Sertraline: Theoretical Studies and a New Potentiometric PVC Membrane Sensor for its Determination

Page: [262 - 271] Pages: 10

  • * (Excluding Mailing and Handling)

Abstract

Background: Sertraline (ST) hydrochloride is an anti-depressant of the selective serotonin reuptake inhibitor (SSRI) class. Potentiometric sensors are an appealing route for detecting drugs due to some advantages in terms of sensitivity, feasibility, selectivity, fast response, tolerance to turbidity and colour of solutions, and cost-effectiveness.

Methods: A mixture of polyvinyl chloride powder (PVC) with o-nitrophenyl octyl ether and the ion association complex was dissolved in tetrahydrofuran (THF) to prepare the membrane for the proposed sensor. The sensor was calibrated and then electrochemically used for detecting ST in pharmaceutical samples.

Results: The near Nernstian response was observed for a concentration of 1.0 x 10-8 - 1.0 x 10-2 mol L-1 with 58.62 mV as a slope per concentration decade. This direct potentiometric measurement resulted in average recoveries of 96.0 ± 0.2%. Moreover, good selectivity for sertraline with respect to many inorganic and organic cations was observed.

Conclusion: The proposed sensor was simple to use and produced accurate and precise results. The molecule's chemical and biological activities were revealed using theoretical calculations. Regarding the chemical activities, calculations were made on the 3-21g and 6-31g while the SDD bases were set at B3LYP, HF, and the M062X level. Molecular docking calculations were designed against cancer proteins in order to have details regarding the molecule's biological activity.

Graphical Abstract

[1]
Dziurkowska, E.; Wesolowski, M. Sertraline - isolation methods and quantitation in biological material. Psychiatr. Pol., 2018, 52(6), 997-1012.
[http://dx.doi.org/10.12740/PP/85788] [PMID: 30659562]
[2]
Lotfi, A.; Manzoori, J.L.; Mohagheghi, A. Determination of sertraline in pharmaceutical and biological samples using 1, 10-phenanthroline-terbium probe and silver nanoparticles enhanced fluorescence. J. Lumin., 2017, 185, 132-140.
[http://dx.doi.org/10.1016/j.jlumin.2016.12.053]
[3]
Bosch, M.E.; Sánchez, A.J.R.; Rojas, F.S.; Ojeda, C.B. Analytical methodologies for the determination of sertraline. J. Pharm. Biomed. Anal., 2008, 48(5), 1290-1302.
[http://dx.doi.org/10.1016/j.jpba.2008.09.036] [PMID: 18980823]
[4]
Gjestad, C.; Westin, A.A.; Skogvoll, E.; Spigset, O. Effect of proton pump inhibitors on the serum concentrations of the selective serotonin reuptake inhibitors citalopram, escitalopram, and sertraline. Ther. Drug Monit., 2015, 37(1), 90-97.
[http://dx.doi.org/10.1097/FTD.0000000000000101] [PMID: 24887634]
[5]
de Castro, A.; Fernandez, M.M.R.; Laloup, M.; Samyn, N.; De Boeck, G.; Wood, M.; Maes, V.; López-Rivadulla, M. High-throughput on-line solid-phase extraction-liquid chromatography-tandem mass spectrometry method for the simultaneous analysis of 14 antidepressants and their metabolites in plasma. J. Chromatogr. A, 2007, 1160(1-2), 3-12.
[http://dx.doi.org/10.1016/j.chroma.2007.01.137] [PMID: 17321530]
[6]
Weisskopf, E.; Panchaud, A.; Nguyen, K.A.; Grosjean, D.; Hascoët, J.M.; Csajka, C.; Eap, C.B.; Ansermot, N. Simultaneous determination of selective serotonin reuptake inhibitors and their main metabolites in human breast milk by liquid chromatography-electrospray mass spectrometry. J. Chromatogr. B Analyt. Technol. Biomed. Life Sci., 2017, 1057, 101-109.
[http://dx.doi.org/10.1016/j.jchromb.2017.04.039] [PMID: 28511118]
[7]
Pinto, M.A.L.; de Souza, I.D.; Queiroz, M.E.C. Determination of drugs in plasma samples by disposable pipette extraction with C18-BSA phase and liquid chromatography-tandem mass spectrometry. J. Pharm. Biomed. Anal., 2017, 139, 116-124.
[http://dx.doi.org/10.1016/j.jpba.2017.02.052] [PMID: 28279926]
[8]
Wylie, F.M.; Torrance, H.; Anderson, R.A.; Oliver, J.S. Drugs in oral fluid. Forensic Sci. Int., 2005, 150(2-3), 191-198.
[http://dx.doi.org/10.1016/j.forsciint.2005.02.024] [PMID: 15944059]
[9]
Lacassie, E.; Gaulier, J.M.; Marquet, P.; Rabatel, J.F.; Lachâtre, G. Methods for the determination of seven selective serotonin reuptake inhibitors and three active metabolites in human serum using high-performance liquid chromatography and gas chromatography. J. Chromatogr., Biomed. Appl., 2000, 742(2), 229-238.
[http://dx.doi.org/10.1016/S0378-4347(00)00159-6] [PMID: 10901127]
[10]
Althakafy, J.T.; Kulsing, C.; Grace, M.R.; Marriott, P.J. Liquid chromatography - quadrupole Orbitrap mass spectrometry method for selected pharmaceuticals in water samples. J. Chromatogr. A, 2017, 1515, 164-171.
[http://dx.doi.org/10.1016/j.chroma.2017.08.003] [PMID: 28803645]
[11]
Togunde, O.P.; Cudjoe, E.; Oakes, K.D.; Mirnaghi, F.S.; Servos, M.R.; Pawliszyn, J. Determination of selected pharmaceutical residues in wastewater using an automated open bed solid phase microextraction system. J. Chromatogr. A, 2012, 1262, 34-42.
[http://dx.doi.org/10.1016/j.chroma.2012.09.011] [PMID: 22999422]
[12]
Arvand, M.; Hashemi, M. Synthesis by precipitation polymerization of a molecularly imprinted polymer membrane for the potentiometric determination of sertraline in tablets and biological fluids. J. Braz. Chem. Soc., 2012, 23(3), 392-402.
[http://dx.doi.org/10.1590/S0103-50532012000300004]
[13]
Nouws, H.P.A.; Delerue-Matos, C.; Barros, A.A.; Rodrigues, J.A. Electroanalytical study of the antidepressant sertraline. J. Pharm. Biomed. Anal., 2005, 39(1-2), 290-293.
[http://dx.doi.org/10.1016/j.jpba.2005.02.040] [PMID: 16085145]
[14]
Cheng, H.; Liang, J.; Zhang, Q.; Tu, Y. The electrochemical behavior and oxidation mechanism of sertraline on a rutin modified electrode. J. Electroanal. Chem. (Lausanne), 2012, 674, 7-11.
[http://dx.doi.org/10.1016/j.jelechem.2012.03.023]
[15]
Bebawy, L.I.; El-Kousy, N.; Suddik, J.K.; Shokry, M. Spectrophotometric determination of fluoxetine and sertraline using chloranil, 2, 3 dichloro-5, 6 dicyano benzoquinone and iodine. J. Pharm. Biomed. Anal., 1999, 21(1), 133-142.
[http://dx.doi.org/10.1016/S0731-7085(99)00101-6] [PMID: 10701920]
[16]
Alqahtani, Y.F.M.; Alwarthan, A.A.; Altamrah, S.A. 1st order derivative spectrophotometry determination of sertraline in pharmaceutical tablets by P-chloranilic acid. Jordan J. Chem., 2009, 4, 399-409.
[17]
Das, R.S.; Agrawal, Y.K. Spectrofluorometric analysis of newgeneration antidepressant drugs in pharmaceutical formulations, Human urine, and plasma samples. Spectroscopy: An International Journal, 2012, 27, 59-71.
[http://dx.doi.org/10.1155/2012/567207]
[18]
Mohammed, G.I.; Saber, A.L. Study of the electrochemical behavior of melatonin on different electrodes in aqueous solution. Int. J. Electrochem. Sci., 2020, 15, 5895-5907.
[http://dx.doi.org/10.20964/2020.06.90]
[19]
Elmosallamy, M.A.F.; Saber, A.L. Recognition and quantification of some monoamines neurotransmitters. Electroanalysis, 2016, 28(10), 2500-2505.
[http://dx.doi.org/10.1002/elan.201600120]
[20]
Saber, A.L.; Shah, R.K. Int. J. Electrochem. Sci., 2014, 9, 4374-4383.
[21]
Saber, A.L. A PVC membrane sensor for potentiometric determination of atorvastatin in biological samples and pharmaceutical preparations. Electroanalysis, 2013, 25(12), 2707-2714.
[http://dx.doi.org/10.1002/elan.201300376]
[22]
Saber, A.L. Novel potentiometric sensors for determination of melatonin and oxomemazine in biological samples and in pharmaceutical formulations. Electroanalysis, 2010, 22(24), 2997-3002.
[http://dx.doi.org/10.1002/elan.201000293]
[23]
Bilgiçli, A.T.; Genc Bilgicli, H.; Hepokur, C.; Tüzün, B.; Günsel, A.; Zengin, M.; Yarasir, M.N. Synthesis of (4R)-2-(3-hydroxyphenyl)thiazolidine-4-carboxylic acid substituted phthalocyanines: Anticancer activity on different cancer cell lines and molecular docking studies. Appl. Organomet. Chem., 2021, 35(7), e6242.
[http://dx.doi.org/10.1002/aoc.6242]
[24]
Koçyiğit, Ü.M.; Taslimi, P.; Tüzün, B.; Yakan, H.; Muğlu, H.; Güzel, E. 1,2,3-Triazole substituted phthalocyanine metal complexes as potential inhibitors for anticholinesterase and antidiabetic enzymes with molecular docking studies. J. Biomol. Struct. Dyn., 2020, 1.
[PMID: 33292060]
[25]
Drew, H.R.; Wing, R.M.; Takano, T.; Broka, C.; Tanaka, S.; Itakura, K.; Dickerson, R.E. Structure of a B-DNA dodecamer: conformation and dynamics. Proc. Natl. Acad. Sci. USA, 1981, 78(4), 2179-2183.
[http://dx.doi.org/10.1073/pnas.78.4.2179] [PMID: 6941276]
[26]
Okamoto, K.; Ikemori-Kawada, M.; Jestel, A.; von König, K.; Funahashi, Y.; Matsushima, T.; Tsuruoka, A.; Inoue, A.; Matsui, J. Distinct binding mode of multikinase inhibitor lenvatinib revealed by biochemical characterization. ACS Med. Chem. Lett., 2015, 6(1), 89-94.
[http://dx.doi.org/10.1021/ml500394m] [PMID: 25589937]
[27]
Anantharajan, J.; Zhou, H.; Zhang, L.; Hotz, T.; Vincent, M.Y.; Blevins, M.A.; Jansson, A.E.; Kuan, J.W.L.; Ng, E.Y.; Yeo, Y.K.; Baburajendran, N.; Lin, G.; Hung, A.W.; Joy, J.; Patnaik, S.; Marugan, J.; Rudra, P.; Ghosh, D.; Hill, J.; Keller, T.H.; Zhao, R.; Ford, H.L.; Kang, C. Structural and functional analyses of an allosteric EYA2 phosphatase inhibitor that has on-target effects in human lung cancer cells. Mol. Cancer Ther., 2019, 18(9), 1484-1496.
[http://dx.doi.org/10.1158/1535-7163.MCT-18-1239] [PMID: 31285279]
[28]
Önem, E.; Tüzün, B.; Akkoç, S. Anti-quorum sensing activity in Pseudomonas aeruginosa PA01 of benzimidazolium salts: electronic, spectral and structural investigations as theoretical approach. J. Biomol. Struct. Dyn., 2021, 1.
[PMID: 33645444]
[29]
Umezawa, Y.; Bühlmann, P.; Umezawa, K.; Tohda, K.; Amemiya, S. Potentiometric selectivity coefficients of ion-selective electrodes. Part I. inorganic cations (Technical Report). Pure Appl. Chem., 2000, 72(10), 1851-2082.
[http://dx.doi.org/10.1351/pac200072101851]
[30]
Türkan, F.; Taslimi, P.; Cabir, B.; Ağırtaş, M.S.; Erden, Y.; Celebioglu, H.U.; Gulcin, I. Co and Zn metal phthalocyanines with bulky substituents: Anticancer, antibacterial activities and their inhibitory effects on some metabolic enzymes with molecular docking studies. Polycycl. Aromat. Compd., 2021, 1.
[31]
Afshar Mogaddam, M.R.; Altunay, N.; Tuzen, M.; Katin, K.P.; Nemati, M.; Lotfipour, F. Headspace μ-solid phase extraction of 1,4-dioxane and 2-methyl-1,3-dioxolane from shampoo samples in a home-mode device and large volume injection of deep eutectic solvent: Theoretical and experimental studies. Microchem. J., 2022, 173, 107040.
[http://dx.doi.org/10.1016/j.microc.2021.107040]
[32]
Farajzadeh, M.A.; Nemati, M.; Altunay, N.; Tuzen, M.; Kaya, S.; Kheradmand, F.; Afshar Mogaddam, M.R. Experimental and density functional theory studies during a new solid phase extraction of phenolic compounds from wastewater samples prior to GC-MS determination. Microchem. J., 2022, 177, 107291.
[http://dx.doi.org/10.1016/j.microc.2022.107291]
[33]
Marzi Khosrowshahi, E.; Afshar Mogaddam, M.R.; Javadzadeh, Y.; Altunay, N.; Tuzen, M.; Kaya, S.; Ghalkhani, M.; Farajzadeh, M.A.; Nemati, M. Experimental and density functional theoretical modeling of triazole pesticides extraction by Ti2C nanosheets as a sorbent in dispersive solid phase extraction method before HPLC-MS/MS analysis. Microchem. J., 2022, 178, 107331.
[http://dx.doi.org/10.1016/j.microc.2022.107331]
[34]
Frisch, M.J.; Trucks, G.W.; Schlegel, H.B.; Scuseria, G.E.; Robb, M.A.; Cheeseman, J.R.; Scalmani, G.; Barone, V.; Mennucci, B.; Petersson, G.A.; Nakatsuji, H.; Caricato, M.; Li, X.; Hratchian, H.P.; Izmaylov, A.F.; Bloino, J.; Zheng, G.; Sonnenberg, J.L.; Hada, M.; Ehara, M.; Toyota, K.; Fukuda, R.; Hasegawa, J.; Ishida, M.; Nakajima, T.; Honda, T.; Kitao, O.; Nakai, H.; Vreven, T.; Montgomery, J.A.; Peralta, J.E.; Ogliaro, F.; Bearpark, M.; Heyd, J.J.; Brothers, E.; Kudin, K.N.; Staroverov, V.N.; Kobayashi, R.; Normand, J.; Raghavachari, K.; Rendell, A.; Burant, J.C.; Iyengar, S.S.; Tomasi, J.; Cossi, M.; Rega, N.; Millam, J.M.; Klene, M.; Knox, J.E.; Cross, J.B.; Bakken, V.; Adamo, C.; Jaramillo, J.; Gomperts, R.; Stratmann, R.E.; Yazyev, O.; Austin, A.J.; Cammi, R.; Pomelli, C.; Ochterski, J.W.; Martin, R.L.; Morokuma, K.; Zakrzewski, V.G.; Voth, G.A.; Salvador, P.; Dannenberg, J.J.; Dapprich, S.; Daniels, A.D.; Farkas, S.; Ortiz, J.V.; Cioslowski, J.; Fox, D.J. Gaussian 09, Revision D.01; Gaussian Inc. Wallingford CT, 2009; Gaussian Inc.: Wallingford, CT, 2009.
[35]
Small-Molecule Drug Discovery Suite; Schrödinger. LLC: NewYork, 2019. Available from: https://www.schrodinger.com/platform/drug-discovery
[36]
Becke, A.D. Density‐functional thermochemistry. I. The effect of the exchange‐only gradient correction. J. Chem. Phys., 1992, 96(3), 2155-2160.
[http://dx.doi.org/10.1063/1.462066]
[37]
Vautherin, D.; Brink, D.M. Hartree-Fock Calculations with Skyrme’s Interaction. I. Spherical Nuclei. Phys. Rev. C Nucl. Phys., 1972, 5(3), 626-647.
[http://dx.doi.org/10.1103/PhysRevC.5.626]
[38]
Hohenstein, E.G.; Chill, S.T.; Sherrill, C.D. Assessment of the Performance of the M05−2X and M06−2X Exchange-Correlation Functionals for Noncovalent Interactions in Biomolecules. J. Chem. Theory Comput., 2008, 4(12), 1996-2000.
[http://dx.doi.org/10.1021/ct800308k] [PMID: 26620472]
[39]
Erdoğan, M.; Taslimi, P.; Tuzun, B. Synthesis and docking calculations of tetrafluoronaphthalene derivatives and their inhibition profiles against some metabolic enzymes. Arch. Pharm. (Weinheim), 2021, 354(6), 2000409.
[http://dx.doi.org/10.1002/ardp.202000409] [PMID: 33666284]
[40]
Tüzün, B.; Bhawsar, J. Quantum chemical study of thiaozole derivatives as corrosion inhibitors based on density functional theory. Arab. J. Chem., 2021, 14(2), 102927.
[http://dx.doi.org/10.1016/j.arabjc.2020.102927]
[41]
Tüzün, B. Turkish. Comput. Theor. Chem., 2020, 4, 76.
[42]
Protein Preparation Wizard; Epik.: Schrödinger: New York, 2019. Available from: https://www.schrodinger.com/science-articles/protein-preparation-wizard
[43]
LigPrep; Schrödinger: LLC: New York, 2019. Available from: https://www.schrodinger.com/products/ligprep
[44]
QikProp; , 2020. Available from: https://www.schrodinger.com/products/qikprop
[45]
Aktaş, A.; Tüzün, B.; Aslan, R.; Sayin, K.; Ataseven, H. New anti-viral drugs for the treatment of COVID-19 instead of favipiravir. J. Biomol. Struct. Dyn., 2021, 39(18), 7263-7273.
[http://dx.doi.org/10.1080/07391102.2020.1806112] [PMID: 32783586]
[46]
Ma, T.S.; Hassan, S.S.M. Organic analysis using ion selective electrodes; Academic Press: London, 1982.
[47]
Zyka, J. Instrumentation in Analytical Chemistry Ellis Horwood; Chichester, UK, 1994, Vol. 2, .
[48]
Tajik, S.; Safaei, M.; Beitollahi, H. A sensitive voltammetric sertraline nanosensor based on ZnFe2O4 nanoparticles modified screen printed electrode. Measurement, 2019, 143, 51-57.
[http://dx.doi.org/10.1016/j.measurement.2019.04.057]
[49]
Habibi, B.; Pashazadeh, S.; Saghatforoush, L.A.; Pashazadeh, A. Direct electrochemical synthesis of the copper based metal-organic framework on/in the heteroatoms doped graphene/pencil graphite electrode: Highly sensitive and selective electrochemical sensor for sertraline hydrochloride. J. Electroanal. Chem. (Lausanne), 2021, 888, 115210.
[http://dx.doi.org/10.1016/j.jelechem.2021.115210]
[50]
Craggs, A.; Moody, G.J.; Thomas, J.D.R. PVC matrix membrane ion-selective electrodes. Construction and laboratory experiments. J. Chem. Educ., 1974, 51(8), 541.
[http://dx.doi.org/10.1021/ed051p541]
[51]
Chen, D.; Jiang, S.; Chen, Y.; Hu, Y. HPLC determination of sertraline in bulk drug, tablets and capsules using hydroxypropyl-β-cyclodextrin as mobile phase additive. J. Pharm. Biomed. Anal., 2004, 34(1), 239-245.
[http://dx.doi.org/10.1016/j.japna.2003.08.013] [PMID: 14738940]
[52]
Sayin, K.; Üngördü, A. Investigations of structural, spectral and electronic properties of enrofloxacin and boron complexes via quantum chemical calculation and molecular docking. Spectrochim. Acta A Mol. Biomol. Spectrosc., 2019, 220, 117102.
[http://dx.doi.org/10.1016/j.saa.2019.05.007] [PMID: 31146207]
[53]
Sayin, K.; Üngördü, A. Investigation of anticancer properties of caffeinated complexes via computational chemistry methods. Spectrochim. Acta A Mol. Biomol. Spectrosc., 2018, 193, 147-155.
[http://dx.doi.org/10.1016/j.saa.2017.12.013] [PMID: 29223460]
[54]
Üngördü, A.; Sayin, K. Quantum chemical calculations on sparfloxacin and boron complexes. Chem. Phys. Lett., 2019, 733, 136677.
[http://dx.doi.org/10.1016/j.cplett.2019.136677]
[55]
Aktaş, A.; Tüzün, B.; Taskin, A.H.; Sayin, K.; Ataseven, H. How do arbidol and its analogs inhibit the SARS-CoV-2? Bratisl. Med. J., 2020, 121(10), 705-711.
[http://dx.doi.org/10.4149/BLL_2020_115] [PMID: 32955901]
[56]
Gedikli, M.A.; Tuzun, B.; Aktas, A.; Sayin, K.; Ataseven, H. Are clarithromycin, azithromycin and their analogues effective in the treatment of COVID19? Bratisl. Med. J., 2021, 122(2), 101-110.
[http://dx.doi.org/10.4149/BLL_2021_015] [PMID: 33502877]
[57]
Çetiner, E.; Sayin, K.; Tüzün, B.; Ataseven, H. Could boron-containing compounds (BCCs) be effective against SARS-CoV-2 as anti-viral agent? Bratisl. Med. J., 2021, 122(4), 263-269.
[http://dx.doi.org/10.4149/BLL_2021_044] [PMID: 33729819]
[58]
Gedikli, M.A.; Tuzun, B.; Sayin, K.; Ataseven, H. Determination of inhibitor activity of drugs against the COVID-19. Bratisl. Med. J., 2021, 122(7), 497-506.
[http://dx.doi.org/10.4149/BLL_2021_081] [PMID: 34161118]
[59]
Tüzün, B.; Nasibova, T.; Garaev, E.; Sayın, K.; Ataseven, H. Bratisl. Lek Listy, 2021, 122, 108.
[60]
Ataseven, H.; Sayin, K.; Tüzün, B.; Gedikli, M.A. Could boron compounds be effective against SARS-CoV-2? Bratisl. Med. J., 2021, 122(10), 753-758.
[http://dx.doi.org/10.4149/BLL_2021_121] [PMID: 34570579]