Coalescence of Au Nanoparticles in Silica Aerogel under Electron Beam Irradiation

Page: [863 - 869] Pages: 7

  • * (Excluding Mailing and Handling)

Abstract

Background: The coalescence of Au nanoparticles embedded in the silica gel matrix was observed by E-beam irradiation in a transmission electron microscope.

Methods: It was examined that interparticle spacing between nanoparticles was reduced after incorporation into the matrix and particles came close to each other. TEM studies have shown that during E-beam irradiation ~13 nm Au nanoparticles contacted with each other along with the shrinkage of the silica aerogel or as well as the removal of surfactant layer, and transformed into different shapes of particles such as dumbbell and chain-like particles as per the interparticle gap.

Results: This nanoparticle-aerogel matrix has the potential for applications in sensing, nonlinear optics, and catalysis.

Conclusion: This work enhances the understanding of the role of silica aerogel and E-beam irradiation in directing the coalescence of nanoparticles.

Graphical Abstract

[1]
Xin, W.; Rosa, I.M.D.; Ye, S.; Li, Z.; Yin, X.; Carlson, L.; Yang, J.M.; Kodambaka, S. Effects of electron beam irradiation and hydroxyl ion concentration on morphological stability of polyethylenimine-capped gold nanoparticles. Mater. Res. Express, 2019, 6, 125031.
[http://dx.doi.org/10.1088/2053-1591/ab54e2]
[2]
Kobayashi, Y.; Correa-Duarte, M.A.; Liz-Marzán, L.M. Sol−gel processing of silica-coated gold nanoparticles. Langmuir, 2001, 17(20), 6375-6379.
[http://dx.doi.org/10.1021/la010736p]
[3]
Lundén, H.; Liotta, A.; Chateau, D.; Lerouge, F.; Chaput, F.; Parola, S.; Brännlund, C.; Ghadyani, Z.; Kildemo, M.; Lindgren, M.; Lopes, C. Dispersion and self-orientation of gold nanoparticles in sol–gel hybrid silica-Optical transmission properties. J. Mater. Chem. C Mater. Opt. Electron. Devices, 2015, 3(5), 1026-1034.
[http://dx.doi.org/10.1039/C4TC02353F]
[4]
Schubert, U. Preparation of metal oxide or metal nanoparticles in silica via metal coordination to organofunctional trialkoxysilanes. Polym. Int., 2009, 58(3), 317-322.
[http://dx.doi.org/10.1002/pi.2526]
[5]
Guskos, N.; Typek, J.; Bodziony, T.; Roslaniec, Z.; Narkiewicz, U.; Kawiatkowska, M.; Maryniak, M. Temperature dependence of FMR field of magnetic nanoparticles/polymer composite. Rev. Adv. Mater. Sci., 2006, 12, 133-138.
[6]
Lukatskaya, M.R.; Vyacheslavov, A.S.; Lukashin, A.V.; Tretyakov, Y.D.; Zhigalina, O.M.; Eliseev, A.A. Cobalt-containing nanocomposites based on zeolites of MFI framework type. J. Magn. Magn. Mater., 2009, 321(23), 3866-3869.
[http://dx.doi.org/10.1016/j.jmmm.2009.07.073]
[7]
Chen, R.; Qu, H.; Guo, S.; Ducheyne, P. The design and synthesis of a soluble composite silica xerogel and the short-time release of proteins. J. Mater. Chem. B Mater. Biol. Med., 2015, 3(16), 3141-3149.
[http://dx.doi.org/10.1039/C4TB01622J] [PMID: 32262308]
[8]
Meunier, C.F.; Cutsem, P.V.; Kwon, Y-U.; Su, B-L. Investigation of different silica precursors: Design of biocompatible silica gels with long term bio-activity of entrapped thylakoids toward artificial leaf. J. Mater. Chem., 2009, 19(24), 4131-4137.
[http://dx.doi.org/10.1039/b821769f]
[9]
Granitzer, P.; Rumpf, K. Magnetic nanoparticles embedded in a silicon matrix. Materials (Basel), 2011, 4(5), 908-928.
[http://dx.doi.org/10.3390/ma4050908] [PMID: 28879957]
[10]
Liao, H.G.; Cui, L.; Whitelam, S.; Zheng, H. Real-time imaging of Pt3Fe nanorod growth in solution. Science, 2012, 336(6084), 1011-1014.
[http://dx.doi.org/10.1126/science.1219185] [PMID: 22628649]
[11]
Liao, H.G.; Niu, K.; Zheng, H. Observation of growth of metal nanoparticles. Chem. Commun. (Camb.), 2013, 49(100), 11720-11727.
[http://dx.doi.org/10.1039/c3cc47473a] [PMID: 24212413]
[12]
Egerton, R.F.; Li, P.; Malac, M. Radiation damage in the TEM and SEM. Micron, 2004, 35(6), 399-409.
[http://dx.doi.org/10.1016/j.micron.2004.02.003] [PMID: 15120123]
[13]
Kumawat, M.K.; Thakur, M.; Lakkakula, J.R.; Divakaran, D.; Srivastava, R. Evolution of thiol-capped gold nanoclusters into larger gold nanoparticles under electron beam irradiation. Micron, 2017, 95, 1-6.
[http://dx.doi.org/10.1016/j.micron.2017.01.002] [PMID: 28119149]
[14]
Nakaso, K.; Shimada, M.; Okuyama, K.; Deppert, K. Evaluation of the change in the morphology of gold nanoparticles during sintering. J. Aerosol Sci., 2002, 33(7), 1061-1074.
[http://dx.doi.org/10.1016/S0021-8502(02)00058-7]
[15]
Wu, H.; Bai, F.; Sun, Z.; Haddad, R.E.; Boye, D.M.; Wang, Z.; Fan, H. Pressure-driven assembly of spherical nanoparticles and formation of 1D-nanostructure arrays. Angew. Chem. Int. Ed., 2010, 49(45), 8431-8434.
[http://dx.doi.org/10.1002/anie.201001581] [PMID: 20669206]
[16]
Surrey, A.; Pohl, D.; Schultz, L.; Rellinghaus, B. Quantitative measurement of the surface self-diffusion on Au nanoparticles by aberration-corrected transmission electron microscopy. Nano Lett., 2012, 12(12), 6071-6077.
[http://dx.doi.org/10.1021/nl302280x] [PMID: 23136983]
[17]
Tanaka, S.I. Control and modification of nanostructured materials by electron beam irradiation. Quantum Beam Sci., 2021, 5(3), 23.
[http://dx.doi.org/10.3390/qubs5030023]
[18]
Kumar, P.; Chandra Mathpal, M.; Jagannath, G.; Prakash, J.; Maze, J.R.; Roos, W.D.; Swart, H.C. Optical limiting applications of resonating plasmonic Au nanoparticles in a dielectric glass medium. Nanotechnology, 2021, 32(34), 345709.
[http://dx.doi.org/10.1088/1361-6528/abfee6] [PMID: 33962405]
[19]
Fonseca, J. Nanoparticles embedded into glass matrices: Glass nanocomposites. Front. Mater. Sci., 2022, 16(3), 220607.
[http://dx.doi.org/10.1007/s11706-022-0607-7]
[20]
Mikšová, R.; Cajzl, J.; Macková, A. The structural and optical response of the Au nanoparticles embedded in YSZ modified using high-energetic ion irradiation. EPJ Web Conf., 2022, 261, p. 01004.
[http://dx.doi.org/10.1051/epjconf/202226101004]
[21]
Ion, I.; Stancu, E.; Mitu, C.M.; Marinescu, V.; Lungulescu, E.M.; Nicula, N.O. Eduard marius lungulescu 1 and nicoleta oana nicula, synthesis of silver nanoparticles embedded in micro-hydrogel particles by electron beam irradiation. Chem.Proceed., 2022, 7, 22.
[http://dx.doi.org/10.3390/chemproc2022007022]
[22]
Korkos, S.; Mizohata, K.; Kinnunen, S.; Sajavaara, T.; Arstila, K. Size dependent swift heavy ion induced Au nanoparticle elongation in SiO 2 matrix. J. Appl. Phys., 2022, 132(4), 045901.
[http://dx.doi.org/10.1063/5.0099164]
[23]
Shen, J.; He, Z.; Zhang, D.; Lu, P.; Deitz, J.; Shang, Z.; Kalaswad, M.; Wang, H.; Xu, X.; Wang, H. Tunable physical properties in Bi-based layered supercell multiferroics embedded with Au nanoparticles. Nanoscale Adv., 2022, 4(14), 3054-3064.
[http://dx.doi.org/10.1039/D2NA00169A] [PMID: 36133520]
[24]
Cheng, L.; Zhu, X.; Su, J. Coalescence between Au nanoparticles as induced by nanocurvature effect and electron beam athermal activation effect. Nanoscale, 2018, 10(17), 7978-7983.
[http://dx.doi.org/10.1039/C7NR09710G] [PMID: 29505042]
[25]
Kimling, J.; Maier, M.; Okenve, B.; Kotaidis, V.; Ballot, H.; Plech, A. Turkevich method for gold nanoparticle synthesis revisited. J. Phys. Chem. B, 2006, 110(32), 15700-15707.
[http://dx.doi.org/10.1021/jp061667w] [PMID: 16898714]
[26]
[27]
Liu, G.; Lu, M.; Huang, X.; Li, T.; Xu, D. Application of gold-nanoparticle colorimetric sensing to rapid food safety screening. Sensors (Basel), 2018, 18(12), 4166.
[http://dx.doi.org/10.3390/s18124166] [PMID: 30486466]
[28]
Jain, P.K.; El-Sayed, M.A. Plasmonic coupling in noble metal nanostructures. Chem. Phys. Lett., 2010, 487(4-6), 153-164.
[http://dx.doi.org/10.1016/j.cplett.2010.01.062]
[29]
Sortino, A.L.; Censabella, M.; Munzi, G.; Boninelli, S.; Privitera, V.; Ruffino, F. Laser-based synthesis of au nanoparticles for optical sensing of glyphosate: A preliminary study. Micromachines (Basel), 2020, 11(11), 989.
[http://dx.doi.org/10.3390/mi11110989] [PMID: 33142922]