Bioactives from Marine Organisms and their Potential Role as Matrix Metalloproteinase Inhibitors

Page: [3351 - 3362] Pages: 12

  • * (Excluding Mailing and Handling)

Abstract

Recent research has revealed the role of metalloproteinases in a number of severe pathological illnesses, including cardiac, cartilage, neurological, and cancer-related diseases that are fatal to humans. Metalloproteinases are a subclass of endopeptidases that comprise structurally identical enzymes known as Matrix Metalloproteinases (MMPs) that are solely involved in extracellular matrix degradation and play a significant regulatory function in tissue remodeling. Improper regulation and expression of MMPs have been linked to several life-threatening pathological conditions in humans. Hence there is an ever-growing interest in various research communities to identify and report the Matrix Metalloproteinase Inhibitors (MMPIs). In spite of several chemically synthesized MMPIs being available currently, several unpleasant side effects, un-successful clinical trials have made use of synthetic MMPIs as a risky strategy. Several natural product researchers have strongly recommended and reported many natural resources like plants, microorganisms, and animals as greater resources to screen for bioactives that can function as potential natural MMPIs. Marine environment is one of the vast and promising resources that harbor diverse forms of life known to synthesize biologically active compounds. These bioactive compounds from marine organisms have been reported for their unparalleled biological effects and have profound applications in cosmeceutical, nutraceutical, and pharmaceutical research. Several research groups have reported an umpteen number of medicinally unmatched compounds from marine flora and fauna, thus driving researchers to screen marine organisms for natural MMPIs. In this review, our group has reported the potential MMPIs from marine organisms.

[1]
Huxley-Jones J, Clarke TK, Beck C, Toubaris G, Robertson DL, Boot-Handford RP. Boot-Handford RP. The evolution of the vertebrate metzincins; Insights from Ciona intestinalis and Danio rerio. BMC Evol Biol 2007; 7: 63-7.
[2]
Gill S, Parks W. Metalloproteinases and their inhibitors: Regulators of wound healing. Int J Biochem Cell Biol 2008; 40(6-7): 1334-47.
[http://dx.doi.org/10.1016/j.biocel.2007.10.024] [PMID: 18083622]
[3]
Vandooren J, Van den Steen PE, Opdenakker G. Biochemistry and molecular biology of gelatinase B or matrix metalloproteinase-9 (MMP-9): The next decade. Crit Rev Biochem Mol Biol 2013; 48(3): 222-72.
[http://dx.doi.org/10.3109/10409238.2013.770819] [PMID: 23547785]
[4]
Parks WC, Wilson CL, López-Boado YS. Matrix metalloproteinases as modulators of inflammation and innate immunity. Nat Rev Immunol 2004; 4(8): 617-29.
[http://dx.doi.org/10.1038/nri1418] [PMID: 15286728]
[5]
Chen Q, Jin M, Yang F, Zhu J, Xiao Q, Zhang L. Matrix metalloproteinases: Inflammatory regulators of cell behaviors in vascular formation and remodeling. Mediators Inflamm 2013; 2013: 1-14.
[http://dx.doi.org/10.1155/2013/928315] [PMID: 23840100]
[6]
Sun J. Matrix metalloproteinases and tissue inhibitor of metalloproteinases are essential for the inflammatory response in cancer cells. J Signal Transduct 2010; 2010: 1-7.
[http://dx.doi.org/10.1155/2010/985132] [PMID: 21152266]
[7]
Marino-Puertas L, Goulas T, Gomis-Rüth FX. Matrix metalloproteinases outside vertebrates. Biochim Biophys Acta Mol Cell Res 2017; 1864(11): 2026-35.
[http://dx.doi.org/10.1016/j.bbamcr.2017.04.003] [PMID: 28392403]
[8]
Guevara T, Rodriguez-Banqueri A, Ksiazek M, Potempa J, Gomis-Rüth FX. Structure-based mechanism of cysteine-switch latency and of catalysis by pappalysin-family metallopeptidases. IUCrJ 2020; 7(1): 18-29.
[http://dx.doi.org/10.1107/S2052252519013848] [PMID: 31949901]
[9]
Quintero-Fabián S, Arreola R, Becerril-Villanueva E, et al. Role of matrix metalloproteinases in angiogenesis and cancer. Front Oncol 2019; 9: 1370.
[http://dx.doi.org/10.3389/fonc.2019.01370] [PMID: 31921634]
[10]
Lambert E, Dassé E, Haye B, Petitfrère E. TIMPs as multifacial proteins. Crit Rev Oncol Hematol 2004; 49(3): 187-98.
[http://dx.doi.org/10.1016/j.critrevonc.2003.09.008] [PMID: 15036259]
[11]
Mayer AMS, Rodríguez AD, Berlinck RGS, Fusetani N. Marine pharmacology in 2007–8: Marine compounds with antibacterial, anticoagulant, antifungal, anti-inflammatory, antimalarial, antiprotozoal, antituberculosis, and antiviral activities; affecting the immune and nervous system, and other miscellaneous mechanisms of action. Comp Biochem Physiol C Toxicol Pharmacol 2011; 153(2): 191-222.
[http://dx.doi.org/10.1016/j.cbpc.2010.08.008] [PMID: 20826228]
[12]
Thomas NV, Manivasagan P, Kim SK. Potential matrix metalloproteinase inhibitors from edible marine algae: A review. Environ Toxicol Pharmacol 2014; 37(3): 1090-100.
[http://dx.doi.org/10.1016/j.etap.2014.04.011] [PMID: 24780533]
[13]
Krüger A, Kates RE, Edwards DR. Avoiding spam in the proteolytic internet: Future strategies for anti-metastatic MMP inhibition. Biochim Biophys Acta Mol Cell Res 2010; 1803(1): 95-102.
[http://dx.doi.org/10.1016/j.bbamcr.2009.09.016] [PMID: 19800374]
[14]
Zhang C, Kim SK. Matrix metalloproteinase inhibitors (MMPIs) from marine natural products: the current situation and future prospects. Mar Drugs 2009; 7(2): 71-84.
[http://dx.doi.org/10.3390/md7020071] [PMID: 19597572]
[15]
Li W, Saji S, Sato F, Noda M, Toi M. Potential clinical applications of matrix metalloproteinase inhibitors and their future prospects. Int J Biol Markers 2013; 28(2): 117-30.
[http://dx.doi.org/10.5301/JBM.5000026] [PMID: 23787494]
[16]
Gimeno A, Beltrán-Debón R, Mulero M, Pujadas G, Garcia-Vallvé S. Understanding the variability of the S1′ pocket to improve matrix metalloproteinase inhibitor selectivity profiles. Drug Discov Today 2020; 25(1): 38-57.
[http://dx.doi.org/10.1016/j.drudis.2019.07.013] [PMID: 31513929]
[17]
Seo UK, Lee YJ, Kim JK, et al. Large-scale and effective screening of Korean medicinal plants for inhibitory activity on matrix metalloproteinase-9. J Ethnopharmacol 2005; 97(1): 101-6.
[http://dx.doi.org/10.1016/j.jep.2004.10.022] [PMID: 15652283]
[18]
Ha K, Kim J, Kang S, et al. Inhibitory effect of Sihoga-Yonggol- Moryo-Tang on matrix metalloproteinase-2 and -9 activities and invasiveness potential of hepatocellular carcinoma. Pharmacol Res 2004; 50(3): 279-85.
[http://dx.doi.org/10.1016/j.phrs.2004.02.006] [PMID: 15225671]
[19]
Review of Forensic Applications of the MMPI-2-RF. A Case Book by Martin Sellbom & Dustin Wygant. University of Minnesota press 2018.
[20]
Judé S, Roger S, Martel E, et al. Dietary long-chain omega-3 fatty acids of marine origin: A comparison of their protective effects on coronary heart disease and breast cancers. Prog Biophys Mol Biol 2006; 90(1-3): 299-325.
[http://dx.doi.org/10.1016/j.pbiomolbio.2005.05.006] [PMID: 16005051]
[21]
Miles EA, Calder PC. Influence of marine n -3 polyunsaturated fatty acids on immune function and a systematic review of their effects on clinical outcomes in rheumatoid arthritis. Br J Nutr 2012; 107(Suppl. 2): S171-84.
[http://dx.doi.org/10.1017/S0007114512001560] [PMID: 22591891]
[22]
Suzuki I, Iigo M, Ishikawa C, et al. Inhibitory effects of oleic and docosahexaenoic acids on lung metastasis by colon-carcinoma-26 cells are associated with reduced matrix metalloproteinase-2 and -9 activities. Int J Cancer 1997; 73(4): 607-12.
[http://dx.doi.org/10.1002/(SICI)1097-0215(19971114)73:4<607::AID-IJC24>3.0.CO;2-4] [PMID: 9389579]
[23]
Thomas NV, Kim SK. Metalloproteinase inhibitors: Status and scope from marine organisms. Biochem Res Int 2010; 2010: 1-10.
[http://dx.doi.org/10.1155/2010/845975] [PMID: 21197102]
[24]
Perez M, Hansen R, Harris M, Allen K. Dietary docosahexaenoic acid alters pregnant rat reproductive tissue prostaglandin and matrix metalloproteinase production. J Nutr Biochem 2006; 17(7): 446-53.
[http://dx.doi.org/10.1016/j.jnutbio.2005.10.003] [PMID: 16457997]
[25]
Lødemel JB, Egge-Jacobsen W, Olsen RL. Detection of TIMP-2- like protein in Atlantic cod (Gadus morhua) muscle using two-dimensional real-time reverse zymography. Comp Biochem Physiol B Biochem Mol Biol 2004; 139(2): 253-9.
[http://dx.doi.org/10.1016/j.cbpc.2004.08.004] [PMID: 15465672]
[26]
Losso JN, Shahidi F, Bagchi D, Eds. Anti-angiogenic functional and medicinal foods. (1st ed.), CRC Press 2007.
[http://dx.doi.org/10.1201/9781420015584]
[27]
Dupont É, Savard PE, Jourdain C, et al. Antiangiogenic properties of a novel shark cartilage extract: Potential role in the treatment of psoriasis. J Cutan Med Surg 1998; 2(3): 146-52.
[http://dx.doi.org/10.1177/120347549800200307] [PMID: 9479080]
[28]
Bukowski RM. AE-941, a multifunctional antiangiogenic compound: Trials in renal cell carcinoma. Expert Opin Investig Drugs 2003; 12(8): 1403-11.
[http://dx.doi.org/10.1517/13543784.12.8.1403] [PMID: 12882625]
[29]
Lee SH, Qian ZJ, Kim SK. A novel angiotensin I converting enzyme inhibitory peptide from tuna frame protein hydrolysate and its antihypertensive effect in spontaneously hypertensive rats. Food Chem 2010; 118(1): 96-102.
[http://dx.doi.org/10.1016/j.foodchem.2009.04.086]
[30]
Yamamoto D, Takai S. Pharmacological implications of MMP-9 inhibition by ACE inhibitors. Curr Med Chem 2009; 16(11): 1349-54.
[http://dx.doi.org/10.2174/092986709787846514] [PMID: 19355890]
[31]
Wang S, Cheng Y, Wang F, et al. Inhibition activity of sulfated polysaccharide of Sepiella maindroni ink on matrix metalloproteinase (MMP)-2. Biomed Pharmacother 2008; 62(5): 297-302.
[http://dx.doi.org/10.1016/j.biopha.2008.01.018] [PMID: 18406565]
[32]
Liu C, Li X, Li Y, Feng Y, Zhou S, Wang F. Structural characterisation and antimutagenic activity of a novel polysaccharide isolated from Sepiella maindroni ink. Food Chem 2008; 110(4): 807-13.
[http://dx.doi.org/10.1016/j.foodchem.2008.02.026]
[33]
Wang SH, Huang CY, Chen CY, et al. Structure and biological activity analysis of fucoidan isolated from Sargassum siliquosum. ACS Omega 2020; 5(50): 32447-55.
[http://dx.doi.org/10.1021/acsomega.0c04591] [PMID: 33376882]
[34]
Chen S, Wang J, Xue C, et al. Sulfation of a squid ink polysaccharide and its inhibitory effect on tumor cell metastasis. Carbohydr Polym 2010; 81(3): 560-6.
[http://dx.doi.org/10.1016/j.carbpol.2010.03.009]
[35]
Fujita M, Nakao Y, Matsunaga S, et al. Ageladine A: An antiangiogenic matrixmetalloproteinase inhibitor from the marine sponge Agelas nakamurai. J Am Chem Soc 2003; 125(51): 15700-1.
[http://dx.doi.org/10.1021/ja038025w] [PMID: 14677933]
[36]
Fujita M, Nakao Y, Matsunaga S, et al. Ancorinosides B–D, inhibitors of membrane type 1 matrix metalloproteinase (MT1-MMP), from the marine sponge Penares sollasi Thiele. Tetrahedron 2001; 57(7): 1229-34.
[http://dx.doi.org/10.1016/S0040-4020(00)01128-5]
[37]
Rodríguez-Nieto S, González-Iriarte M, Carmona R, Muñoz-Chápuli R, Medina MA, Quesada AR. Antiangiogenic activity of aeroplysinin-1, a brominated compound isolated from a marine sponge. FASEB J 2002; 16(2): 1-27.
[http://dx.doi.org/10.1096/fj.01-0427fje] [PMID: 11772945]
[38]
Lin JJ, Su JH, Tsai CC, Chen YJ, Liao MH, Wu YJ. 11-epi-Sinulariolide acetate reduces cell migration and invasion of human hepatocellular carcinoma by reducing the activation of ERK1/2, p38MAPK and FAK/PI3K/AKT/mTOR signaling pathways. Mar Drugs 2014; 12(9): 4783-98.
[http://dx.doi.org/10.3390/md12094783] [PMID: 25222667]
[39]
Wu YJ, Lin SH, Din ZH, Su JH, Liu CI. Sinulariolide inhibits gastric cancer cell migration and invasion through downregulation of the EMT process and suppression of FAK/PI3K/AKT/mTOR and MAPKs signaling pathways. Mar Drugs 2019; 17(12): 668.
[http://dx.doi.org/10.3390/md17120668] [PMID: 31783709]
[40]
Soliga KJ, Bär SI, Oberhuber N, Zeng H, Schrey H, Schobert R. Synthesis and bioactivity of ancorinoside b, a marine diglycosyl tetramic acid. Mar Drugs 2021; 19(10): 583-99.
[http://dx.doi.org/10.3390/md19100583] [PMID: 34677482]
[41]
Lee HP, Lin YY, Duh CY, et al. Lemnalol attenuates mast cell activation and osteoclast activity in a gouty arthritis model. J Pharm Pharmacol 2015; 67(2): 274-85.
[http://dx.doi.org/10.1111/jphp.12331] [PMID: 25557511]
[42]
Chen SC, Chien YC, Pan CH, Sheu JH, Chen CY, Wu CH. Inhibitory effect of dihydroaustrasulfone alcohol on the migration of human non-small cell lung carcinoma A549 cells and the antitumor effect on a Lewis lung carcinoma-bearing tumor model in C57BL/6J mice. Mar Drugs 2014; 12(1): 196-213.
[http://dx.doi.org/10.3390/md12010196] [PMID: 24413802]
[43]
Ciccone L, Vandooren J, Nencetti S, Orlandini E. Natural marine and terrestrial compounds as modulators of matrix metalloproteinases-2 (MMP-2) and MMP-9 in Alzheimer’s disease. Pharmaceuticals (Basel) 2021; 14(2): 86.
[http://dx.doi.org/10.3390/ph14020086] [PMID: 33498927]
[44]
Kerr RG, Kerr SS. Marine natural products as therapeutic agents. Expert Opin Ther Pat 1999; 9(9): 1207-22.
[http://dx.doi.org/10.1517/13543776.9.9.1207]
[45]
Jung JH, Sim CJ, Lee CO. Cytotoxic compounds from a two-sponge association. J Nat Prod 1995; 58(11): 1722-6.
[http://dx.doi.org/10.1021/np50125a012] [PMID: 8594149]
[46]
Shim JS, Lee HS, Shin J, Kwon HJ. Psammaplin A, a marine natural product, inhibits aminopeptidase N and suppresses angiogenesis in vitro. Cancer Lett 2004; 203(2): 163-9.
[http://dx.doi.org/10.1016/j.canlet.2003.08.036] [PMID: 14732224]
[47]
Ryu B, Qian ZJ, Kim SK. SHP-1, a novel peptide isolated from seahorse inhibits collagen release through the suppression of collagenases 1 and 3, nitric oxide products regulated by NF-κB/p38 kinase. Peptides 2010; 31(1): 79-87.
[http://dx.doi.org/10.1016/j.peptides.2009.10.019] [PMID: 19896517]
[48]
Yang YJ, Kim SK, Park SJ. An anti-inflammatory peptide isolated from seahorse hippocampus kuda bleeler inhibits the invasive potential of MG-63 osteosarcoma cells. Fish Aquatic Sci 2012; 15(1): 29-36.
[http://dx.doi.org/10.5657/FAS.2012.0029]
[49]
Ryu B, Qian ZJ, Kim SK. Purification of a peptide from seahorse, that inhibits TPA-induced MMP, iNOS and COX-2 expression through MAPK and NF-κB activation, and induces human osteoblastic and chondrocytic differentiation. Chem Biol Interact 2010; 184(3): 413-22.
[http://dx.doi.org/10.1016/j.cbi.2009.12.003] [PMID: 20004183]
[50]
Rose BJ, Kooyman DL. A tale of two joints: The role of matrix metalloproteases in cartilage biology. Dis Markers 2016; 2016
[51]
Montagnani C, le Roux F, Berthe F, Escoubas JM. Cg-TIMP, an inducible tissue inhibitor of metalloproteinase from the Pacific oyster Crassostrea gigas with a potential role in wound healing and defense mechanisms(1). FEBS Lett 200; 500(1-2): 64-70.
[52]
Kong CS, Kim JA, Ahn B, Byun HG, Kim SK. Carboxymethylations of chitosan and chitin inhibit MMP expression and ROS scavenging in human fibrosarcoma cells. Process Biochem 2010; 45(2): 179-86.
[http://dx.doi.org/10.1016/j.procbio.2009.09.004]
[53]
Kim MM, Kim SK. Chitooligosaccharides inhibit activation and expression of matrix metalloproteinase-2 in human dermal fibroblasts. FEBS Lett 2006; 580(11): 2661-6.
[http://dx.doi.org/10.1016/j.febslet.2006.04.015] [PMID: 16647062]
[54]
Thomas NV, Diyya A, Ghafoor DD, Kim SK. Matrix metalloproteinases inhibitory effects of chitooligosaccharides. Chitooligosaccharides. Cham: Springer 2022; pp. 85-98.
[http://dx.doi.org/10.1007/978-3-030-92806-3_6]
[55]
Brito AS, Arimatéia DS, Souza LR, et al. Anti-inflammatory properties of a heparin-like glycosaminoglycan with reduced anti-coagulant activity isolated from a marine shrimp. Bioorg Med Chem 2008; 16(21): 9588-95.
[http://dx.doi.org/10.1016/j.bmc.2008.09.020] [PMID: 18835720]
[56]
Dreyfuss JL, Regatieri CV, Lima MA, et al. A heparin mimetic isolated from a marine shrimp suppresses neovascularization. J Thromb Haemost 2010; 8(8): 1828-37.
[http://dx.doi.org/10.1111/j.1538-7836.2010.03916.x] [PMID: 20492474]
[57]
Athukorala Y, Ahn GN, Jee YH, et al. Antiproliferative activity of sulfated polysaccharide isolated from an enzymatic digest of Ecklonia cava on the U-937 cell line. J Appl Phycol 2009; 21(3): 307-14.
[http://dx.doi.org/10.1007/s10811-008-9368-7]
[58]
Ye J, Li Y, Teruya K, et al. Enzyme-digested fucoidan extracts derived from seaweed Mozuku of Cladosiphon novae-caledoniae kylin inhibit invasion and angiogenesis of tumor cells. Cytotechnology 2005; 47(1-3): 117-26.
[http://dx.doi.org/10.1007/s10616-005-3761-8] [PMID: 19003051]
[59]
Moon HJ, Park KS, Ku MJ, et al. Effect of Costaria costata fucoidan on expression of matrix metalloproteinase-1 promoter, mRNA, and protein. J Nat Prod 2009; 72(10): 1731-4.
[http://dx.doi.org/10.1021/np800797v] [PMID: 19807114]
[60]
Ryu B, Qian ZJ, Kim MM, Nam KW, Kim SK. Anti-photoaging activity and inhibition of matrix metalloproteinase (MMP) by marine red alga, Corallina pilulifera methanol extract. Radiat Phys Chem 2009; 78(2): 98-105.
[http://dx.doi.org/10.1016/j.radphyschem.2008.09.001]
[61]
Joe MJ, Kim SN, Choi HY, et al. The inhibitory effects of eckol and dieckol from Ecklonia stolonifera on the expression of matrix metalloproteinase-1 in human dermal fibroblasts. Biol Pharm Bull 2006; 29(8): 1735-9.
[http://dx.doi.org/10.1248/bpb.29.1735] [PMID: 16880634]
[62]
Nair D, Vanuopadath M, Balasubramanian A, et al. Phlorotannins from Padina tetrastromatica: Structural characterisation and functional studies. J Appl Phycol 2019; 31(5): 3131-41.
[http://dx.doi.org/10.1007/s10811-019-01792-y]
[63]
Lee YJ, Park JH, Park SA, et al. Dieckol or phlorofucofuroeckol extracted from Ecklonia cava suppresses lipopolysaccharide-mediated human breast cancer cell migration and invasion. J Appl Phycol 2020; 32(1): 631-40.
[http://dx.doi.org/10.1007/s10811-019-01899-2]
[64]
Jung WK, Heo SJ, Jeon YJ, et al. Inhibitory effects and molecular mechanism of dieckol isolated from marine brown alga on COX-2 and iNOS in microglial cells. J Agric Food Chem 2009; 57(10): 4439-46.
[http://dx.doi.org/10.1021/jf9003913] [PMID: 19408937]
[65]
Kong CS, Kim YA, Kim MM, et al. Flavonoid glycosides isolated from Salicornia herbacea inhibit matrix metalloproteinase in HT1080 cells. Toxicol In Vitro 2008; 22(7): 1742-8.
[http://dx.doi.org/10.1016/j.tiv.2008.07.013] [PMID: 18715546]
[66]
Mook-Jung I, Kim H, Fan W, et al. Neuroprotective effects of constituents of the oriental crude drugs, Rhodiola sacra, R. sachalinensis and Tokaku-joki-to, against beta-amyloid toxicity, oxidative stress and apoptosis. Biol Pharm Bull 2002; 25(8): 1101-4.
[http://dx.doi.org/10.1248/bpb.25.1101] [PMID: 12186418]
[67]
Kim JH, Cho YH, Park SM, et al. Antioxidants and inhibitor of matrix metalloproteinase-1 expression from leaves ofzostera marina L. Arch Pharm Res 2004; 27(2): 177-83.
[http://dx.doi.org/10.1007/BF02980103] [PMID: 15022719]
[68]
Li YX, Li Y, Lee SH, Qian ZJ, Kim SK. Inhibitors of oxidation and matrix metalloproteinases, floridoside, and D-isofloridoside from marine red alga Laurencia undulata. J Agric Food Chem 2010; 58(1): 578-86.
[http://dx.doi.org/10.1021/jf902811j] [PMID: 20017487]
[69]
Kim MM, Ta QV, Mendis E, et al. Phlorotannins in Ecklonia cava extract inhibit matrix metalloproteinase activity. Life Sci 2006; 79(15): 1436-43.
[http://dx.doi.org/10.1016/j.lfs.2006.04.022] [PMID: 16737716]
[70]
Thomas NV, Kim SK. Potential cosmeceutical applications of phlorotannins and fucoidans from marine algae in the treatment of atopic dermatitis. Boca Raton, FL, USA: CRC Press 2011; pp. 257-64.
[http://dx.doi.org/10.1201/b10120-21]
[71]
Kim SK, Thomas NV, Li X. Phlorotannins and fucoidans from marine macroalgae as matrix metalloproteinase inhibitory substances and their possible application as medicinal foods. Adv Food Nutr Res 2011; 64: 129-41.
[http://dx.doi.org/10.1016/B978-0-12-387669-0.00010-7] [PMID: 22054943]
[72]
Kim SK, Thomas NV, Li X. Anticancer compounds from marine macroalgae and their application as medicinal foods. Adv Food Nutr Res 2011; 64: 213-24.
[http://dx.doi.org/10.1016/B978-0-12-387669-0.00016-8] [PMID: 22054949]
[73]
Thomas NV, Kim SK. Potential pharmacological applications of polyphenolic derivatives from marine brown algae. Environ Toxicol Pharmacol 2011; 32(3): 325-35.
[http://dx.doi.org/10.1016/j.etap.2011.09.004] [PMID: 22004951]
[74]
Thomas N, Kim SK. Beneficial effects of marine algal compounds in cosmeceuticals. Mar Drugs 2013; 11(12): 146-64.
[http://dx.doi.org/10.3390/md11010146] [PMID: 23344156]
[75]
Thomas NV, Kim SK. Health beneficial aspects of phloroglucinol derivatives from marine brown algae. Handbook of Marine Macroalgae. 2011.
[http://dx.doi.org/10.1002/9781119977087.ch21]
[76]
Thomas NV, Kim SK. Fucoidans from marine algae as potential matrix metalloproteinase inhibitors. Adv Food Nutr Res 2014; 72: 177-93.
[http://dx.doi.org/10.1016/B978-0-12-800269-8.00010-5] [PMID: 25081083]
[77]
Thomas NV, Diyya ASM, Ghafour DD, Kim S. Marine algal phlorotannins and their biological importance. Encyclopedia of Marine Biotechnology. 2020; 3: pp. 1535-58.
[http://dx.doi.org/10.1002/9781119143802.ch65]
[78]
Mishima T, Murata J, Toyoshima M, et al. Inhibition of tumor invasion and metastasis by calcium spirulan (Ca-SP), a novel sulfated polysaccharide derived from a blue-green alga, Spirulina platensis. Clin Exp Metastasis 1998; 16(6): 541-50.
[http://dx.doi.org/10.1023/A:1006594318633] [PMID: 9872601]
[79]
Yang L, Wang Y, Zhou Q, et al. Inhibitory effects of polysaccharide extract from Spirulina platensis on corneal neovascularization. Mol Vis 2009; 15: 1951-61.
[PMID: 19784394]
[80]
Wang HM, Pan JL, Chen CY, et al. Identification of anti-lung cancer extract from Chlorella vulgaris C-C by antioxidant property using supercritical carbon dioxide extraction. Process Biochem 2010; 45(12): 1865-72.
[http://dx.doi.org/10.1016/j.procbio.2010.05.023]
[81]
Asolkar RN, Freel KC, Jensen PR, et al. Arenamides A-C, cytotoxic NFkappaB inhibitors from the marine actinomycete Salinispora arenicola. J Nat Prod 2009; 72(3): 396-402.
[http://dx.doi.org/10.1021/np800617a] [PMID: 19117399]
[82]
Ahn KS, Sethi G, Chao TH, et al. Salinosporamide A (NPI-0052) potentiates apoptosis, suppresses osteoclastogenesis, and inhibits invasion through down-modulation of NF-κB–regulated gene products. Blood 2007; 110(7): 2286-95.
[http://dx.doi.org/10.1182/blood-2007-04-084996] [PMID: 17609425]
[83]
Igarashi Y, Miyanaga S, Onaka H, Takeshita M, Furumai T. Revision of the structure assigned to the antibiotic BU-4664L from Micromonopora. J Antibiot 2005; 58(5): 350-2.
[http://dx.doi.org/10.1038/ja.2005.44] [PMID: 16060388]
[84]
Miyanaga S, Sakurai H, Saiki I, Onaka H, Igarashi Y. Anti-invasive and anti-angiogenic activities of naturally occurring dibenzodiazepine BU-4664L and its derivatives. Bioorg Med Chem Lett 2010; 20(3): 963-5.
[http://dx.doi.org/10.1016/j.bmcl.2009.12.055] [PMID: 20056543]
[85]
Le TC, Pulat S, Lee J, et al. Marine depsipeptide nobilamide I inhibits cancer cell motility and tumorigenicity via suppressing epithelial–mesenchymal transition and MMP2/9 Expression. ACS Omega 2022; 7(2): 1722-32.
[http://dx.doi.org/10.1021/acsomega.1c04520] [PMID: 35071867]