.; Canals, J.M.; Alberch, J.; Delzescaux, T.; Déglon, N.; Beal, M.F.; Brouillet, E. A role of mitochondrial complex II defects in genetic models of Huntington’s disease expressing N-terminal fragments of mutant huntingtin. Hum. Mol. Genet., 2013, 22(19), 3869-3882.
[http://dx.doi.org/10.1093/hmg/ddt242] [PMID: 23720495]
[54]
Ohta, S.; Ohsawa, I. Dysfunction of mitochondria and oxidative stress in the pathogenesis of Alzheimer’s disease: On defects in the cytochrome c oxidase complex and aldehyde detoxification. J. Alzheimers Dis., 2006, 9(2), 155-166.
[http://dx.doi.org/10.3233/JAD-2006-9208] [PMID: 16873963]
[55]
Mohamed, T.M.; Youssef, M.A.M.; Bakry, A.A.; El-Keiy, M.M. Alzheimer’s disease improved through the activity of mitochondrial chain complexes and their gene expression in rats by boswellic acid. Metab. Brain Dis., 2021, 36(2), 255-264.
[http://dx.doi.org/10.1007/s11011-020-00639-7] [PMID: 33159653]
[56]
Mosconi, L.; Andrews, R.D.; Matthews, D.C. Comparing brain amyloid deposition, glucose metabolism, and atrophy in mild cognitive impairment with and without a family history of dementia. J. Alzheimers Dis., 2013, 35(3), 509-524.
[http://dx.doi.org/10.3233/JAD-121867] [PMID: 23478305]
[57]
Faizi, M.; Seydi, E.; Abarghuyi, S.; Salimi, A.; Nasoohi, S.; Pourahmad, J. A search for mitochondrial damage in Alzheimer’s disease using isolated rat brain mitochondria. Iran. J. Pharm. Res., 2016, 15(Suppl.), 185-195.
[PMID: 28228816]
[58]
Emmerzaal, T.L.; Rodenburg, R.J.; Tanila, H.; Verweij, V.; Kiliaan, A.J.; Kozicz, T. Age-dependent decrease of mitochondrial complex II activity in a familial mouse model for alzheimer’s disease. J. Alzheimers Dis., 2018, 66(1), 75-82.
[http://dx.doi.org/10.3233/JAD-180337] [PMID: 30248054]
[59]
Blennow, K.; Zetterberg, H. Biomarkers for Alzheimer’s disease: current status and prospects for the future. J. Intern. Med., 2018, 284(6), 643-663.
[http://dx.doi.org/10.1111/joim.12816] [PMID: 30051512]
[60]
Viola, K.L.; Klein, W.L. Amyloid β oligomers in Alzheimer’s disease pathogenesis, treatment, and diagnosis. Acta Neuropathol., 2015, 129(2), 183-206.
[http://dx.doi.org/10.1007/s00401-015-1386-3] [PMID: 25604547]
[61]
Takahashi, R.H.; Nagao, T.; Gouras, G.K. Plaque formation and the intraneuronal accumulation of β-amyloid in Alzheimer’s disease. Pathol. Int., 2017, 67(4), 185-193.
[http://dx.doi.org/10.1111/pin.12520] [PMID: 28261941]
[62]
Simonian, N.A.; Coyle, J.T. Oxidative stress in neurodegenerative diseases. Annu. Rev. Pharmacol. Toxicol., 1996, 36(1), 83-106.
[http://dx.doi.org/10.1146/annurev.pa.36.040196.000503] [PMID: 8725383]
[63]
Schubert, D.; Piasecki, D. Oxidative glutamate toxicity can be a component of the excitotoxicity cascade. J. Neurosci., 2001, 21(19), 7455-7462.
[http://dx.doi.org/10.1523/JNEUROSCI.21-19-07455.2001] [PMID: 11567035]
[64]
Gardner, A.M.; Xu, F.; Fady, C.; Jacoby, F.J.; Duffey, D.C.; Tu, Y.; Lichtenstein, A. Apoptotic vs. nonapoptotic cytotoxicity induced by hydrogen peroxide. Free Radic. Biol. Med., 1997, 22(1-2), 73-83.
[http://dx.doi.org/10.1016/S0891-5849(96)00235-3] [PMID: 8958131]
[65]
Yu, J.; Ye, J.; Liu, X.; Han, Y.; Wang, C. Protective effect of L-carnitine against H2O2 -induced neurotoxicity in neuroblastoma (SH-SY5Y) cells. Neurol. Res., 2011, 33(7), 708-716.
[http://dx.doi.org/10.1179/1743132810Y.0000000028] [PMID: 21756550]
[66]
Oakley, H.; Cole, S.L.; Logan, S.; Maus, E.; Shao, P.; Craft, J.; Guillozet-Bongaarts, A.; Ohno, M.; Disterhoft, J.; Van Eldik, L.; Berry, R.; Vassar, R. Intraneuronal beta-amyloid aggregates, neurodegeneration, and neuron loss in transgenic mice with five familial Alzheimer’s disease mutations: potential factors in amyloid plaque formation. J. Neurosci., 2006, 26(40), 10129-10140.
[http://dx.doi.org/10.1523/JNEUROSCI.1202-06.2006] [PMID: 17021169]
[67]
Charisis, S.; Ntanasi, E.; Yannakoulia, M.; Anastasiou, C.A.; Kosmidis, M.H.; Dardiotis, E.; Hadjigeorgiou, G.; Sakka, P.; Veskoukis, A.S.; Kouretas, D.; Scarmeas, N. Plasma GSH levels and Alzheimer’s disease. A prospective approach.: Results from the HELIAD study. Free Radic. Biol. Med., 2021, 162, 274-282.
[http://dx.doi.org/10.1016/j.freeradbiomed.2020.10.027] [PMID: 33099001]