An Expeditious Synthesis of Ethyl-2-(4-(arylmethylene)-5-oxo-4,5-dihydroisoxazol-3- yl)acetate Derivatives

Page: [1575 - 1584] Pages: 10

  • * (Excluding Mailing and Handling)

Abstract

In this contribution, an operationally simple and efficient synthetic procedure for synthesizing derivatives of 4-(arylmethylene)-5-oxo-4,5-dihydroisoxazol-3-yl)acetate has been developed. This interesting synthetic protocol involves the one-pot cyclocondensation of diethyl 3-oxopentanedioate, aryl or heteroaryl aldehydes, and hydroxylamine hydrochloride catalyzed in an aqueous medium using an azolium salt as a robust organo-catalyst. In this work, for the first time, 1,3-dibenzyl-1H-benzo[d]imidazol-3-ium chloride was used as the catalyst for the synthesis of ethyl-2-(4-(arylmethylene)-5-oxo-4,5-dihydroisoxazol-3-yl)acetate derivatives from the commercially available starting materials. Notably, no by-products were observed during the multicomponent reaction. Optimization studies revealed that 5 mol% of 1,3-dibenzyl-1H-benzo[d]imidazol-3-ium chloride is sufficient to perform the experiment. Furthermore, examining the results of the temperature conditions showed that 70 ºC is the best temperature to carry out the reaction. In an optimization study, H2O was the most effective solvent to perform the three-component cyclization reaction. In this method, using H2O as the environmentally benign and inexpensive reaction medium, so from the point of view of the reaction medium, it can be said that this three-component heterocyclization obeys the principles of green chemistry. This procedure has several advantages, such as good to excellent yields, reasonable reaction times, isolation of heterocyclic products without column chromatography or other chromatographic methods, atom-economy, step-economy, and clean reaction profiles.

Graphical Abstract

[1]
Moiola, M.; Bova, A.; Crespi, S.; Memeo, M.G.; Mella, M.; Overkleeft, H.S.; Florea, B.I.; Quadrelli, P. Fluorescent probes from aromatic polycyclic nitrile oxides: isoxazoles versus dihydro‐1λ 3, 3,2λ 4 ‐oxazaborinines. Chem. Open, 2019, 8(6), 770-780.
[http://dx.doi.org/10.1002/open.201900137] [PMID: 31289713]
[2]
Barmade, M.A.; Murumkar, P.R.; Sharma, M.K.; Yadav, M.R. Medicinal chemistry perspective of fused isoxazole derivatives. Curr. Top. Med. Chem., 2016, 16(26), 2863-2883.
[http://dx.doi.org/10.2174/1568026616666160506145700] [PMID: 27150366]
[3]
Jiang, P.; Wang, Y.; Chen, D.; Zheng, Y.; Huang, S. Synthesis of 3-acyl-isoxazoles via radical 5-endo trig cyclization of βγ-unsaturated ketones with NaNO2. Eur. J. Org. Chem., 2022, 2022, e202101411.
[4]
Agrawal, N.; Mishra, P. The synthetic and therapeutic expedition of isoxazole and its analogs. Med. Chem. Res., 2018, 27(5), 1309-1344.
[http://dx.doi.org/10.1007/s00044-018-2152-6] [PMID: 32214770]
[5]
Zhang, X.H.; Zhan, Y.H.; Chen, D.; Wang, F.; Wang, L.Y. Merocyanine dyes containing an isoxazolone nucleus: Synthesis, X-ray crystal structures, spectroscopic properties and DFT studies. Dyes Pigments, 2012, 93(1-3), 1408-1415.
[http://dx.doi.org/10.1016/j.dyepig.2011.10.003]
[6]
Gao, M.; Zhang, J.; Zhang, X.; Xu, D.; Hu, Z.; Yao, J.; Wu, Y. Steric group design for enhancement of optical nonlinearity in isoxazolone-based crystals and terahertz-wave generation. Cryst. Growth Des., 2021, 21(6), 3153-3157.
[http://dx.doi.org/10.1021/acs.cgd.1c00221]
[7]
Aret, E.; Meekes, H.; Vlieg, E.; Deroover, G. Polymorphic behavior of a yellow isoxazolone dye. Dyes Pigments, 2007, 72(3), 339-344.
[http://dx.doi.org/10.1016/j.dyepig.2005.09.018]
[8]
Biju, S.; Reddy, M.L.P.; Freire, R.O. 3-Phenyl-4-aroyl-5-isoxazolonate complexes of Tb3+ as promising light-conversion molecular devices. Inorg. Chem. Commun., 2007, 10(4), 393-396.
[http://dx.doi.org/10.1016/j.inoche.2006.12.008]
[9]
Yao, Y.; Xu, H.L.; Su, Z.M. Switching of second-order nonlinear response effected by different acceptors: The impacts of environment and frequency dispersion. Dyes Pigments, 2021, 193, 109502.
[http://dx.doi.org/10.1016/j.dyepig.2021.109502]
[10]
Ghosh, T.; Gopal, A.; Saeki, A.; Seki, S.; Nair, V.C. p/n-Polarity of thiophene oligomers in photovoltaic cells: role of molecular vs. supramolecular properties. Phys. Chem. Chem. Phys., 2015, 17(16), 10630-10639.
[http://dx.doi.org/10.1039/C5CP01044F] [PMID: 25805168]
[11]
Kafle, B.; Aher, N.G.; Khadka, D.; Park, H.; Cho, H. Isoxazol-5(4H)one derivatives as PTP1B inhibitors showing an anti-obesity effect. Chem. Asian J., 2011, 6(8), 2073-2079.
[http://dx.doi.org/10.1002/asia.201100154] [PMID: 21656690]
[12]
Reddy, C.V.R.; Reddy, G.G. Water mediated one-pot and step-wise syntheses of indolylidine isoxazoles and their anti-cancer activity and molecular modeling studies. Chem. Africa, 2020, 3(1), 61-74.
[http://dx.doi.org/10.1007/s42250-019-00101-x]
[13]
Bhatt, T.D.; Gojiya, D.G.; Kalavadiya, P.L.; Joshi, H.S. Rapid, greener and ultrasound irradiated one‐pot synthesis of 4‐(substituted‐1 H ‐pyrazol‐4‐yl)methylene)‐3‐isopropylisoxazol‐5(4 H)‐ones and their in vitro anticancer activity. Chem. Select, 2019, 4(37), 11125-11129.
[http://dx.doi.org/10.1002/slct.201902164]
[14]
Kim, S.J.; Yang, J.; Lee, S.; Park, C.; Kang, D.; Akter, J.; Ullah, S.; Kim, Y.J.; Chun, P.; Moon, H.R. The tyrosinase inhibitory effects of isoxazolone derivatives with a (Z)-β-phenyl-α β-unsaturated carbonyl scaffold. Bioorg. Med. Chem., 2018, 26(14), 3882-3889.
[http://dx.doi.org/10.1016/j.bmc.2018.05.047] [PMID: 29907470]
[15]
Breuer, S.; Chang, M.W.; Yuan, J.; Torbett, B.E. Identification of HIV-1 inhibitors targeting the nucleocapsid protein. J. Med. Chem., 2012, 55(11), 4968-4977.
[http://dx.doi.org/10.1021/jm201442t] [PMID: 22587465]
[16]
Chavan, A.P.; Deshpande, R.R.; Borade, N.A.; Shinde, A.; Mhaske, P.C.; Sarkar, D.; Bobade, V.D. Synthesis of new 1,3,4-oxadiazole and benzothiazolylthioether derivatives of 4-arylmethylidene-3-substituted-isoxazol-5(4H)-one as potential antimycobacterial agents. Med. Chem. Res., 2019, 28(11), 1873-1884.
[http://dx.doi.org/10.1007/s00044-019-02420-7]
[17]
Wang, Y.; Niu, C.; Xie, D.H.; Du, D.M. A bifunctional squaramide-catalysed enantioselective vinylogous Michael addition/cyclization cascade reaction of 4-unsaturated isoxazol-5-ones and αα-dicyanoalkenes. Org. Biomol. Chem., 2021, 19(39), 8572-8577.
[http://dx.doi.org/10.1039/D1OB01256H] [PMID: 34549755]
[18]
Oraby, A.K.; Abdellatif, K.R.A.; Abdelgawad, M.A.; Attia, K.M.; Dawe, L.N.; Georghiou, P.E. 2,4-disubstituted phenylhydrazonopyrazolone and isoxazolone derivatives as antibacterial agents: synthesis, preliminary biological evaluation and docking studies. Chem. Select, 2018, 3(11), 3295-3301.
[http://dx.doi.org/10.1002/slct.201800174]
[19]
Ali, M.; Saleem, U.; Anwar, F.; Imran, M.; Nadeem, H.; Ahmad, B.; Ali, T. Atta-ur-rehman; Ismail, T. Screening of synthetic isoxazolone derivative role in alzheimer’s disease: computational and pharmacological approach. Neurochem. Res., 2021, 46(4), 905-920.
[http://dx.doi.org/10.1007/s11064-021-03229-w] [PMID: 33486698]
[20]
B, M.; Bodke, Y.D.; R, S.J.; N, L.T.; A, S.M. Novel isoxazolone based azo dyes: synthesis, characterization, computational, solvatochromic UV-Vis absorption and biological studies. J. Mol. Struct., 2021, 1244, 130933.
[http://dx.doi.org/10.1016/j.molstruc.2021.130933]
[21]
Kuchana, M.; Bethapudi, D.R.; Ediga, R.K.; Sisapuram, Y. Synthesis, in-vitro antioxidant activity and in-silico prediction of drug-likeness properties of a novel compound: 4-(3,5-Di-tert-butyl- 4-hydroxybenzylidene)-3-methylisoxazol-5(4H)-one. J. Appl. Pharm. Sci., 2019, 9(9), 105-110.
[http://dx.doi.org/10.7324/JAPS.2019.90915]
[22]
Wazalwar, S.S.; Banpurkar, A.R.; Perdih, F. Aqueous phase synthesis, crystal structure and biological study of isoxazole extensions of pyrazole-4-carbaldehyde derivatives. J. Mol. Struct., 2017, 1150, 258-267.
[http://dx.doi.org/10.1016/j.molstruc.2017.08.094]
[23]
Ishioka, T.; Tanatani, A.; Nagasawa, K.; Hashimoto, Y. Anti-Androgens with full antagonistic activity toward human prostate tumor LNCaP cells with mutated androgen receptor. Bioorg. Med. Chem. Lett., 2003, 13(16), 2655-2658.
[http://dx.doi.org/10.1016/S0960-894X(03)00575-4] [PMID: 12873487]
[24]
Hallenbach, W.; Guth, O.; Seitz, T.; Wrolowsky, H.J.; Desbordes, P.; Wachendorff-Neumann, U.; Dahmen, P.; Voerste, E.; Lösel, P.; Malssm, O.; Rama, R.; Hadano, H. 3-Aryl-4-(2,6-dimethylbenzylidene)isoxazol-5(4H)- ones as Fungicides. US Patent, US 2012/0065063A1, 2012.
[25]
Anwar, T.; Nadeem, H.; Sarwar, S.; Naureen, H.; Ahmed, S.; Khan, A.; Arif, M. Investigation of antioxidant and anti‐nociceptive potential of isoxazolone, pyrazolone derivatives, and their molecular docking studies. Drug Dev. Res., 2020, 81(7), 893-903.
[http://dx.doi.org/10.1002/ddr.21711] [PMID: 32662202]
[26]
Gulati, S.; Singh, R.; Sangwan, S. Fruit juice mediated multicomponent reaction for the synthesis of substituted isoxazoles and their in vitro bio-evaluation. Sci. Rep., 2021, 11(1), 23563.
[http://dx.doi.org/10.1038/s41598-021-03057-6] [PMID: 34876634]
[27]
Brière, J-F.; Waser, M.; Massa, A.; Macchia, A.; Eitzinger, A. Asymmetric synthesis of isoxazol-5-ones and isoxazolidin-5-ones. Synthesis, 2021, 53(1), 107-122.
[http://dx.doi.org/10.1055/s-0040-1706483]
[28]
Sabitha, G.; Reddy, M.M.; Archana, B.; Yadav, J.S. A convenient synthesis of benzopyranacetylenes. Synth. Commun., 1998, 28(4), 573-581.
[http://dx.doi.org/10.1080/00397919808005928]
[29]
Galenko, E.E.; Linnik, S.A.; Khoroshilova, O.V.; Novikov, M.S.; Khlebnikov, A.F. An isoxazole strategy for the synthesis of α-aminopyrrole derivatives. J. Org. Chem., 2019, 84(17), 11275-11285.
[http://dx.doi.org/10.1021/acs.joc.9b01634] [PMID: 31385507]
[30]
Zhu, Y.M.; Zhang, W.; Li, H.; Xu, X.P.; Ji, S.J. Palladium catalyzed ring expansion reaction of isoxazolones with isocyanides: synthesis of 1,3‐oxazin‐6‐one derivatives. Adv. Synth. Catal., 2021, 363(3), 808-818.
[http://dx.doi.org/10.1002/adsc.202001200]
[31]
da Silva, A.; Fernandes, A.; Thurow, S.; Stivanin, M.; Jurberg, I. Isoxazol-5-ones as strategic building blocks in organic synthesis. Synthesis, 2018, 50(13), 2473-2489.
[http://dx.doi.org/10.1055/s-0036-1589534]
[32]
Elinson, M.N.; Ryzhkova, Y.E.; Ryzhkov, F.V.; Vereshchagin, A.N.; Leonova, N.A.; Egorov, M.P. Electrochemically induced facile and efficient multicomponent approach to medicinally relevant 4‐[4‐oxo‐4 h ‐pyran‐2‐yl](aryl)‐methylisoxazol‐5(2 H)‐one scaffold. ChemistrySelect, 2020, 5(20), 5981-5986.
[http://dx.doi.org/10.1002/slct.202001592]
[33]
Wang, T.T.; Jin, H.S.; Cao, M.M.; Wang, R.B.; Zhao, L.M. Rh(III)-catalyzed regioselective annulations of 3-arylisoxazolones and 3-aryl-1,4,2-dioxazol-5-ones with propargyl alcohols: access to 4-arylisoquinolines and 4-arylisoquinolones. Org. Lett., 2021, 23(15), 5952-5957.
[http://dx.doi.org/10.1021/acs.orglett.1c02049] [PMID: 34323501]
[34]
Zhong, X.; Lin, S.; Xu, H.; Zhao, X.; Gao, H.; Yi, W.; Zhou, Z. Rh(III)-Catalysed cascade C–H imidization/cyclization of N -methoxybenzamides with isoxazolones for the assembly of dihydroquinazolin-4(1 H)-one derivatives. Org. Chem. Front., 2022, 9(7), 1904-1910.
[http://dx.doi.org/10.1039/D1QO01935J]
[35]
Farahi, S.; Nowrouzi, N.; Irajzadeh, M. Three-Component Synthesis of Isoxazolone Derivatives in the Presence of 4-(N,N-Dimethylamino)-pyridinium Acetate as a Protic Ionic Liquid. Iran. J. Sci. Technol. Trans. A Sci., 2018, 42(4), 1881-1887.
[http://dx.doi.org/10.1007/s40995-017-0453-0]
[36]
Shirole, G.D.; Tambe, A.S.; Shelke, S.N. Ionic liquid catalyzed one pot green synthesis of isoxazolone derivatives via multicomponent reaction. Indian J. Chem., 2020, 59B, 459-464.
[37]
Damghani, F.K.; Kiyani, H.; Pourmousavi, S.A. Green three-component synthesis of merocyanin dyes based on 4-arylideneisoxazol-5(4H)-ones. Curr. Green Chem., 2020, 7(2), 217-225.
[http://dx.doi.org/10.2174/2213346107666200122093906]
[38]
Atharifar, H.; Keivanloo, A.; Maleki, B. Greener synthesis of 3,4-disubstituted isoxazole-5(4H)-ones in a deep eutectic solvent. Org. Prep. Proced. Int., 2020, 52(6), 517-523.
[http://dx.doi.org/10.1080/00304948.2020.1799672]
[39]
Ghorbani, F.; Kiyani, H.; Pourmousavi, S.A. Facile and expedient synthesis of αβ-unsaturated isoxazol-5(4H)-ones under mild conditions. Res. Chem. Intermed., 2020, 46(1), 943-959.
[http://dx.doi.org/10.1007/s11164-019-03999-7]
[40]
Shanshak, M.; Budagumpi, S. Małecki, J.G.; Keri, R.S. Green synthesis of 3,4‐disubstituted isoxazol‐5(4H)‐ones using ZnO@Fe3O4 core–shell nanocatalyst in water. Appl. Organomet. Chem., 2020, 34(4), e5544.
[http://dx.doi.org/10.1002/aoc.5544]
[41]
Kiyani, H.; Ghorbani, F. Expeditious green synthesis of 3,4-disubstituted isoxazole-5(4H)-ones catalyzed by nano-MgO. Res. Chem. Intermed., 2016, 42(9), 6831-6844.
[http://dx.doi.org/10.1007/s11164-016-2498-7]
[42]
Barkule, A.B.; Gadkari, Y.U.; Telvekar, V.N. One-pot multicomponent synthesis of 3-methyl-4-(hetero)arylmethylene isoxazole-5(4H)-ones using guanidine hydrochloride as the catalyst under aqueous conditions. Polycycl. Aromat. Compd., 2022, 42(9), 5870-5881.
[http://dx.doi.org/10.1080/10406638.2021.1959353]
[43]
Kiyani, H.; Mosallanezhad, A. Sulfanilic acid-catalyzed synthesis of 4-arylidene-3-substituted isoxazole-5(4H)-ones. Curr. Org. Synth., 2018, 15(5), 715-722.
[http://dx.doi.org/10.2174/1570179415666180423150259]
[44]
Reihani, N.; Kiyani, H. Three-component synthesis of 4-arylidene-3-alkylisoxazol-5(4H)-ones in the presence of potassium 2,5-dioxoimidazolidin-1-ide. Curr. Org. Chem., 2021, 25(8), 950-962.
[http://dx.doi.org/10.2174/1385272825666210212120517]
[45]
Deshmukh, S.R.; Nalkar, A.S.; Thopate, S.R. Pyruvic acid-catalyzed one-pot three-component green synthesis of isoxazoles in aqueous medium: a comparable study of conventional heating versus ultra-sonication. J. Chem. Sci., 2022, 134(1), 15.
[http://dx.doi.org/10.1007/s12039-021-02016-y]
[46]
Kiyani, H.; Kanaani, A.; Ajloo, D.; Ghorbani, F.; Vakili, M. N-bromosuccinimide (NBS)-promoted, three-component synthesis of αβ-unsaturated isoxazol-5(4H)-ones, and spectroscopic investigation and computational study of 3-methyl-4-(thiophen-2-ylmethylene)isoxazol-5(4H)-one. Res. Chem. Intermed., 2015, 41(10), 7739-7773.
[http://dx.doi.org/10.1007/s11164-014-1857-5]
[47]
Safari, J.; Ahmadzadeh, M.; Zarnegar, Z. Ultrasound-assisted method for the synthesis of 3-methyl-4-arylmethylene isoxazole-5(4H)-ones catalyzed by imidazole in aqueous media. Org. Chem. Res., 2016, 2, 134-139.
[48]
Kour, P.; Ahuja, M.; Sharma, P.; Kumar, A.; Kumar, A. An improved protocol for the synthesis of 3,4-disubstituted isoxazol-5(4H)-ones through L-valine-mediated domino three-component strategy. J. Chem. Sci., 2020, 132(1), 108.
[http://dx.doi.org/10.1007/s12039-020-01801-5]
[49]
Ghogare, R.S.; Patankar-Jain, K.; Momin, S.A.H. A simple and efficient protocol for the synthesis of 3,4-disubstituted isoxazol-5(4H)-ones catalyzed by succinic acid using water as green reaction medium. Lett. Org. Chem., 2021, 18(2), 83-87.
[http://dx.doi.org/10.2174/1570178617999200721011300]
[50]
Kiyani, H.; Ghorbani, F. Efficient tandem synthesis of a variety of pyran-annulated heterocycles, 3,4-disubstituted isoxazol-5(4H)-ones, and αβ-unsaturated nitriles catalyzed by potassium hydrogen phthalate in water. Res. Chem. Intermed., 2015, 41(10), 7847-7882.
[http://dx.doi.org/10.1007/s11164-014-1863-7]
[51]
Kiyani, H.; Jabbari, M.; Mosallanezhad, A. Efficient three-component synthesis of 3,4-disubstituted isoxazol-5(4H)-ones in green media. Jordan J. Chem., 2014, 9(4), 279-288.
[http://dx.doi.org/10.12816/0025980]
[52]
Kiyani, H.; Darbandi, H.; Mosallanezhad, A.; Ghorbani, F. 2-Hydroxy-5-sulfobenzoic acid: an efficient organocatalyst for the three-component synthesis of 1-amidoalkyl-2-naphthols and 3,4-disubstituted isoxazol-5(4H)-ones. Res. Chem. Intermed., 2015, 41(10), 7561-7579.
[http://dx.doi.org/10.1007/s11164-014-1844-x]
[53]
Kiyani, H.; Ghorbani, F. Potassium phthalimide as efficient basic organocatalyst for the synthesis of 3,4-disubstituted isoxazol-5(4H)-ones in aqueous medium. J. Saudi Chem. Soc., 2017, 21, S112-S119.
[http://dx.doi.org/10.1016/j.jscs.2013.11.002]
[54]
Mosallanezhad, A.; Kiyani, H. Green synthesis of 3-substituted-4-arylmethylideneisoxazol-5(4H)-one derivatives catalyzed by salicylic acid. Curr. Organocatal., 2019, 6(1), 28-35.
[http://dx.doi.org/10.2174/2213337206666190214161332]
[55]
Kasar, S.B.; Thopate, S.R. Ultrasonically assisted efficient and green protocol for the synthesis of 4H-isoxazol-5-ones using itaconic acid as a homogeneous and reusable organocatalyst. Curr. Organocatal., 2019, 6(3), 231-237.
[http://dx.doi.org/10.2174/2213337206666190411115402]
[56]
Laroum, R.; Debache, A. New eco-friendly procedure for the synthesis of 4-arylmethylene-isoxazol-5(4H)-ones catalyzed by pyridinium p-toluenesulfo-nate (PPTS) in aqueous medium. Synth. Commun., 2018, 48(14), 1876-1882.
[http://dx.doi.org/10.1080/00397911.2018.1473440]
[57]
Parveen, M.; Aslam, A.; Ahmad, A.; Alam, M.; Silva, M.R.; Silva, P.S.P. A facile & convenient route for the stereoselective synthesis of Z- isoxazol-5(4H)-ones derivatives catalysed by sodium acetate: Synthesis, multispectroscopic properties, crystal structure with DFT calculations, DNA-binding studies and molecular docking studies. J. Mol. Struct., 2020, 1200, 127067.
[http://dx.doi.org/10.1016/j.molstruc.2019.127067]
[58]
Kiyani, H.; Faramarzi, Z. Organocatalyzed three-component synthesis of isoxazol-5(4H)-ones under aqueous conditions. Heterocycles, 2021, 102(9), 1779-1790.
[http://dx.doi.org/10.3987/COM-21-14488]
[59]
Gharehassanlou, S.; Kiyani, H. A catalytic three-component synthesis of isoxazol-5(4H)-ones under green conditions. Indian J. Chem., 2022, 61, 515-520.
[60]
Kiyani, H.; Daroughezadeh, Z. Efficient and aqoues synthesis of 3,4-disubstituted isoxazol-5(4H)-one derivatives using piperazine under green conditions. Heterocycles, 2022, 104(9), 1625-1640.
[http://dx.doi.org/10.3987/COM-22-14686]
[61]
Vekariya, R.H.; Patel, H.D. Facile, eco-friendly and one-pot synthesis of 3,4-disubstituted isoxazol-5(4H)-ones using starch solution as a reaction media. Indian J. Chem., 2017, 56B, 890-896.
[62]
Patil, B.M.; Shinde, S.K.; Jagdale, A.A.; Jadhav, S.D.; Patil, S.S. Fruit extract of Averrhoa bilimbi: a green neoteric micellar medium for isoxazole and biginelli-like synthesis. Res. Chem. Intermed., 2021, 47(10), 4369-4398.
[http://dx.doi.org/10.1007/s11164-021-04539-y]
[63]
Popatkar, B.B.; Mane, A.A.; Meshram, G.A. Tomato fruit extract: an environmentally benign catalytic medium for the synthesis of isoxazoles derivatives. Indian J. Chem., 2021, 60B, 1362-1367.
[64]
Kiyani, H.; Ghorbani, F. Boric acid-catalyzed multi-component reaction for efficient synthesis of 4H-isoxazol-5-ones in aqueous medium. Res. Chem. Intermed., 2015, 41(5), 2653-2664.
[http://dx.doi.org/10.1007/s11164-013-1411-x]
[65]
Nakkalwar, S.L.; Patwari, S.B.; Patel, M.M.; Jadhav, V.B. Iodine catalyzed highly efficient one pot three component Synthesis of 4-arylidene-3-methylisoxazol-5(4H)-one in aqueous medium. Curr. Green Chem., 2018, 5(2), 122-128.
[http://dx.doi.org/10.2174/2213346105666180711151320]
[66]
Vaidya, S.P.; Shridhar, G.; Ladage, S.; Ravishankar, L. A facile synthesis of isoxazolone derivatives catalyzed by cerium chloride heptahydrate in ethyl lactate as a solvent: a green methodology. Curr. Green Chem., 2016, 3, 160-167.
[http://dx.doi.org/10.2174/2213346103666160526130509]
[67]
Kadam, H.K.; Salkar, K.; Naik, A.P.; Naik, M.M.; Salgaonkar, L.N.; Charya, L.; Pinto, K.C.; Mandrekar, V.K.; Vaz, T. Silica supported synthesis and quorum quenching ability of isoxazolones against both gram positive and gram negative bacterial pathogens. Chem. Select, 2021, 6(42), 11718-11728.
[http://dx.doi.org/10.1002/slct.202101798]
[68]
Mosallanezhad, A.; Kiyani, H. KI-Mediated three-component reaction of hydroxylamine hydrochloride with aryl/heteroaryl aldehydes and two β-oxoesters. Orbital, 2018, 10(2), 133-139.
[http://dx.doi.org/10.17807/orbital.v10i2.1134]
[69]
Kiyani, H.; Samimi, H.A. Nickel-catalyzed one-pot, three-component synthesis of 3,4-disubstituted isoxazole-5(4H)-ones in aqueous medium. Warasan Khana Witthayasat Maha Witthayalai Chiang Mai, 2017, 44, 1011-1021.
[70]
Kulkarni, P. An efficient solvent-free synthesis of 3,4-disubstituted isoxazole-5(4H)-ones using microwave irradiation. J. Indian Chem. Soc., 2021, 98, 1, 100013.
[71]
Celepci, D.B. Yiğit, B.; Yiğit, M.; Özdemir, İ.; Aygün, M. Amine-functionalized benzimidazolium salts: Synthesis, structural characterization, hirshfeld surface analysis and theoretical studies. J. Mol. Struct., 2021, 1239, 130460.
[http://dx.doi.org/10.1016/j.molstruc.2021.130460]
[72]
Behçet, A. Aktaş A.; Gök, Y.; Kaya, R.; Taslimi, P.; Gülçin, İ. Novel silver(I)N‐heterocyclic carbene complexes bearing 2‐(4‐hydroxyphenyl)ethyl group: Synthesis, characterization, and enzyme inhibition properties. J. Heterocycl. Chem., 2021, 58(2), 603-611.
[http://dx.doi.org/10.1002/jhet.4199]
[73]
Benhamou, L.; Chardon, E.; Lavigne, G.; Bellemin-Laponnaz, S.; César, V. Synthetic routes to N-heterocyclic carbene precursors. Chem. Rev., 2011, 111(4), 2705-2733.
[http://dx.doi.org/10.1021/cr100328e] [PMID: 21235210]
[74]
Yiğit, M.; Yiğit, B.; Taslimi, P.; Özdemir, İ.; Karaman, M.; Gulçin, İ. Novel amine-functionalized benzimidazolium salts: Synthesis, characterization, bioactivity, and molecular docking studies. J. Mol. Struct., 2020, 1207, 127802.
[http://dx.doi.org/10.1016/j.molstruc.2020.127802]
[75]
Zhang, C.; Ding, Z.; Suhaimi, N.A.M.; Kng, Y.L.; Zhang, Y.; Zhuo, L. A class of imidazolium salts is anti-oxidative and anti-fibrotic in hepatic stellate cells. Free Radic. Res., 2009, 43(10), 899-912.
[http://dx.doi.org/10.1080/10715760903137002] [PMID: 19670067]
[76]
Lin, Z.J.; Bies, J.; Johnson, S.S.; Gorden, J.D.; Strickland, J.F.; Frazier, M.; Meyers, J.M.; Shelton, K.L. Synthesis and anti-proliferative activity of N,N′-bis-substituted 1,2,4-triazolium salts against breast cancer and prostate cancer cell lines. J. Heterocycl. Chem., 2019, 56, 533-538.
[77]
Akkoç, S. Kayser, V.; İlhan, İ.Ö. Synthesis and in vitro anticancer evaluation of some benzimidazolium salts. J. Heterocycl. Chem., 2019, 56(10), 2934-2944.
[http://dx.doi.org/10.1002/jhet.3687]
[78]
Shelton, K.L.; DeBord, M.A.; Wagers, P.O.; Southerland, M.R.; Williams, T.M.; Robishaw, N.K.; Shriver, L.P.; Tessier, C.A.; Panzner, M.J.; Youngs, W.J. Synthesis, anti-proliferative activity, SAR study, and preliminary in vivo toxicity study of substituted N,N′-bis(arylmethyl)benzimidazolium salts against a panel of non-small cell lung cancer cell lines. Bioorg. Med. Chem., 2017, 25(1), 421-439.
[http://dx.doi.org/10.1016/j.bmc.2016.11.009] [PMID: 27876249]
[79]
Hamdi, N.; Slimani, I.; Mansour, L.; Alresheedi, F.; Gürbüz, N.; Özdemir, I. N-Heterocyclic carbene-palladium-PEPPSI complexes and their catalytic activity in the direct C–H bond activation of heteroarene derivatives with aryl bromides: synthesis, and antimicrobial and antioxidant activities. New J. Chem., 2021, 45(45), 21248-21262.
[http://dx.doi.org/10.1039/D1NJ04606C]
[80]
Vellé, A.; Maguire, R.; Kavanagh, K.; Sanz Miguel, P.J.; Montagner, D.; Steroid-Au, I. NHC Complexes: Synthesis and Antibacterial Activity. ChemMedChem, 2017, 12(11), 841-844.
[http://dx.doi.org/10.1002/cmdc.201700257] [PMID: 28463422]
[81]
Lasmari, S.; Ikhlef, S.; Boulcina, R.; Mokrani, E.H.; Bensouici, C.; Gürbüz, N.; Dündar, M. Karcı H.; Özdemir, İ.; Koç, A.; Özdemir, I.; Debache, A. New silver Nheterocyclic carbenes complexes: Synthesis, molecular docking study and biological activities evaluation as cholinesterase inhibitors and antimicrobials. J. Mol. Struct., 2021, 1238, 130399.
[http://dx.doi.org/10.1016/j.molstruc.2021.130399]
[82]
Ranjan, P.; Athar, M.; Vijayakrishna, K.; Meena, L.K.; Vasita, R.; Jha, P.C. Deciphering the anthelmintic activity of benzimidazolium salts by experimental and in-silico studies. J. Mol. Liq., 2018, 268, 156-168.
[http://dx.doi.org/10.1016/j.molliq.2018.07.029]
[83]
Wang, X.Q.; Ye, P.T.; Bai, M.J.; Miu, W.H.; Yang, Z.X.; Duan, S.Y.; Li, T.T.; Li, Y.; Yang, X.D. Synthesis and biological activity of new bisbenzofuran-imidazolium salts. Bioorg. Med. Chem. Lett., 2020, 30(13), 127210.
[http://dx.doi.org/10.1016/j.bmcl.2020.127210] [PMID: 32359853]
[84]
Iwamoto, K.; Hamaya, M.; Hashimoto, N.; Kimura, H.; Suzuki, Y.; Sato, M. Benzoin reaction in water as an aqueous medium catalyzed by benzimidazolium salt. Tetrahedron Lett., 2006, 47(40), 7175-7177.
[http://dx.doi.org/10.1016/j.tetlet.2006.07.153]
[85]
Hadei, N.; Kantchev, E.A.B.; O’Brie, C.J.; Organ, M.G. Electronic nature of N-heterocyclic carbene ligands: effect on the Suzuki reaction. Org. Lett., 2005, 7(10), 1991-1994.
[http://dx.doi.org/10.1021/ol050471w] [PMID: 15876037]
[86]
İşcı̇, Ü.; Aygün, M.; Sevı̇ncek, R.; Zorlu, Y.; Dumoulı̇n, F. Resorcinarenemono-benzimidazolium salts as NHC ligands for Suzuki--Miyaura crosscouplings catalysts. Turk. J. Chem., 2015, 39, 1300-1309.
[http://dx.doi.org/10.3906/kim-1506-50]
[87]
Wang, H.; Wang, Y.; Chen, X.; Mou, C.; Yu, S.; Chai, H.; Jin, Z.; Chi, Y.R. Chiral nitroarenes as enantioselective single-electron-transfer oxidants for carbene-catalyzed radical reactions. Org. Lett., 2019, 21(18), 7440-7444.
[http://dx.doi.org/10.1021/acs.orglett.9b02736] [PMID: 31478384]
[88]
Maji, B.; Vedachalan, S.; Ge, X.; Cai, S.; Liu, X.W. N-Heterocyclic carbene-mediated oxidative esterification of aldehydes: ester formation and mechanistic studies. J. Org. Chem., 2011, 76(9), 3016-3023.
[http://dx.doi.org/10.1021/jo200275c] [PMID: 21449617]
[89]
Lamb, J.S.; Takashima, R.; Suzuki, Y. NHC-Catalyzed Aza-Benzoin Condensation of N, N ′-Dipyridin-2-yl Aminals with Aldehydes. J. Org. Chem., 2021, 86(15), 10224-10234.
[http://dx.doi.org/10.1021/acs.joc.1c00973] [PMID: 34291942]
[90]
Chan, A.; Scheidt, K.A. Highly stereoselective formal [3+3] cycloaddition of enals and azomethine imines catalyzed by N-heterocyclic carbenes. J. Am. Chem. Soc., 2007, 129(17), 5334-5335.
[http://dx.doi.org/10.1021/ja0709167] [PMID: 17407298]
[91]
Reddy, M.V.K.; Anusha, G.; Reddy, P.V.G. Sterically enriched bulky 1,3-bis(N, N ′-aralkyl)benzimidazolium based Pd-PEPPSI complexes for Buchwald–Hartwig amination reactions. New J. Chem., 2020, 44(27), 11694-11703.
[http://dx.doi.org/10.1039/D0NJ01294G]
[92]
Hamdi, N.; Mnasri, A.; Al Nasr, I.S.; Koko, W.S.; Khan, T.A.; Biersack, B.; Özdemir, I.; Gürbüz, N. Highly efficient single A3-coupling (aldehyde-amine-alkyne) reaction catalyzed by air stable silver-(N-heterocyclic carbene) complexes: synthesis and characterization. Polycycl. Aromat. Compd., 2022. Epub ahead of print
[http://dx.doi.org/10.1080/10406638.2021.2019064]
[93]
He, W.P.; Zhou, B.H.; Zhou, Y.L.; Li, X.R.; Fan, L.M.; Shou, H.W.; Li, J. Synthesis of new benzimidazolium salts and their application in the asymmetric arylation of aldehydes. Tetrahedron Lett., 2016, 57(29), 3152-3155.
[http://dx.doi.org/10.1016/j.tetlet.2016.06.023]
[94]
Sandeli, A.E.K.; Boulebd, H.; Khiri-Meribout, N.; Benzerka, S.; Bensouici, C.; Özdemir, N.; Gürbüz, N. Özdemir, İ. New benzimidazolium N-heterocyclic carbene precursors and their related Pd-NHC complex PEPPSI-type: Synthesis, structures, DFT calculations, biological activity, docking study, and catalytic application in the direct arylation. J. Mol. Struct., 2022, 1248, 131504.
[http://dx.doi.org/10.1016/j.molstruc.2021.131504]
[95]
Sun, Z.; Zhou, J.; Liu, X. Facile synthesis of chiral benzimidazolium salts and the application in asymmetric catalytic borylation. Heterocycles, 2016, 92(5), 944-953.
[http://dx.doi.org/10.3987/COM-16-13434]
[96]
Achar, G.; Hokrani, P.P.; Brinda, K.N. Małecki, J.G.; Budagumpi, S. Synthesis, characterization, crystal structure and antibacterial properties of N– and O–functionalized (benz)imidazolium salts and their N–heterocyclic carbene silver(I) complexes. J. Mol. Struct., 2019, 1196, 627-636.
[http://dx.doi.org/10.1016/j.molstruc.2019.06.102]
[97]
Wang, Z.; Li, C.; Huang, H.; Deng, G.J. Elemental sulfur-promoted aerobic dehydrogenative aromatization of cyclohexanones with amines. J. Org. Chem., 2020, 85(14), 9415-9423.
[http://dx.doi.org/10.1021/acs.joc.0c01122] [PMID: 32578988]
[98]
Thalakottukara, D.D.; Gandhi, T. NHC‐organocatalysed hydroacylation of unactivated or weakly activated C−C multiple bonds and ketones. Asian J. Org. Chem., 2022, 11(6), e202200080.
[http://dx.doi.org/10.1002/ajoc.202200080]
[99]
Muskawar, P.N.; Karthikeyan, P.; Aswar, S.A.; Bhagat, P.R.; Senthil Kumar, S. NHC–metal complexes based on benzimidazolium moiety for chemical transformation. Arab. J. Chem., 2016, 9, S1765-S1778.
[http://dx.doi.org/10.1016/j.arabjc.2012.04.040]
[100]
Kumar, D.; Kommi, D.N.; Bollineni, N.; Patel, A.R.; Chakraborti, A.K. Catalytic procedures for multicomponent synthesis of imidazoles: selectivity control during the competitive formation of tri- and tetrasubstituted imidazoles. Green Chem., 2012, 14(7), 2038-2049.
[http://dx.doi.org/10.1039/c2gc35277j]
[101]
Kumar, D.; Sonawane, M.; Pujala, B.; Jain, V.K.; Bhagat, S.; Chakraborti, A.K. Supported protic acid-catalyzed synthesis of 2,3-disubstituted thiazolidin-4-ones: enhancement of the catalytic potential of protic acid by adsorption on solid supports. Green Chem., 2013, 15(10), 2872-2884.
[http://dx.doi.org/10.1039/c3gc41218k]
[102]
Kumar, D.; Kumar, A.; Qadri, M.M.; Ansari, M.I.; Gautam, A.; Chakraborti, A.K. In(OTf) 3 -catalyzed synthesis of 2-styryl quinolines: scope and limitations of metal Lewis acids for tandem Friedländer annulation–Knoevenagel condensation. RSC Advances, 2015, 5(4), 2920-2927.
[http://dx.doi.org/10.1039/C4RA10613J]
[103]
Kumar, D.; Jadhavar, P.S.; Nautiyal, M.; Sharma, H.; Meena, P.K.; Adane, L.; Pancholia, S.; Chakraborti, A.K. Convenient synthesis of 2,3-disubstituted quinazolin-4(3H)-ones and 2-styryl-3-substituted quinazolin-4(3H)-ones: applications towards the synthesis of drugs. RSC Advances, 2015, 5(39), 30819-30825.
[http://dx.doi.org/10.1039/C5RA03888J]
[104]
Jadhavar, P.S.; Dhameliya, T.M.; Vaja, M.D.; Kumar, D.; Sridevi, J.P.; Yogeeswari, P.; Sriram, D.; Chakraborti, A.K. Synthesis, biological evaluation and structure–activity relationship of 2-styrylquinazolones as anti-tubercular agents. Bioorg. Med. Chem. Lett., 2016, 26(11), 2663-2669.
[http://dx.doi.org/10.1016/j.bmcl.2016.04.012] [PMID: 27095514]
[105]
Kumar, D.; Sharma, H.; Saha, N.; Chakraborti, A.K. Domino synthesis of functionalized pyridine carboxylates under gallium catalysis: Unravelling the reaction pathway and the role of the nitrogen source counter anion. Chem. Asian J., 2022, 17(15), e202200304.
[http://dx.doi.org/10.1002/asia.202200304] [PMID: 35608137]
[106]
Roy, S.R.; Jadhavar, P.S.; Seth, K.; Sharma, K.K.; Chakraborti, A.K. Organocatalytic application of ionic liquids: [bmim][MeSO4] as a recyclable organocatalyst in the multicomponent reaction for the preparation of dihydropyrimidinones and -thiones. Synthesis, 2011, 2261-2267.
[107]
Parikh, N.; Roy, S.R.; Seth, K.; Kumar, A.; Chakraborti, A.K. ‘On-water’ multicomponent reaction for the diastereoselective synthesis of functionalized tetrahydropyridines and mechanistic insight. Synthesis, 2016, 48, 547-556.
[108]
Kiyani, H. Recent advances in three-component cyclocondensation of dimedone with aldehydes and malononitrile for construction of tetrahydrobenzo[b]pyrans using organocatalysts. Curr. Org. Synth., 2018, 15(8), 1043-1072.
[http://dx.doi.org/10.2174/1570179415666181031124459]
[109]
Kamalifar, S.; Kiyani, H. An expeditious one-pot three-component synthesis of 4-Aryl-3,4-dihydrobenzo[g] quinoline-2,5,10(1H)-triones under green conditions. Curr. Org. Chem., 2020, 23(23), 2626-2634.
[http://dx.doi.org/10.2174/1385272823666191108123330]
[110]
Salvitti, C.; Bortolami, M.; Chiarotto, I.; Troiani, A.; de Petris, G. The Knoevenagel condensation catalysed by ionic liquids: a mass spectrometric insight into the reaction mechanism. New J. Chem., 2021, 45(38), 17787-17795.
[http://dx.doi.org/10.1039/D1NJ03594K]
[111]
Priede, E.; Brica, S.; Bakis, E.; Udris, N.; Zicmanis, A. Ionic liquids as solvents for the Knoevenagel condensation: understanding the role of solvent–solute interactions. New J. Chem., 2015, 39(12), 9132-9142.
[http://dx.doi.org/10.1039/C5NJ01906K]
[112]
Hu, X.; Ngwa, C.; Zheng, Q. A simple and efficient procedure for knoevenagel reaction promoted by imidazolium-based ionic liquids. Curr. Org. Synth., 2015, 13(1), 101-110.
[http://dx.doi.org/10.2174/1570179412666150505185134]
[113]
Sarkar, A.; Roy, S.R.; Parikh, N.; Chakraborti, A.K. Nonsolvent application of ionic liquids: organo-catalysis by 1-alkyl-3-methylimidazolium cation based room-temperature ionic liquids for chemoselective N-tert-butyloxycarbonylation of amines and the influence of the C-2 hydrogen on catalytic efficiency. J. Org. Chem., 2011, 76(17), 7132-7140.
[http://dx.doi.org/10.1021/jo201102q] [PMID: 21774556]
[114]
Chakraborti, A.K.; Roy, S.R.; Kumar, D.; Chopra, P. Catalytic application of room temperature ionic liquids: [bmim][MeSO4] as a recyclable catalyst for synthesis of bis(indolyl)methanes. Ion-fishing by MALDI-TOF-TOF MS and MS/MS studies to probe the proposed mechanistic model of catalysis. Green Chem., 2008, 10(10), 1111-1118.
[http://dx.doi.org/10.1039/b807572g]
[115]
Chakraborti, A.K.; Roy, S.R. On catalysis by ionic liquids. J. Am. Chem. Soc., 2009, 131(20), 6902-6903.
[http://dx.doi.org/10.1021/ja900076a] [PMID: 19413313]
[116]
Roy, S.R.; Chakraborti, A.K. Supramolecular assemblies in ionic liquid catalysis for aza-Michael reaction. Org. Lett., 2010, 12(17), 3866-3869.
[http://dx.doi.org/10.1021/ol101557t] [PMID: 20690631]
[117]
Sarkar, A.; Roy, S.R.; Chakraborti, A.K. Ionic liquid catalysed reaction of thiols with αβ-unsaturated carbonyl compounds—remarkable influence of the C-2 hydrogen and the anion. Chem. Commun. (Camb.), 2011, 47(15), 4538-4540.
[http://dx.doi.org/10.1039/c1cc10151j] [PMID: 21387055]
[118]
Huang, W.; Guo, J.; Xiao, Y.; Zhu, M.; Zou, G.; Tang, J. Palladium–benzimidazolium salt catalyst systems for Suzuki coupling: development of a practical and highly active palladium catalyst system for coupling of aromatic halides with arylboronic acids. Tetrahedron, 2005, 61(41), 9783-9790.
[http://dx.doi.org/10.1016/j.tet.2005.06.060]