Development and Characterization of Bosentan Monohydrate-loaded Self-Nano Emulsifying Drug Delivery System

Page: [151 - 165] Pages: 15

  • * (Excluding Mailing and Handling)

Abstract

Aim/ Objective: The present investigation aims to develop a solid Self-nano emulsifying Drug Delivery System for enhancing the solubility and in vitro characteristics of poorly soluble anti- hypertensive drug Bosentan Monohydrate.

Methods: The selection of formulation components on the basis of equilibrium solubility and pseudo- ternary phase titration studies revealed the suitability of Isopropyl myristate, Tween 80 and Polyethylene glycol as the lipidic excipients and their optimized concentration ranges resulted in a stable microemulsion region.

Results: The systematic optimization of the liquid SNEDD formulations of Bosentan was performed using in vitro tests and detailed characterization studies. The results revealed that the F4 formulation produces excellent results and satisfactory results in all the CQA of liquid SNEDDS. The optimized liquid SNEDD formulations exhibited globule size of less than 100 nm, high and negative values of zeta potential, quick self-emulsification rate, negligible phase separation, and a high degree of physical stability during thermodynamic evaluation studies. SEM revealed nanostructured particles with negligible aggregation.

Conclusion: In vitro dissolution studies of Bosentan in optimized liquid SNEDDS (F4) unveiled a multi-fold enhancement in release profile, as compared to pure API.

[1]
Kaur, G.; Chandel, P.; Harikumar, S.L. Formulation development of Self Nanoemulsifying Drug Delivery System (SNEDDS) of celecoxib for improvement of oral bioavailability. Pharmacophore, 2013, 4, 120-133.
[2]
Rao, S.V.R.; Yajurvedi, K.; Shao, J. Self-Nanoemulsifying Drug Delivery System (SNEDDS) for oral delivery of protein drugs. Int. J. Pharm., 2008, 362(1-2), 16-19.
[http://dx.doi.org/10.1016/j.ijpharm.2008.05.015] [PMID: 18650037]
[3]
Oral lipid-based formulations: Enhancing the bioavailability of poorly water-soluble drugs.CRC Press, 2007.
[http://dx.doi.org/10.3109/9781420017267]
[4]
Akhlaquer Rahman, M.; Harwansh, R.; Aamir Mirza, M.; Hussain, S.; Hussain, A. Oral Lipid Based Drug Delivery System (LBDDS): Formulation, characterization and application: A review. Curr. Drug Deliv., 2011, 8(4), 330-345.
[http://dx.doi.org/10.2174/156720111795767906] [PMID: 21453264]
[5]
Khan, A.W.; Kotta, S.; Ansari, S.H.; Sharma, R.K.; Ali, J. Potentials and challenges in self-nanoemulsifying drug delivery systems. Expert Opin. Drug Deliv., 2012, 9(10), 1305-1317.
[http://dx.doi.org/10.1517/17425247.2012.719870] [PMID: 22954323]
[6]
Kalepu, S.; Manthina, M.; Padavala, V. Oral lipid-based drug delivery systems - an overview. Acta Pharm. Sin. B, 2013, 3(6), 361-372.
[http://dx.doi.org/10.1016/j.apsb.2013.10.001]
[7]
Date, A.; Nagarsenker, M. Design and evaluation of Self-Nanoemulsifying Drug Delivery Systems (SNEDDS) for cefpodoxime proxetil. Int. J. Pharm., 2007, 329(1-2), 166-172.
[http://dx.doi.org/10.1016/j.ijpharm.2006.08.038] [PMID: 17010543]
[8]
Zhao, Y.; Wang, C.; Chow, A.H.L.; Ren, K.; Gong, T.; Zhang, Z.; Zheng, Y. Self-Nanoemulsifying Drug Delivery System (SNEDDS) for oral delivery of Zedoary essential oil: Formulation and bioavailability studies. Int. J. Pharm., 2010, 383(1-2), 170-177.
[http://dx.doi.org/10.1016/j.ijpharm.2009.08.035] [PMID: 19732813]
[9]
Taha, E.I.; Al-Saidan, S.; Samy, A.M.; Khan, M.A. Preparation and in vitro characterization of Self-Nanoemulsified Drug Delivery System (SNEDDS) of all-trans-retinol acetate. Int. J. Pharm., 2004, 285(1-2), 109-119.
[http://dx.doi.org/10.1016/j.ijpharm.2004.03.034] [PMID: 15488684]
[10]
Wang, L.; Dong, J.; Chen, J.; Eastoe, J.; Li, X. Design and optimization of a new self-nanoemulsifying drug delivery system. J. Colloid Interface Sci., 2009, 330(2), 443-448.
[http://dx.doi.org/10.1016/j.jcis.2008.10.077] [PMID: 19038395]
[11]
Patel, J.; Patel, A.; Raval, M.; Sheth, N. Formulation and development of a self-nanoemulsifying drug delivery system of irbesartan. J. Adv. Pharm. Technol. Res., 2011, 2(1), 9-16.
[http://dx.doi.org/10.4103/2231-4040.79799] [PMID: 22171286]
[12]
Singh, B.; Khurana, L.; Bandyopadhyay, S.; Kapil, R.; Katare, O.O.P. Development of optimized Self-Nano-Emulsifying Drug Delivery Systems (SNEDDS) of carvedilol with enhanced bioavailability potential. Drug Deliv., 2011, 18(8), 599-612.
[http://dx.doi.org/10.3109/10717544.2011.604686] [PMID: 22008038]
[13]
Kang, J.H.; Oh, D.H.; Oh, Y.K.; Yong, C.S.; Choi, H.G. Effects of solid carriers on the crystalline properties, dissolution and bioavailability of flurbiprofen in solid Self-Nanoemulsifying Drug Delivery System (solid SNEDDS). Eur. J. Pharm. Biopharm., 2012, 80(2), 289-297.
[http://dx.doi.org/10.1016/j.ejpb.2011.11.005] [PMID: 22119666]
[14]
Chauhan, G.; Shaik, A.A.; Kulkarni, N.S.; Gupta, V. The preparation of lipid-based drug delivery system using melt extrusion. Drug Discov. Today, 2020, 25(11), 1930-1943.
[http://dx.doi.org/10.1016/j.drudis.2020.07.025] [PMID: 32835807]
[15]
Holm, R. Bridging the gaps between academic research and industrial product developments of lipid-based formulations. Adv. Drug Deliv. Rev., 2019, 142, 118-127.
[http://dx.doi.org/10.1016/j.addr.2019.01.009] [PMID: 30682399]
[16]
Shrestha, H.; Bala, R.; Arora, S. Lipid-based drug delivery systems. J. Pharm., 2014, 2014, 1-10.
[http://dx.doi.org/10.1155/2014/801820] [PMID: 26556202]
[17]
Patidar, A.; Thakur, D.S.; Kumar, P.; Verma, J. A review on novel lipid based nanocarriers. Int. J. Pharm. Pharm. Sci., 2010, 2, 30-35.
[18]
Thakkar, H.; Parmar, M.; Nangesh, J.; Patel, D. Formulation and characterization of lipid-based drug delivery system of raloxifene-microemulsion and self-microemulsifying drug delivery system. J. Pharm. Bioallied Sci., 2011, 3(3), 442-448.
[http://dx.doi.org/10.4103/0975-7406.84463] [PMID: 21966167]
[19]
Asadujjaman, M.; Mishuk, A.U. Novel approaches in lipid based drug delivery systems. J. Drug Deliv. Ther., 2013, 3(4), 124-130.
[http://dx.doi.org/10.22270/jddt.v3i4.578]
[20]
Chime, A.; Onyishi, I.V. Lipid-Based Drug Delivery Systems (LDDS): Recent advances and applications of lipids in drug delivery. Afr. J. Pharm. Pharmacol., 2013, 7(48), 3034-3059.
[http://dx.doi.org/10.5897/AJPPX2013.0004]
[21]
Xiao, L.; Yi, T.; Liu, Y.; Zhou, H. The in vitro lipolysis of lipid-based drug delivery systems: A newly identified relationship between drug release and liquid crystalline phase. BioMed Res. Int., 2016, 2016, 1-9.
[http://dx.doi.org/10.1155/2016/2364317] [PMID: 27294110]
[22]
Wang, G.; Wang, J.; Wu, W.; Tony To, S.S.; Zhao, H.; Wang, J. Advances in lipid-based drug delivery: Enhancing efficiency for hydrophobic drugs. Expert Opin. Drug Deliv., 2015, 12(9), 1475-1499.
[http://dx.doi.org/10.1517/17425247.2015.1021681] [PMID: 25843160]
[23]
Brüsewitz, C.; Schendler, A.; Funke, A.; Wagner, T.; Lipp, R. Novel poloxamer-based nanoemulsions to enhance the intestinal absorption of active compounds. Int. J. Pharm., 2007, 329(1-2), 173-181.
[http://dx.doi.org/10.1016/j.ijpharm.2006.08.022] [PMID: 16996706]
[24]
Zasadzinski, J.A. Novel approaches to lipid based drug delivery. Curr. Opin. Solid State Mater. Sci., 1997, 2(3), 345-349.
[http://dx.doi.org/10.1016/S1359-0286(97)80126-X]
[25]
Plaza-Oliver, M.; Santander-Ortega, M.J.; Lozano, M.V. Current approaches in lipid-based nanocarriers for oral drug delivery. Drug Deliv. Transl. Res., 2021, 11(2), 471-497.
[http://dx.doi.org/10.1007/s13346-021-00908-7] [PMID: 33528830]
[26]
Wasan, K.M. Formulation and physiological and biopharmaceutical issues in the development of oral lipid-based drug delivery systems. Drug Dev. Ind. Pharm., 2001, 27(4), 267-276.
[http://dx.doi.org/10.1081/DDC-100103726] [PMID: 11411894]
[27]
Zarif, L.; Graybill, J.R.; Perlin, D.; Mannino, R.J. Cochleates: New lipid-based drug delivery system. J. Liposome Res., 2000, 10(4), 523-538.
[http://dx.doi.org/10.3109/08982100009031116]
[28]
Kumar, R. Lipid-based nanoparticles for drug-delivery systems. In: Nanocarriers for Drug Delivery; Elsevier, 2019; pp. 249-284.
[http://dx.doi.org/10.1016/B978-0-12-814033-8.00008-4]
[29]
Chudasama, A.; Patel, V.; Nivsarkar, M.; Vasu, K.; Shishoo, C. A novel lipid-based oral drug delivery system of nevirapine. Int. J. Pharm. Tech. Res., 2011, 3, 1159-1168.
[30]
Vishwakarma, N.; Jain, A.; Sharma, R.; Mody, N.; Vyas, S.; Vyas, S.P. Lipid-based nanocarriers for lymphatic transportation. AAPS PharmSciTech, 2019, 20(2), 83.
[http://dx.doi.org/10.1208/s12249-019-1293-3] [PMID: 30673895]
[31]
Dhaval, M.; Vaghela, P.; Patel, K.; Sojitra, K.; Patel, M.; Patel, S.; Dudhat, K.; Shah, S.; Manek, R.; Parmar, R. Lipid-based emulsion drug delivery systems-a comprehensive review. Drug Deliv. Transl. Res., 2021, 12(7), 1-24.
[PMID: 34609731]
[32]
Farber, H.W.; Loscalzo, J. Pulmonary arterial hypertension. N. Engl. J. Med., 2004, 351(16), 1655-1665.
[http://dx.doi.org/10.1056/NEJMra035488] [PMID: 15483284]
[33]
Chin, K.M.; Rubin, L.J. Pulmonary arterial hypertension. J. Am. Coll. Cardiol., 2008, 51(16), 1527-1538.
[http://dx.doi.org/10.1016/j.jacc.2008.01.024] [PMID: 18420094]
[34]
Rubin, L.J.; Badesch, D.B.; Barst, R.J.; Galiè, N.; Black, C.M.; Keogh, A.; Pulido, T.; Frost, A.; Roux, S.; Leconte, I.; Landzberg, M.; Simonneau, G. Bosentan therapy for pulmonary arterial hypertension. N. Engl. J. Med., 2002, 346(12), 896-903.
[http://dx.doi.org/10.1056/NEJMoa012212] [PMID: 11907289]
[35]
Kaur, M.; Jasinski, J.P.; Keeley, A.C.; Yathirajan, H.S.; Betz, R.; Gerber, T.; Butcher, R.J. Bosentan monohydrate. Acta Crystallogr. Sect. E Struct. Rep. Online, 2013, 69(1), o12-o13.
[http://dx.doi.org/10.1107/S1600536812048969] [PMID: 23476382]
[36]
Rebelli, P.; Yerrabelly, J.R.; Yalamanchili, B.K.; Kommera, R.; Ghojala, V.R.; Bairy, K.R. A new efficient synthetic process for an endothelin receptor antagonist, bosentan monohydrate. Org. Process Res. Dev., 2013, 17(8), 1021-1026.
[http://dx.doi.org/10.1021/op400100s]
[37]
Araz, O. Current pharmacological approach to ARDS: The place of bosentan. Eurasian J. Med., 2020, 52(1), 81-85.
[http://dx.doi.org/10.5152/eurasianjmed.2020.19218] [PMID: 32158321]
[38]
Sitbon, O.; Gressin, V.; Speich, R.; Macdonald, P.S.; Opravil, M.; Cooper, D.A.; Fourme, T.; Humbert, M.; Delfraissy, J.F.; Simonneau, G. Bosentan for the treatment of human immunodeficiency virus-associated pulmonary arterial hypertension. Am. J. Respir. Crit. Care Med., 2004, 170(11), 1212-1217.
[http://dx.doi.org/10.1164/rccm.200404-445OC] [PMID: 15317666]
[39]
Dixit, R.P.; Nagarsenker, M.S. Self-nanoemulsifying granules of ezetimibe: Design, optimization and evaluation. Eur. J. Pharm. Sci., 2008, 35(3), 183-192.
[http://dx.doi.org/10.1016/j.ejps.2008.06.013] [PMID: 18652892]
[40]
El-Laithy, H. Self-nanoemulsifying drug delivery system for enhanced bioavailability and improved hepatoprotective activity of biphenyl dimethyl dicarboxylate. Curr. Drug Deliv., 2008, 5(3), 170-176.
[http://dx.doi.org/10.2174/156720108784911695] [PMID: 18673260]
[41]
Taha, E.I.; Al-Suwayeh, S.A.; Anwer, M.K. Preparation, in vitro and in vivo evaluation of solid-state self-nanoemulsifying drug delivery system (SNEDDS) of vitamin A acetate. J. Drug Target., 2009, 17(6), 468-473.
[http://dx.doi.org/10.1080/10611860903002761] [PMID: 19480612]
[42]
Ghai, D.; Sinha, V.R. Nanoemulsions as self-emulsified drug delivery carriers for enhanced permeability of the poorly watersoluble selective β1-adrenoreceptor blocker Talinolol Nanomedicine, 2012, 8(5), 618-626.
[http://dx.doi.org/10.1016/j.nano.2011.08.015] [PMID: 21924224]
[43]
Seo, Y.G.; Kim, D.H.; Ramasamy, T.; Kim, J.H.; Marasini, N.; Oh, Y.K.; Kim, D.W.; Kim, J.K.; Yong, C.S.; Kim, J.O.; Choi, H.G. Development of docetaxel-loaded solid Self-Nanoemulsifying Drug Delivery System (SNEDDS) for enhanced chemotherapeutic effect. Int. J. Pharm., 2013, 452(1-2), 412-420.
[http://dx.doi.org/10.1016/j.ijpharm.2013.05.034] [PMID: 23707964]
[44]
Nazari-Vanani, R.; Moezi, L.; Heli, H. In vivo evaluation of a self-nanoemulsifying drug delivery system for curcumin. Biomed. Pharmacother., 2017, 88, 715-720.
[http://dx.doi.org/10.1016/j.biopha.2017.01.102] [PMID: 28152481]
[45]
Xue, X.; Cao, M.; Ren, L.; Qian, Y.; Chen, G. Preparation and optimization of rivaroxaban by Self-Nanoemulsifying Drug Delivery System (SNEDDS) for enhanced oral bioavailability and no food effect. AAPS PharmSciTech, 2018, 19(4), 1847-1859.
[http://dx.doi.org/10.1208/s12249-018-0991-6] [PMID: 29637496]
[46]
Kazi, M.; Al-Swairi, M.; Ahmad, A.; Raish, M.; Alanazi, F.K.; Badran, M.M.; Khan, A.A.; Alanazi, A.M.; Hussain, M.D. Evaluation of Self-Nanoemulsifying Drug Delivery Systems (SNEDDS) for poorly water-soluble talinolol: Preparation, in vitro and in vivo assessment. Front. Pharmacol., 2019, 10, 459-471.
[http://dx.doi.org/10.3389/fphar.2019.00459] [PMID: 31118895]
[47]
Rasoanirina, B.N.V.; Lassoued, M.A.; Kamoun, A.; Bahloul, B.; Miladi, K.; Sfar, S. Voriconazole-loaded Self-Nanoemulsifying Drug Delivery System (SNEDDS) to improve transcorneal permeability. Pharm. Dev. Technol., 2020, 25(6), 694-703.
[http://dx.doi.org/10.1080/10837450.2020.1731532] [PMID: 32064993]
[48]
Subramanian, P.; Rajnikanth, P.S.; Kumar, M.; Chidambram, K. In vitro and in vivo evaluation of supersaturable Self-Nanoemulsi-fying Drug Delivery System (SNEDDS) of dutasteride. Current Drug Delivery, 2020, 17(1), 74-86.
[49]
Thomas, N.; Holm, R.; Müllertz, A.; Rades, T. In vitro and in vivo performance of novel supersaturated Self-Nanoemulsifying Drug Delivery Systems (super-SNEDDS). J. Control. Release, 2012, 160(1), 25-32.
[http://dx.doi.org/10.1016/j.jconrel.2012.02.027] [PMID: 22405903]
[50]
Singh, D.; Tiwary, A.K.; Kang, T.S.; Bedi, N. Polymeric precipitation inhibitor based supersaturable self-microemulsifying drug delivery system of Canagliflozin: Optimization and evaluation. Curr. Drug Deliv., 2021, 18(9), 1352-1367.
[http://dx.doi.org/10.2174/1567201818666210217155909] [PMID: 33596805]