An Overview of One and Two Carbon Homologation and Homologation- Functional Group Interconversion Reactions in Organic Synthesis

Page: [750 - 785] Pages: 36

  • * (Excluding Mailing and Handling)

Abstract

The extension of carbon chains, known as homologation, is one of the most fundamental operations of organic synthesis. One and two-carbon homologation reactions are of immense importance because they can be used for synthesizing members of a homologous series by iterative operations. Homologation reactions produce higher analogues of the same functional group, whereas homologation- functional group interconversion (FGI) generates higher analogues with a change in functionality. This general synthesis strategy may be counted for a number of reasons, such as higher accessibility to the successive homologs, a chance for the introduction of additional functionality, or solely to create a regular series of homologs. The advantages of homologation reactions could be measured by the efficiency, technical simplicity, and regio- and/or stereo-selectivity of the overall operations in a synthetic plan. Homologation reactions constitute powerful and versatile tools for preparative chemistry which uses different concepts underpinning the use of homologating reagents in addition to their applications in organic synthesis. A compilation and comparison of diverse methods available for homologation cum functional group interconversion will empower synthetic chemists to undertake studies that require a series of analogues. In this review, we have categorized and summarized such methods and synthetic applications of one and two-carbon homologation-functionalization of various functional groups in organic synthesis.

Graphical Abstract

[1]
Li, J.J. Name reactions for homologation; Wiley: Hoboken, 2009.
[2]
a) Arndt, F.; Eistert, B.; Ender, W. Synthesis with diazomethane, vi.: on the reaction of ketones and aldehydes with diazomethane. Ber. Dtsch. Chem. Ges. B, 1929, 62(1), 44-56.
[http://dx.doi.org/10.1002/cber.19290620106];
b) Pace, V.; Verniest, G.; Sinisterra, J.V.; Alcántara, A.R.; De Kimpe, N. Improved Arndt-Eistert synthesis of α-diazoketones requiring minimal diazomethane in the presence of calcium oxide as acid scavenger. J. Org. Chem., 2010, 75(16), 5760-5763.
[http://dx.doi.org/10.1021/jo101105g] [PMID: 20672806];
c) Candeias, N.R.; Paterna, R.; Gois, P.M.P. Homologation reaction of ketones with diazo compounds. Chem. Rev., 2016, 116(5), 2937-2981.
[http://dx.doi.org/10.1021/acs.chemrev.5b00381] [PMID: 26854865];
d) Ford, A.; Miel, H.; Ring, A.; Slattery, C.N.; Maguire, A.R.; McKervey, M.A. Modern organic synthesis with α-diazocarbonyl compounds. Chem. Rev., 2015, 115(18), 9981-10080.
[http://dx.doi.org/10.1021/acs.chemrev.5b00121] [PMID: 26284754];
e) Castoldi, L.; Ielo, L.; Holzer, W.; Giester, G.; Roller, A.; Pace, V. α-Arylamino diazoketones: diazomethane-loading controlled synthesis, spectroscopic investigations, and structural X-ray analysis. J. Org. Chem., 2018, 83(8), 4336-4347.
[http://dx.doi.org/10.1021/acs.joc.7b03134] [PMID: 29546992]
[3]
Kohlbacher, S.M.; Ionasz, V.S.; Ielo, L.; Pace, V. The synthetic versatility of the Tiffeneau–Demjanov chemistry in homologation tactics. Monatsh. Chem., 2019, 150(12), 2011-2019.
[http://dx.doi.org/10.1007/s00706-019-02514-3]
[4]
a) Corey, E.J.; Chaykovsky, M. Methylsulfinyl Carbanion (CH3-SO-CH2-). Formation and applications to organic synthesis. J. Am. Chem. Soc., 1965, 87(6), 1345-1353.
[http://dx.doi.org/10.1021/ja01084a033];
b) Corey, E.J.; Chaykovsky, M. Dimethylsulfoxonium methylide. J. Am. Chem. Soc., 1962, 84(5), 867-868.
[http://dx.doi.org/10.1021/ja00864a040];
c) Gololobov, Y.G.; Nesmeyanov, A.N. lysenko, V.P.; Boldeskul, I.E. Twenty-five years of dimethylsulfoxonium ethylide (corey’s reagent). Tetrahedron, 1987, 43(12), 2609-2651.
[http://dx.doi.org/10.1016/S0040-4020(01)86869-1];
d) Triandafillidi, I.; Savvidou, A.; Kokotos, C.G. Synthesis of γ-lactones utilizing ketoacids and trimethylsulfoxonium iodide. Org. Lett., 2019, 21(14), 5533-5537.
[http://dx.doi.org/10.1021/acs.orglett.9b01852] [PMID: 31282685]
[5]
Maryanoff, B.E.; Reitz, A.B. The Wittig olefination reaction and modifications involving phosphoryl-stabilized carbanions. Stereochemistry, mechanism, and selected synthetic aspects. Chem. Rev., 1989, 89(4), 863-927.
[http://dx.doi.org/10.1021/cr00094a007]
[6]
McNulty, J.; Das, P. Development of a one-pot method for the homologation of aldehydes to carboxylic acids. Tetrahedron, 2009, 65(37), 7794-7800.
[http://dx.doi.org/10.1016/j.tet.2009.07.032]
[7]
a) Satoh, T.; Miyashita, K. A new synthesis of αα-disubstituted carbonyl compounds from carbonyl compounds with one-carbon homologation. Tetrahedron Lett., 2004, 45(25), 4859-4864.
[http://dx.doi.org/10.1016/j.tetlet.2004.04.154];
b) Bon, D.J.Y.D.; Kováč, O.; Ferugová, V.; Zálešák, F.; Pospíšil, J. One and two-carbon homologation of primary and secondary alcohols to corresponding carboxylic esters using β-Carbonyl BT sulfones as a common intermediate. J. Org. Chem., 2018, 83(9), 4990-5001.
[http://dx.doi.org/10.1021/acs.joc.8b00112] [PMID: 29667824]
[8]
a) Shen, W.; Kunzer, A. A facile one-carbon homologation of aryl aldehydes to amides. Org. Lett., 2002, 4(8), 1315-1317.
[http://dx.doi.org/10.1021/ol025608m] [PMID: 11950351];
b) Katritzky, A.R.; Jiang, R.; Sommen, G.L.; Singh, S.K. One-carbon homologation of aryl and alkyl aldehydes to amides using BtCH2P+Ph3C-. ARKIVOC, 2004, 2004(9), 44-51.
[http://dx.doi.org/10.3998/ark.5550190.0005.907];
c) Nemoto, H.; Kawamura, T.; Kitasaki, K.; Yatsuzuka, K.; Kamiya, M.; Yoshioka, Y. One-portion synthesis of 2-acetoxy carbonyl compounds from aldehydes by using an acetylated masked acyl cyanide. Synthesis, 2009, 2009(10), 1694-1702.
[http://dx.doi.org/10.1055/s-0028-1088044];
d) Yu, H.; Gai, T.; Sun, W.L.; Zhang, M.S. Radical reduction of Passerini 3CR adducts by SmI2/HMPA. Chin. Chem. Lett., 2011, 22(4), 379-381.
[http://dx.doi.org/10.1016/j.cclet.2010.11.013];
e) El Kaïm, L.; Dos Santos, A. Reductive Passerini/Tsuji–Trost strategy towards βγ-unsaturated amides. Synlett, 2014, 25(13), 1901-1903.
[http://dx.doi.org/10.1055/s-0033-1340187]
[9]
a) Van Hijfte, L.; Kolb, M.; Witz, P. A practical procedure for the conversion of aldehydes to terminal alkynes by a one carbon homologation. Tetrahedron Lett., 1989, 30(28), 3655-3656.
[http://dx.doi.org/10.1016/S0040-4039(01)80473-1];
b) Satoh, T.; Hayashi, Y.; Yamakawa, K. Fritsch–Wiechell Rearrangement of 1-chlorovinyl sulfoxides:a new method for synthesizing acetylenes from aldehydes with one-carbon homologation. Bull. Chem. Soc. Jpn., 1993, 66(6), 1866-1869.
[http://dx.doi.org/10.1246/bcsj.66.1866];
c) Ohira, S. methanolysis of dimethyl (1-diazo-2-oxopropyl) phosphonate: generation of dimethyl (diazomethyl) phosphonate and reaction with carbonyl compounds. Synth. Commun., 1989, 19(3-4), 561-564.
[http://dx.doi.org/10.1080/00397918908050700];
d) Müller, S.; Liepold, B.; Roth, G.J.; Bestmann, H.J. An improved one-pot procedure for the synthesis of alkynes from aldehydes. Synlett, 1996, 1996(6), 521-522.
[http://dx.doi.org/10.1055/s-1996-5474];
e) Taber, D.F.; Bai, S.; Guo, P. A convenient reagent for aldehyde to alkyne homologation. Tetrahedron Lett., 2008, 49(48), 6904-6906.
[http://dx.doi.org/10.1016/j.tetlet.2008.09.114] [PMID: 19946355]
[10]
a) Takahashi, K.; Shibasaki, K.; Ogura, K.; Iida, H. Efficient method for a one-carbon homologation of aldehydes and benzophenone to carboxylic acids. J. Org. Chem., 1983, 48(20), 3566-3569.
[http://dx.doi.org/10.1021/jo00168a042];
b) Satoh, T.; Nakamura, A.; Iriuchijima, A.; Hayashi, Y.; Kubota, K. A new synthesis of βγ-alkenyl carboxylic acids from αβ-alkenyl carboxylic acid chlorides and αβ-alkenyl aldehydes with one-carbon elongation. Tetrahedron, 2001, 57(48), 9689-9696.
[http://dx.doi.org/10.1016/S0040-4020(01)00983-8];
c) Huh, D.H.; Jeong, J.S.; Lee, H.B.; Ryu, H.; Kim, Y.G. An efficient method for one-carbon elongation of aryl aldehydes via their dibromoalkene derivatives. Tetrahedron, 2002, 58(50), 9925-9932.
[http://dx.doi.org/10.1016/S0040-4020(02)01324-8];
d) Gross, H.; Costisella, B. Synthesis of carboxylic acids via PO-activated olefination of tetraethyl dimethylamino-methylene-diphosphonate. Angew. Chem. Int. Ed. Engl., 1968, 7(5), 391-392.
[http://dx.doi.org/10.1002/anie.196803911];
e) Degenhardt, C.R. Use of tetraethyl dimethylaminomethylenediphosphonate in the synthesis of benzothiophene-2-acetic acid and other carboxylic acids. Synth. Commun., 1982, 12(6), 415-421.
[http://dx.doi.org/10.1080/00397918208065945];
f) Seo, Y.; Kim, H.; Chae, D.W.; Kim, Y.G. N-Hydroxymethyl derivatives of α-amino aldehydes used for the stereoselective syntheses of β-amino-α-hydroxy acids. Tetrahedron Asymmetry, 2014, 25(8), 625-631.
[http://dx.doi.org/10.1016/j.tetasy.2014.03.012];
g) Seo, Y.; Lee, S.; Kim, Y.G. Stereoselective synthesis of novel bestatin analogs. Appl. Chem. Eng., 2015, 26, 111-115.
[11]
a) Hanessian, S.; Maji, D.K.; Govindan, S.; Matera, R.; Tintelnot-Blomley, M. Substrate-controlled and organocatalytic asymmetric synthesis of carbocyclic amino acid dipeptide mimetics. J. Org. Chem., 2010, 75(9), 2861-2876.
[http://dx.doi.org/10.1021/jo100017t] [PMID: 20392053];
b) Yoo, J.W.; Seo, Y.; Park, J.B.; Kim, Y.G. Two-way homologation of aliphatic aldehydes: Both one-carbon shortening and lengthening via the same intermediate. Tetrahedron, 2020, 76(6), 130883-130894.
[http://dx.doi.org/10.1016/j.tet.2019.130883]
[12]
a) Maruoka, K.; Concepcion, A.B.; Yamamoto, H. Selective homologation of ketones and aldehydes with diazoalkanes promoted by organoaluminum reagents. Synthesis, 1994, 1994(12), 1283-1290.
[http://dx.doi.org/10.1055/s-1994-25682];
b) Aggarwal, V.K.; de Vicente, J.; Pelotier, B.; Holmes, I.P.; Bonnert, R.V. A simple, user-friendly process for the homologation of aldehydes using tosylhydrazone salts. Tetrahedron Lett., 2000, 41(52), 10327-10331.
[http://dx.doi.org/10.1016/S0040-4039(00)01856-6];
c) Tsujimoto, S.; Iwahama, T.; Sakaguchi, S.; Ishii, Y. The radical-chain addition of aldehydes to alkenes by the use of N-hydroxyphthalimide (NHPI) as a polarity-reversal catalyst. Chem. Commun. (Camb.), 2001, (22), 2352-2353.
[http://dx.doi.org/10.1039/b107548a] [PMID: 12240071];
d) Wang, L.; Li, P.; Yan, J.; Wu, Z. A novel preparation of methyl ketones through one-carbon homologation of aldehydes. Tetrahedron Lett., 2003, 44(25), 4685-4688.
[http://dx.doi.org/10.1016/S0040-4039(03)01084-0];
e) Huang, X.; Sheng, S.R. Reactions of aldehydes with polymer-supported selenoalkylidenetriphenylphosphoranes. A facile method for the synthesis of carbonyl compounds. Tetrahedron Lett., 2001, 42(51), 9035-9037.
[http://dx.doi.org/10.1016/S0040-4039(01)01931-1];
f) Falck, J.R.; He, A.; Reddy, L.M.; Kundu, A.; Barma, D.K.; Bandyopadhyay, A.; Kamila, S.; Akella, R.; Bejot, R.; Mioskowski, C. Ring expansion/homologation--aldehyde condensation cascade using tert-trihalomethylcarbinols. Org. Lett., 2006, 8(20), 4645-4647.
[http://dx.doi.org/10.1021/ol061953q] [PMID: 16986971]
[13]
a) Nicolaou, K.C.; Vassilikogiannakis, G.; Kranich, R.; Baran, P.S.; Zhong, Y.L.; Natarajan, S. New synthetic technology for the mild and selective one-carbon homologation of hindered aldehydes in the presence of ketones. Org. Lett., 2000, 2(13), 1895-1898.
[http://dx.doi.org/10.1021/ol000102u] [PMID: 10891185];
b) Palombo, E.; Audran, G.; Monti, H. Straightforward enantioselective synthesis of (+)-ancistrofuran. Tetrahedron, 2005, 61(40), 9545-9549.
[http://dx.doi.org/10.1016/j.tet.2005.07.087]
[14]
Lebel, H.; Ladjel, C. Reductive one-carbon homologation of aldehydes and ketones. J. Org. Chem., 2005, 70(24), 10159-10161.
[http://dx.doi.org/10.1021/jo0516741] [PMID: 16292862]
[15]
a) Satoh, T.; Kubota, K. A new method for the synthesis of α-thio aldehydes and alcohols from aldehydes with one-carbon elongation. Tetrahedron Lett., 2000, 41(13), 2121-2124.
[http://dx.doi.org/10.1016/S0040-4039(00)00087-3];
b) Trost, B.M. alpha.-Sulfenylated carbonyl compounds in organic synthesis. Chem. Rev., 1978, 78(4), 363-382.
[http://dx.doi.org/10.1021/cr60314a002]
[16]
a) Matteson, D.S.; Moody, R.J. Homologation of carbonyl compounds to aldehydes with lithium bis(ethylenedioxyboryl)methide. J. Org. Chem., 1980, 45(6), 1091-1095.
[http://dx.doi.org/10.1021/jo01294a033];
b) Ukaji, Y.; Sakata, R.; Soeta, T. One-Carbon homologation of pyrrole carboxaldehyde via Wittig reaction and mild hydrolysis of vinyl ether–toward the synthesis of a sterically locked phytochrome chromophore. Heterocycles, 2015, 91(3), 593-603.
[http://dx.doi.org/10.3987/COM-14-13157];
c) Ko, K.Y.; Wagner, S.; Yang, S.H.; Furkert, D.P.; Brimble, M.A. Improved synthesis of the unnatural amino acids AHMOD and AMD, components of the anticancer Peptaibol Culicinin D. J. Org. Chem., 2015, 80(17), 8631-8636.
[http://dx.doi.org/10.1021/acs.joc.5b01265] [PMID: 26252224];
d) Al-Smadi, D.; Enugala, T.; Norberg, T.; Kihlberg, J.; Widersten, M. Synthesis of substrates for aldolase-catalyzed reactions: A comparison of methods for the synthesis of substituted phenylacetaldehydes. Synlett, 2018, 29(9), 1187-1190.
[http://dx.doi.org/10.1055/s-0036-1591963]
[17]
Sebastian, S. Monika; Khatana, A.K.; Yadav, E.; Gupta, M.K. Recent approaches towards one-carbon homologation–functionalization of aldehydes. Org. Biomol. Chem., 2021, 19(14), 3055-3074.
[http://dx.doi.org/10.1039/D1OB00135C] [PMID: 33885561]
[18]
Comins, D.L.; Dinsmore, J.M.; Marks, L.R. One-pot terminal alkene homologation using a tandem olefin cross-metathesis/allylic carbonate reduction sequence. Chem. Commun. (Camb.), 2007, 40(40), 4170-4171.
[http://dx.doi.org/10.1039/b709754a] [PMID: 17925965]
[19]
Cornils, B. New Syntheses with Carbon Monoxide; Falbe, J., Ed.; Springer-Verlag: Berlin, 1980, pp. 103-105.
[20]
Bertelo, C.A.; Schwartz, J.; Hydrozirconation, I.I.; Hydrozirconation, I.I. Oxidative homologation of olefins via carbon monoxide insertion into the carbon-zirconium bond. J. Am. Chem. Soc., 1975, 97(1), 228-230.
[http://dx.doi.org/10.1021/ja00834a061]
[21]
Brown, H.C.; Coleman, R.A. Reaction of B-alkyl-9-borabicyclo [3.3.1]nonanes with carbon monoxide in the presence of lithium trimethoxyaluminohydride. A convenient procedure for the conversion of olefins into aldehydes via hydroboration. J. Am. Chem. Soc., 1969, 91, 4606-4607.
[http://dx.doi.org/10.1021/ja01044a083]
[22]
Negishi, E.; Swanson, D.R.; Miller, S.R. One-pot conversion of alkynes and alkenes into one-carbon homologated aldehydes via hydrozirconation-isocyanide insertion-hydrolysis. Tetrahedron Lett., 1988, 29(14), 1631-1634.
[http://dx.doi.org/10.1016/S0040-4039(00)82003-1]
[23]
Spessard, G.O.; Miessler, G.L. Organometallic Chemistry; John Prentice Hall: New Jersey, 1996.
[24]
Edwards, D.R.; Crudden, C.M.; Yam, K. One-pot carbon monoxide-free hydroformylation of internal olefins to terminal aldehydes. Adv. Synth. Catal., 2005, 347(1), 50-54.
[http://dx.doi.org/10.1002/adsc.200404228]
[25]
Tsubouchi, A.; Nishio, E.; Kato, Y.; Fujiwara, T.; Takeda, T. Titanocene(II)-promoted reactions of thioacetals with ethylene: selective formation of terminal olefins with one- or two-carbon homologation. Tetrahedron Lett., 2002, 43(33), 5755-5758.
[http://dx.doi.org/10.1016/S0040-4039(02)01202-9]
[26]
Brown, H.C.; Phadke, A.S.; Bhat, N.G. Highly general synthesis of [E]- and [Z]-3-alkylsubstituted allylboronates via one-carbon homologation of stereospecific 1-alken-1-ylboronates. Tetrahedron Lett., 1993, 34(49), 7845-7848.
[http://dx.doi.org/10.1016/S0040-4039(00)61491-0]
[27]
Goddard, J.P.; Le Gall, T.; Mioskowski, C. Preparation of alcohols from alkenes via the homologation of boronates with (Trimethylsilyl)diazomethane. Org. Lett., 2000, 2(10), 1455-1456.
[http://dx.doi.org/10.1021/ol005780v] [PMID: 10814471]
[28]
a) Tufariello, J.J.; Mullen, G.B.; Tegeler, J.J.; Trybulski, E.J.; Wong, S.C.; Ali, S.A. Synthesis in the tropane class of alkaloids. Pseudotropine and dl-cocaine. J. Am. Chem. Soc., 1979, 101(9), 2435-2442.
[http://dx.doi.org/10.1021/ja00503a033];
b) Grieco, P.A.; Hon, Y.S.; Perez-Medrano, A. Convergent, enantiospecific total synthesis of the novel cyclodepsipeptide (+)-jasplakinolide (jaspamide). J. Am. Chem. Soc., 1988, 110(5), 1630-1631.
[http://dx.doi.org/10.1021/ja00213a050];
c) Battiste, M.A.; Rocca, J.R.; Wydra, R.L.; Tumlinson, J.H., III; Chuman, T. Total synthesis and structure proof of (3E,8E)-suspensolide. Tetrahedron Lett., 1988, 29(50), 6565-6567.
[http://dx.doi.org/10.1016/S0040-4039(00)82398-9];
d) Gnonlonfoun, N.; Zamarlik, H. Cyclisation electrophile induite par le triflate stanneux: Synthese du (±)-tetrahydroactinidiolide trans. Tetrahedron Lett., 1987, 28(35), 4053-4056.
[http://dx.doi.org/10.1016/S0040-4039(01)83859-4]
[29]
a) Corey, E.J.; Hase, T. Studies on the total synthesis of rifamycin. Highly stereoselective synthesis of intermediates for construction of the C(15) to C(29) chain. Tetrahedron Lett., 1979, 20(4), 335-338.
[http://dx.doi.org/10.1016/S0040-4039(01)85964-5];
b) Biloski, A.J.; Wood, R.D.; Ganem, B. A new. beta.-lactam synthesis. J. Am. Chem. Soc., 1982, 104(11), 3233-3235.
[http://dx.doi.org/10.1021/ja00375a057];
c) Miller, M.J. Hydroxamate approach to the synthesis of. beta.-lactam antibiotics. Acc. Chem. Res., 1986, 19(2), 49-56.
[http://dx.doi.org/10.1021/ar00122a004];
d) Knapp, S.; Levorse, A.T. Synthesis and reactions of iodo lactams. J. Org. Chem., 1988, 53(17), 4006-4014.
[http://dx.doi.org/10.1021/jo00252a024]
[30]
Murahashi, S.I.; Imada, Y.; Nishimura, K. Palladium-catalyzed carbonylation of allylamines. synthesis of βγ-unsaturated amides by one-carbon homologation of allylamines. Tetrahedron, 1994, 50(2), 453-464.
[http://dx.doi.org/10.1016/S0040-4020(01)80767-5]
[31]
Wang, J.R.; Fu, Y.; Zhang, B.B.; Cui, X.; Liu, L.; Guo, Q.X. Palladium-catalyzed aerobic oxidation of amines. Tetrahedron Lett., 2006, 47(47), 8293-8297.
[http://dx.doi.org/10.1016/j.tetlet.2006.09.088]
[32]
Chandrasekhar, S.; Pavan Kumar Reddy, G.; Nagesh, C.; Raji Reddy, C. A novel one-pot conversion of amines to homologated esters in poly(ethylene glycol). Tetrahedron Lett., 2007, 48(7), 1269-1271.
[http://dx.doi.org/10.1016/j.tetlet.2006.12.035]
[33]
Brown, H.C.; Naik, R.G.; Singaram, B.; Pyun, C. Organoboranes. 42. One-carbon homologation of organoboranes. Synthesis of homologated boronic acids and esters from boronic esters. Organometallics, 1985, 4(11), 1925-1929.
[http://dx.doi.org/10.1021/om00130a002]
[34]
Wallace, R.H.; Battle, W. The in situ generation and use of iodomethyllithium for the one-carbon homologation of boronic esters and epoxide formation from carbonyl compounds. Synth. Commun., 1995, 25(1), 127-133.
[http://dx.doi.org/10.1080/00397919508010798]
[35]
Wu, C.; Wu, G.; Zhang, Y.; Wang, J. One-carbon homologation of arylboronic acids: a convenient approach to the synthesis of pinacol benzylboronates. Org. Chem. Front., 2016, 3(7), 817-822.
[http://dx.doi.org/10.1039/C6QO00141F]
[36]
a) Brown, H.C.; Cole, T.E. Organoboranes. A simple preparation of boronic esters from organolithium reagents and selected trialkoxyboranes. Organometallics, 1983, 2(10), 1316-1319.
[http://dx.doi.org/10.1021/om50004a009];
b) Brown, H.C.; Srebnik, M.; Cole, T.E. Organoboranes. Improved procedures for the preparation of boronic and borinic esters. Organometallics, 1986, 5(11), 2300-2303.
[http://dx.doi.org/10.1021/om00142a020]
[37]
Brown, H.C.; Bhat, N.G.; Somayaji, V. Organoboranes. Convenient procedures for the synthesis of alkyl and alkenylboronic acids and esters. Organometallics, 1983, 2(10), 1311-1316.
[http://dx.doi.org/10.1021/om50004a008]
[38]
a) Burgess, K.; Ohlmeyer, M.J. Transition-metal promoted hydroborations of alkenes, emerging methodology for organic transformations. Chem. Rev., 1991, 91(6), 1179-1191.
[http://dx.doi.org/10.1021/cr00006a003];
b) Carroll, A.M.; O’Sullivan, T.P.; Guiry, P.J. The development of enantioselective rhodium-catalysed hydroboration of olefins. Adv. Synth. Catal., 2005, 347(5), 609-631.
[http://dx.doi.org/10.1002/adsc.200404232];
c) Crudden, C.M.; Edwards, D. Catalytic asymmetric hydroboration: recent advances and applications in carbon-carbon bond-forming reactions. Eur. J. Org. Chem., 2003, 2003(24), 4695-4712.
[http://dx.doi.org/10.1002/ejoc.200300433];
d) Ishiyama, T.; Oohashi, Z.; Ahiko, T.; Miyaura, N. Nucleophilic borylation of benzyl halides with bis(pinacolato)diboron catalyzed by palladium(0) complexes. Chem. Lett., 2002, 31(8), 780-781.
[http://dx.doi.org/10.1246/cl.2002.780];
e) Murata, M.; Oyama, T.; Watanabe, S.; Masuda, Y. Synthesis of benzylboronates via palladium-catalyzed borylation of benzyl halides with pinacolborane. Synth. Commun., 2002, 32(16), 2513-2517.
[http://dx.doi.org/10.1081/SCC-120003413];
f) Giroux, A. Synthesis of benzylic boronates via palladium-catalyzed cross-coupling reaction of bis(pinacolato)diboron with benzylic halides. Tetrahedron Lett., 2003, 44(2), 233-235.
[http://dx.doi.org/10.1016/S0040-4039(02)02566-2];
g) Bej, A.; Srimani, D.; Sarkar, A. Palladium nanoparticle catalysis: borylation of aryl and benzyl halides and one-pot biaryl synthesis via sequential borylation-Suzuki–Miyaura coupling. Green Chem., 2012, 14(3), 661-667.
[http://dx.doi.org/10.1039/c2gc16111g];
h) Yang, C.T.; Zhang, Z.Q.; Tajuddin, H.; Wu, C.C.; Liang, J.; Liu, J.H.; Fu, Y.; Czyzewska, M.; Steel, P.G.; Marder, T.B.; Liu, L. Alkylboronic esters from copper-catalyzed borylation of primary and secondary alkyl halides and pseudohalides. Angew. Chem. Int. Ed., 2012, 51(2), 528-532.
[http://dx.doi.org/10.1002/anie.201106299] [PMID: 22135233];
i) Atack, T.C.; Lecker, R.M.; Cook, S.P. Iron-catalyzed borylation of alkyl electrophiles. J. Am. Chem. Soc., 2014, 136(27), 9521-9523.
[http://dx.doi.org/10.1021/ja505199u] [PMID: 24955892];
j) Pintaric, C.; Olivero, S.; Gimbert, Y.; Chavant, P.Y.; Duñach, E. An opportunity for Mg-catalyzed Grignard-type reactions: direct coupling of benzylic halides with pinacolborane with 10 mol % of magnesium. J. Am. Chem. Soc., 2010, 132(34), 11825-11287. For an Mg-catalyzed cross-coupling reaction, see:
[http://dx.doi.org/10.1021/ja1052973] [PMID: 20687557]
[39]
Sonawane, R.P.; Jheengut, V.; Rabalakos, C.; Larouche-Gauthier, R.; Scott, H.K.; Aggarwal, V.K. Enantioselective construction of quaternary stereogenic centers from tertiary boronic esters: Methodology and applications. Angew. Chem. Int. Ed., 2011, 50(16), 3760-3763.
[http://dx.doi.org/10.1002/anie.201008067] [PMID: 21374774]
[40]
a) Slayden, S.W. Relative migratory aptitudes of alkyl groups in the iodination of ethenyltrialkylborates. A conformational analysis. J. Org. Chem., 1982, 47(14), 2753-2757.
[http://dx.doi.org/10.1021/jo00135a013];
b) Thomas, S.P.; French, R.M.; Jheengut, V.; Aggarwal, V.K. Homologation and alkylation of boronic esters and boranes by 1,2-metallate rearrangement of boron ate complexes. Chem. Rec., 2009, 9(1), 24-39.
[http://dx.doi.org/10.1002/tcr.20168] [PMID: 19243084]
[41]
a) Matteson, D.S.; Majumdar, D. alpha.-Chloro boronic esters from homologation of boronic esters. J. Am. Chem. Soc., 1980, 102(25), 7588-7590.
[http://dx.doi.org/10.1021/ja00545a045];
b) Matteson, D.S.; Majumdar, D. Homologation of boronic esters to. alpha.-chloro boronic esters. Organometallics, 1983, 2(11), 1529-1535.
[http://dx.doi.org/10.1021/om50005a008];
c) Brown, H.C.; Rangaishenvi, M.V.; Jayaraman, S. Organoboranes. 54. Exploration of the reactions of (.alpha.-haloallyl)lithium with organoborane derivatives. Simple and convenient procedure for the synthesis of three-carbon homologated boronate esters and terminal alkenes. Organometallics, 1992, 11(5), 1948-1954.
[http://dx.doi.org/10.1021/om00041a029]
[42]
a) Matteson, D.S. α-Halo boronic esters in asymmetric synthesis. Tetrahedron, 1998, 54(36), 10555-10607.
[http://dx.doi.org/10.1016/S0040-4020(98)00321-4];
b) Sadhu, K.M.; Matteson, D.S. (Chloromethyl)lithium: efficient generation and capture by boronic esters and a simple preparation of diisopropyl (chloromethyl)boronate. Organometallics, 1985, 4(9), 1687-1689.
[http://dx.doi.org/10.1021/om00128a038];
c) Wallace, R.H.; Zong, K.K. Preparation and 1-carbon homologation of boronic ester substituted Δ2-isoxazolines: The 1,3 dipolar cycloaddition of nitrile oxides to vinyl boronic esters. Tetrahedron Lett., 1992, 33(46), 6941-6944.
[http://dx.doi.org/10.1016/S0040-4039(00)60901-2];
d) Soundararajan, R.; Li, G.; Brown, H.C. Homologation of representative boronic esters using in situ generated (halomethyl)lithiums: A comparative study. Tetrahedron Lett., 1994, 35(48), 8957-8960.
[http://dx.doi.org/10.1016/0040-4039(94)88399-8];
e) Werle, S.; Fey, T.; Neudörfl, J.M.; Schmalz, H.G. Enantioselective synthesis of a trans-7,8-dimethoxycalamenene. Org. Lett., 2007, 9(18), 3555-3558.
[http://dx.doi.org/10.1021/ol071228v] [PMID: 17676856]
[43]
Ley, S.; Pastre, J.; Forni, J.; Lau, S-H.; Poh, J-S.; Battilocchio, C. Diastereoselective synthesis of functionalized indolines using in situ generated allyl boronic species. Synlett, 2018, 29(6), 825-829.
[http://dx.doi.org/10.1055/s-0036-1589164]
[44]
Fasano, V.; Winter, N.; Noble, A.; Aggarwal, V.K. Divergent, stereospecific mono- and difluoromethylation of boronic esters. Angew. Chem. Int. Ed., 2020, 59(22), 8502-8506.
[http://dx.doi.org/10.1002/anie.202002246] [PMID: 32109329]
[45]
Fujioka, Y.; Amii, H. Boron-substituted difluorocyclopropanes: new building blocks of gem-difluorocyclopropanes. Org. Lett., 2008, 10(5), 769-772.
[http://dx.doi.org/10.1021/ol702851t] [PMID: 18225908]
[46]
Mulzer, J. Comprehensive Organic Functional Group Transformations;; Katritzky, A.R.; Meth-Cohn, O.; Rees, C.W., Eds.; Pergamon Press:: Oxford, 1995, 5, pp. 144-276.
[47]
a) Kowalski, C.J.; Haque, M.S.; Fields, K.W. Ester homologation via. alpha-bromo alpha-keto dianion rearrangement. J. Am. Chem. Soc., 1985, 107(5), 1429-1430.
[http://dx.doi.org/10.1021/ja00291a063];
b) Reddy, R.E.; Kowalski, C.J. Ethyl 1-naphthylacetate: Ester homologation via ynolate anions. Org. Synth., 1993, 71, 146-157.
[http://dx.doi.org/10.15227/orgsyn.071.0146]
[48]
a) Barton, D.H.R.; Ching-Yuh, C.; Jaszberenyi, J.C. Homologation of carboxylic acids by improved methods based on radical chain chemistry of acyl derivatives of N-hydroxy-2-thiopyridone. Tetrahedron Lett., 1992, 33(35), 5013-5016.
[http://dx.doi.org/10.1016/S0040-4039(00)61176-0];
b) Derek, H.R.; Barton Ching-Yuh, C.; Joseph, J.C. Homologation of acids via carbon radicals generated from the acyl derivatives of N-hydroxy-2-thiopyridone. (The two-carbon problem). Tetrahedron Lett., 1991, 32(28), 3309-3312.
[http://dx.doi.org/10.1016/S0040-4039(00)92693-5]
[49]
Katritzky, A.R.; Zhang, S.; Hussein, A.H.M.; Fang, Y.; Steel, P.J. One-carbon homologation of carboxylic acids via BtCH2TMS: a safe alternative to the Arndt-Eistert reaction. J. Org. Chem., 2001, 66(16), 5606-5612.
[http://dx.doi.org/10.1021/jo0017640] [PMID: 11485491]
[50]
Katritzky, A.R.; Zhang, S.; Fang, Y. BtCH(2)TMS-assisted homologation of carboxylic acids: A safe alternative to the arndt-eistert reaction. Org. Lett., 2000, 2(24), 3789-3791.
[http://dx.doi.org/10.1021/ol0002370] [PMID: 11101420]
[51]
Liang, Y.; Strieth-Kalthoff, F.; Bellotti, P.; Glorius, F. Catalytic one-carbon homologation of α-amino acids to β-amino aldehydes. Chem Catalysis, 2021, 1(7), 1427-1436.
[http://dx.doi.org/10.1016/j.checat.2021.10.010]
[52]
Katritzky, A.R.; Lam, J.N. The Chemistry of N-substituted benzotriazoles. Part 22 [1]: Transformations of 1-(trimethylsilyl-methyl)benzotriazole. Heteroatom Chem., 1990, 1, 21-31.
[53]
a) Hase, T.A. Umpoled Synthons: A Survey of Sources and Uses in Synthesis; John Wiley and Sons: New York, 1987. ;
b) Martin, S.F. Synthesis of aldehydes, ketones, and carboxylic acids from lower carbonyl compounds by C-C coupling reactions. Synthesis, 1979, 633-665.;
c) Hase, T.A.; Koskimies, J.K. A Compilation of references on formyl and acyl anion synthons. Aldrichim Acta, 1981, 14, 73-77.;
d) Stowell, J.C. Three-carbon homologating agents. Chem. Rev., 1984, 84, 409-435.;
e) Badham, N.F. Homologation of ketones into carboxylic acids. Tetrahedron, 2004, 60, 11-42.;
f) Satoh, T. Carbon elongation of carbonyl compounds utilizing the rearrangement of carbenoids-recent developments. J. Synth. Org. Chem. Jpn., 2009, 67, 381-394.
[54]
a) Hesse, M. Ring Enlargement in Organic Synthesis, 1991.;
b) Hiyama, T.; Nozaki, H. Ring enlargement of carbocycles. J. Synth. Org. Chem. Jpn., 1977, 35, 979-991.;
c) Dowd, P.; Zhang, W. Free radical-mediated ring expansion and related annulations. Chem. Rev., 1993, 93, 2091-2115.;
d) Roxburgh, C.J. Syntheses of medium sized rings by ring expansion reactions. Tetrahedron, 1993, 49, 10749-10784.;
e) Tochtermann, W.; Kraft, P. Our tactics in ring enlargement - construction of medium and large ring compounds. Synlett, 1996, 11, 1029-1035.
[55]
a) Satoh, T.; Mizu, Y.; Hayashi, Y.; Yamakawa, K. Ligand exchange reaction of sulfoxides in organic synthesis: a new method for one-carbon homologation of esters to carboxylic acids and esters via α-chloro α-sulfinyl ketones. Tetrahedron Lett., 1994, 35, 133-134.;
b) Satoh, T.; Hayashi, Y.; Mizu, Y.; Yamakawa, K. Generation of the α-Sulfinyl carbenoid from α-chloro sulfoxides: a new method for one-carbon homologation of ketones to α-sulfinyl ketones. Bull. Chem. Soc. Jpn., 1994, 67, 1412-1418.;
c) Satoh, T.; Itoh, N.; Gengyo, K.; Takada, S.; Asakawa, N.; Yamani, Y.; Yamakawa, K. New method for generation of β-oxido carbenoid via ligand exchange reaction of sulfoxides: A versatile procedure for one-carbon homologation of carbonyl compounds. Tetrahedron, 1994, 50, 11839-11852.;
d) Satoh, T.; Mizu, Y.; Kawashima, T.; Yamakawa, K. Ligand exchange reaction of sulfoxides in organic synthesis: A new synthesis of α-chloroketones from carbonyl compounds with one-carbon homologation. Tetrahedron, 1995, 51, 703-710.;
e) Satoh, T.; Unno, H.; Mizu, Y.; Hayashi, Y. Ligand exchange reaction of sulfoxides in organic synthesis: A versatile procedure for one-carbon homologation of methylesters to esters, thioesters, carboxylic acids and amides. Tetrahedron, 1997, 53, 7843-7854.;
f) Satoh, T.; Kurihara, T. One-carbon ring enlargement of lactones. Tetrahedron Lett., 1998, 39, 9215-9218.;
g) Satoh, T.; Imai, K. Dianion of sulfinylacetone as a synthetic equivalent of β-enolate of propionic acid: a novel synthesis of carboxylic acids from alkyl halides with three-carbon elongation. Chem. Pharm. Bull., 2003, 51, 602-604.;
h) Miyashita, K.; Satoh, T. A new method for synthesis of αα-disubstituted carbonyl compounds from carbonyl compounds with one-carbon homologation through β-oxido carbenoid rearrangement as the key reaction. Tetrahedron, 2005, 61, 5067-5080.;
i) Satoh, T.; Tanaka, S.; Asakawa, N. One-carbon ring-expansion of 2-substituted cyclohexanones via lithium- and magnesium β-oxido carbenoid rearrangement: a new synthesis of 2,7-disubstituted and 2,2,7-trisubstituted cycloheptanones. Tetrahedron Lett., 2006, 47, 6769-6773.
[56]
Pace, V.; Castoldi, L.; Mazzeo, E.; Rui, M.; Langer, T.; Holzer, W. Efficient access to all-carbon quaternary and tertiary α-functionalized homoallyl-type aldehydes from ketones. Angew. Chem. Int. Ed., 2017, 56(41), 12677-12682.
[http://dx.doi.org/10.1002/anie.201706236] [PMID: 28722252]
[57]
Satoh, T.; Kashiwamura, G.; Nagamoto, S.; Sasaki, Y.; Sugiyama, S. Insertion of cyclopropanes between a carbonyl carbon and an α-carbon of carbonyl compounds with cyclopropylmagnesium carbenoids. Tetrahedron Lett., 2011, 52(34), 4468-4472.
[http://dx.doi.org/10.1016/j.tetlet.2011.06.069]
[58]
a) Pace, V.; Castoldi, L.; Monticelli, S.; Rui, M.; Collina, S. New perspectives in lithium carbenoid mediated homologations. Synlett, 2017, 28(8), 879-888.
[http://dx.doi.org/10.1055/s-0036-1588139];
b) Pace, V.; Holzer, W.; De Kimpe, N. lithium halomethylcarbenoids: preparation and use in the homologation of carbon electrophiles. Chem. Rec., 2016, 16(4), 2061-2076.
[http://dx.doi.org/10.1002/tcr.201600011] [PMID: 27381551];
c) Castoldi, L.; Monticelli, S.; Senatore, R.; Ielo, L.; Pace, V. Homologation chemistry with nucleophilic α-substituted organometallic reagents: chemocontrol, new concepts and (solved) challenges. Chem. Commun. (Camb.), 2018, 54(50), 6692-6704.
[http://dx.doi.org/10.1039/C8CC02499E] [PMID: 29850663]
[59]
Ielo, L.; Pace, V.; Pillari, V.; Miele, M.; Castiglione, D. Carbenoid-mediated homologation tactics for assembling (fluorinated) epoxides and aziridines. Synlett, 2021, 32(6), 551-560.
[http://dx.doi.org/10.1055/s-0040-1706404]
[60]
Barluenga, J.; Baragañ, A.B.; Alonso, A.; Concellón, J.M. The first direct preparation of chiral functionalised ketones and their synthetic uses. J. Chem. Soc. Chem. Commun., 1994, (8), 969-970.
[http://dx.doi.org/10.1039/C39940000969]
[61]
Xu, Y.; Qi, X.; Zheng, P.; Berti, C.C.; Liu, P.; Dong, G. Deacylative transformations of ketones via aromatization-promoted C–C bond activation. Nature, 2019, 567(7748), 373-378.
[http://dx.doi.org/10.1038/s41586-019-0926-8] [PMID: 30758326]
[62]
Etayo, P.; Badorrey, R.; Díaz-de-Villegas, M.D.; Gálvez, J.A. First stereoselective synthesis of (1 R, 2 R, 4 R)- and (1 S, 2 R, 4 S)-2-substituted-1-azabicyclo[2.2.1]heptanes. Eur. J. Org. Chem., 2009, 2009(9), 1372-1376.
[http://dx.doi.org/10.1002/ejoc.200801216]
[63]
Tanaka, S.; Anai, T.; Tadokoro, M.; Satoh, T. One-carbon homologation of unsymmetrical ketones through magnesium β-oxido carbenoid rearrangement and trapping the enolate intermediates with electrophiles. Tetrahedron, 2008, 64(30-31), 7199-7210.
[http://dx.doi.org/10.1016/j.tet.2008.05.079]
[64]
a) Johnson, A.W.; LaCount, R.B. The chemistry of ylides. VI. Dimethylsulfonium fluorenylide-A synthesis of epoxides. J. Am. Chem. Soc., 1961, 83(2), 417-423.
[http://dx.doi.org/10.1021/ja01463a040];
b) Trost, B.M.; Melvin, L.S. Organic Chemistry, A Series of Monographs; Elsevier: New York, NY, 1975. ;
c) Ng, J-S.; Liu, C. Encyclopedia of Reagents in Organic Synthesis; Paquette, L.A., Ed.; Wiley: New York, 1995, pp. 2159-2165.;
d) Donaldson, W.A. Synthesis of cyclopropane containing natural products. Tetrahedron, 2001, 57(41), 8589-8627.
[http://dx.doi.org/10.1016/S0040-4020(01)00777-3]
[65]
Chittimalla, S.K.; Chang, T.C.; Liu, T.C.; Hsieh, H.P.; Liao, C.C. Reactions of 2-hydroxybenzophenones with Corey–Chaykovsky reagent. Tetrahedron, 2008, 64(11), 2586-2595.
[http://dx.doi.org/10.1016/j.tet.2008.01.024]
[66]
Etayo, P.; Badorrey, R.; Díaz-de-Villegas, M.D.; Gálvez, J.A. Asymmetric homologation of ketones. A new entry to orthogonally protected (2R,4R)-piperidine-2,4-dicarboxylic acid. J. Org. Chem., 2008, 73(21), 8594-8597.
[http://dx.doi.org/10.1021/jo801515k] [PMID: 18826279]
[67]
Miele, M.; Citarella, A.; Langer, T.; Urban, E.; Zehl, M.; Holzer, W.; Ielo, L.; Pace, V. Chemoselective homologation–deoxygenation strategy enabling the direct conversion of carbonyls into (n+1)-halomethyl-alkanes. Org. Lett., 2020, 22(19), 7629-7634.
[http://dx.doi.org/10.1021/acs.orglett.0c02831] [PMID: 32910659]
[68]
Wakade, S.B.; Tiwari, D.K.; Ganesh, P.S.K.P.; Phanindrudu, M.; Likhar, P.R.; Tiwari, D.K. Transition-metal-free quinoline synthesis from acetophenones and anthranils via sequential one-carbon homologation/conjugate addition/annulation cascade. Org. Lett., 2017, 19(18), 4948-4951.
[http://dx.doi.org/10.1021/acs.orglett.7b02429] [PMID: 28880095]
[69]
a) Ye, T.; McKervey, M.A. Organic synthesis with. alpha.-diazo carbonyl compounds. Chem. Rev., 1994, 94(4), 1091-1160.
[http://dx.doi.org/10.1021/cr00028a010];
b) Doyle, M.P.; Mckervey, M.A.; Ye, T. Modern Catalytic Methods for Organic Synthesis with Diazo Compounds: From Cyclopropanes to Ylides; Wiley: New York, 1998. ;
c) Zhang, Z.; Wang, J. Recent studies on the reactions of α-diazocarbonyl compounds. Tetrahedron, 2008, 64(28), 6577-6605.
[http://dx.doi.org/10.1016/j.tet.2008.04.074];
d) Zhang, Y.; Wang, J. Recent development of reactions with α-diazocarbonyl compounds as nucleophiles. Chem. Commun. (Camb.), 2009, (36), 5350-5361.
[http://dx.doi.org/10.1039/b908378b] [PMID: 19724784];
e) Moebius, D.C.; Rendina, V.L.; Kingsbury, J.S. Catalysis of diazoalkane-carbonyl homologation. How new developments in hydrazone oxidation enable the carbon insertion strategy for synthesis. Top. Curr. Chem., 2014, 346, 111-162.
[http://dx.doi.org/10.1007/128_2013_521] [PMID: 24770564];
f) Guttenberger, N.; Breinbauer, R. C H and C C bond insertion reactions of diazo compounds into aldehydes. Tetrahedron, 2017, 73(49), 6815-6829.
[http://dx.doi.org/10.1016/j.tet.2017.10.051];
g) Wommack, A.J.; Moebius, D.C.; Travis, A.L.; Kingsbury, J.S. Diverse alkanones by catalytic carbon insertion into the formyl C-H bond. Concise access to the natural precursor of achyrofuran. Org. Lett., 2009, 11(15), 3202-3205.
[http://dx.doi.org/10.1021/ol9010932] [PMID: 19588908];
h) Moebius, D.C.; Kingsbury, J.S. Catalytic homologation of cycloalkanones with substituted diazomethanes. Mild and efficient single-step access to α-tertiary and α-quaternary carbonyl compounds. J. Am. Chem. Soc., 2009, 131(3), 878-879.
[http://dx.doi.org/10.1021/ja809220j] [PMID: 19125571]
[70]
Tan, F.; Pu, M.; He, J.; Li, J.; Yang, J.; Dong, S.; Liu, X.; Wu, Y.D.; Feng, X. Catalytic asymmetric homologation of ketones with α-alkyl α-diazo esters. J. Am. Chem. Soc., 2021, 143(5), 2394-2402.
[http://dx.doi.org/10.1021/jacs.0c12683] [PMID: 33507075]
[71]
Hahn, R.C.; Tompkins, J. One-pot, one- and multi-carbon homologation of alkyl halides; reaction of grignard reagents with chloroiodomethane. Tetrahedron Lett., 1990, 31(7), 937-940.
[http://dx.doi.org/10.1016/S0040-4039(00)94397-1]
[72]
Kobayashi, S.; Kawamoto, T.; Uehara, S.; Fukuyama, T.; Ryu, I. Black-light-induced radical/ionic hydroxymethylation of alkyl iodides with atmospheric CO in the presence of tetrabutylammonium borohydride. Org. Lett., 2010, 12(7), 1548-1551.
[http://dx.doi.org/10.1021/ol1002847] [PMID: 20199034]
[73]
Sui, X.; Ding, L.; Gu, Z. The palladium/norbornene-catalyzed ortho-silylmethylation reaction: a practical protocol for ortho-functionalized one-carbon homologation of aryl iodides. Chem. Commun. (Camb.), 2016, 52(97), 13999-14002.
[http://dx.doi.org/10.1039/C6CC08227K] [PMID: 27853766]
[74]
Taber, D.F.; Paquette, C.M.; Reddy, P.G. One carbon homologation of halides to benzyl ethers. Tetrahedron Lett., 2009, 50(21), 2462-2463.
[http://dx.doi.org/10.1016/j.tetlet.2009.03.010] [PMID: 20161269]
[75]
a) Vanderwal, C.D.; Jacobsen, E.N. Enantioselective formal hydration of αβ-unsaturated imides by Al-catalyzed conjugate addition of oxime nucleophiles. J. Am. Chem. Soc., 2004, 126(45), 14724-14725.
[http://dx.doi.org/10.1021/ja045563f] [PMID: 15535689];
b) Sammis, G.M.; Jacobsen, E.N. Highly enantioselective, catalytic conjugate addition of cyanide to αβ-unsaturated imides. J. Am. Chem. Soc., 2003, 125(15), 4442-4443.
[http://dx.doi.org/10.1021/ja034635k] [PMID: 12683813];
c) Li, B-J.; Jiang, L.; Liu, M.; Chen, Y-C.; Ding, L-S.; Wu, Y. Asymmetric michael addition of arylthiols to αβ-unsaturated carbonyl compounds catalyzed by bifunctional organocatalysts. Synlett, 2005, 4, 603-606.;
d) Myers, J.K.; Jacobsen, E.N. Asymmetric synthesis of β-amino acid derivatives via catalytic conjugate addition of hydrazoic acid to unsaturated imides. J. Am. Chem. Soc., 1999, 121(38), 8959-8960.
[http://dx.doi.org/10.1021/ja991621z];
e) Sibi, M.P.; Prabagaran, N.; Ghorpade, S.G.; Jasperse, C.P. Enantioselective synthesis of αβ-disubstituted-β-amino acids. J. Am. Chem. Soc., 2003, 125(39), 11796-11797.
[http://dx.doi.org/10.1021/ja0372309] [PMID: 14505383];
f) Taylor, M.S.; Jacobsen, E.N. Enantioselective Michael additions to αβ-unsaturated imides catalyzed by a Salen-Al complex. J. Am. Chem. Soc., 2003, 125(37), 11204-11205.
[http://dx.doi.org/10.1021/ja037177o] [PMID: 16220935];
g) Hoashi, Y.; Okino, T.; Takemoto, Y. Enantioselective michael addition to αβ-unsaturated imides catalyzed by a bifunctional organocatalyst. Angew. Chem. Int. Ed., 2005, 44(26), 4032-4035.
[http://dx.doi.org/10.1002/anie.200500459] [PMID: 15906403];
h) Inokuma, T.; Hoashi, Y.; Takemoto, Y. Thiourea-catalyzed asymmetric michael addition of activated methylene compounds to αβ-unsaturated imides: dual activation of imide by intra- and intermolecular hydrogen bonding. J. Am. Chem. Soc., 2006, 128(29), 9413-9419.
[http://dx.doi.org/10.1021/ja061364f] [PMID: 16848477]
[76]
Yao, L.; Pitta, B.; Ravikumar, P.C.; Purzycki, M.; Fleming, F.F. Transmissive olefination route to putative “morinol I” lignans. J. Org. Chem., 2012, 77(7), 3651-3657.
[http://dx.doi.org/10.1021/jo3001723] [PMID: 22432777]
[77]
DeNinno, M.P.; Eller, C.; Etienne, J.B. The preparation and intra- and intermolecular addition reactions of acyclic N-acylimines: Application to the synthesis of (+/-)-sertraline. J. Org. Chem., 2001, 66(21), 6988-6993.
[http://dx.doi.org/10.1021/jo010370l] [PMID: 11597218]
[78]
Tomizawa, T.; Orimoto, K.; Niwa, T.; Nakada, M. Preparation of imides via the palladium-catalyzed coupling reaction of organoborons with methyl N-[methoxy(methylthio)methylene]carbamate as a one-carbon elongation reaction. Org. Lett., 2012, 14(24), 6294-6297.
[http://dx.doi.org/10.1021/ol303062a] [PMID: 23234269]
[79]
a) Jacobsen, E.N. Asymmetric catalysis of epoxide ring-opening reactions. Acc. Chem. Res., 2000, 33(6), 421-431.
[http://dx.doi.org/10.1021/ar960061v] [PMID: 10891060];
b) Padwa, A.; Murphree, S.S. Three-membered ring systems. Heterocycl. Chem., 1999, 11, 66-86.;
c) Gorzynski Smith, J. Synthetically useful reactions of epoxides. Synthesis, 1984, 1984(8), 629-656.
[http://dx.doi.org/10.1055/s-1984-30921]
[80]
a) Alcaraz, L.; Harnett, J.J.; Mioskowski, C.; Martel, J.P.; Le Gall, T.; Shin, D.S.; Falck, J.R. Novel conversion of epoxides to one carbon homologated allylic alcohols by dimethylsulfonium methylide. Tetrahedron Lett., 1994, 35(30), 5449-5452.
[http://dx.doi.org/10.1016/S0040-4039(00)73522-2];
b) Baylon, C.; Heck, M.P.; Mioskowski, C. Bis ring closing olefin metathesis for the synthesis of unsaturated polycyclic ethers. O-membered ring cyclization in favor of C-membered ring cyclization. J. Org. Chem., 1999, 64(9), 3354-3360. For an example of the synthetic use of the reaction, see:
[http://dx.doi.org/10.1021/jo982098u] [PMID: 11674445];
c) Davoille, R.J.; Rutherford, D.T.; Christie, S.D.R. Homologation of allylic alcohols. An approach to cyclic and acyclic polyoxygenated compounds. Tetrahedron Lett., 2000, 41(8), 1255-1259.
[http://dx.doi.org/10.1016/S0040-4039(99)02263-7]
[81]
Bode, J.W.; Carreira, E.M. Stereoselective syntheses of epothilones A and B via nitrile oxide cycloadditions and related studies. J. Org. Chem., 2001, 66(19), 6410-6424.
[http://dx.doi.org/10.1021/jo015791h] [PMID: 11559194]
[82]
Tomioka, T.; Sankranti, R.; Yamada, T.; Clark, C. n-BuLi/LiCH2CN-mediated one-carbon homologation of aryl epoxides into conjugated allyl alcohols. Org. Lett., 2013, 15(19), 5099-5101.
[http://dx.doi.org/10.1021/ol402466y] [PMID: 24069903]
[83]
Alcaraz, L.; Cox, K.; Cridland, A.P.; Kinchin, E.; Morris, J.; Thompson, S.P. Novel enantioselective synthesis of 1,3-butadien-2-ylmethanols via tandem alkylbromide-epoxide vinylations using dimethylsulfonium methylide. Org. Lett., 2005, 7(7), 1399-1401.
[http://dx.doi.org/10.1021/ol0502329] [PMID: 15787516]
[84]
Alcaraz, L.; Cridland, A.; Kinchin, E. Novel conversion of 1,2-disubstituted cis-epoxides to one-carbon homologated allylic alcohols using dimethylsulfonium methylide. Org. Lett., 2001, 3(25), 4051-4053.
[http://dx.doi.org/10.1021/ol016782y] [PMID: 11735582]
[85]
a) Cheikh, R.B.; Chaabouni, R.; Laurent, A.; Mison, P.; Nafti, A. Synthesis of primary allylic amines. Synthesis, 1983, 1983(9), 685-700.
[http://dx.doi.org/10.1055/s-1983-30473];
b) Johannsen, M.; Jørgensen, K.A. Allylic amination. Chem. Rev., 1998, 98(4), 1689-1708.
[http://dx.doi.org/10.1021/cr970343o] [PMID: 11848944]
[86]
a) Jeong, J.U.; Tao, B.; Sagasser, I.; Henniges, H.; Sharpless, K.B. Bromine-catalyzed aziridination of olefins. a rare example of atom-transfer redox catalysis by a main group element. J. Am. Chem. Soc., 1998, 120(27), 6844-6845.
[http://dx.doi.org/10.1021/ja981419g];
b) Gontcharov, A.V.; Liu, H.; Sharpless, K.B. Tert-butylsulfonamide. A new nitrogen source for catalytic aminohydroxylation and aziridination of olefins. Org. Lett., 1999, 1(5), 783-786.
[http://dx.doi.org/10.1021/ol990761a] [PMID: 10823205];
c) Kim, S.K.; Jacobsen, E.N. General catalytic synthesis of highly enantiomerically enriched terminal aziridines from racemic epoxides. Angew. Chem. Int. Ed., 2004, 43(30), 3952-3954.
[http://dx.doi.org/10.1002/anie.200460369] [PMID: 15274223];
d) Bartoli, G.; Bosco, M.; Carlone, A.; Locatelli, M.; Melchiorre, P.; Sambri, L. Asymmetric catalytic synthesis of enantiopure N-protected 1,2-amino alcohols. Org. Lett., 2004, 6(22), 3973-3975.
[http://dx.doi.org/10.1021/ol048322l] [PMID: 15496077];
e) Tanner, D. Chiral aziridines-Their synthesis and use in stereoselective transformations. Angew. Chem. Int. Ed. Engl., 1994, 33(6), 599-619.
[http://dx.doi.org/10.1002/anie.199405991];
f) Jacobsen, E.N. Comprehensive Asymmetric Catalysis; Springer-Verlag: Berlin, 1999, pp. 607-618.;
g) Müller, P.; Fruit, C. Enantioselective catalytic aziridinations and asymmetric nitrene insertions into CH bonds. Chem. Rev., 2003, 103(8), 2905-2920.
[http://dx.doi.org/10.1021/cr020043t] [PMID: 12914485]
[87]
a) Mordini, A.; Russo, F.; Valacchi, M.; Zani, L.; Degl’Innocenti, A.; Reginato, G. Base-promoted elaboration of aziridines. Tetrahedron, 2002, 58(35), 7153-7163.
[http://dx.doi.org/10.1016/S0040-4020(02)00729-9];
b) Müller, P.; Riegert, D.; Bernardinelli, G. Desymmetrization ofN-sulfonated aziridines by alkyllithium reagents in the presence of chiral ligands. Helv. Chim. Acta, 2004, 87(1), 227-239.
[http://dx.doi.org/10.1002/hlca.200490010]
[88]
Zhang, Z.D.; Scheffold, R. Asymmetric catalysis by vitamin B12: the isomerization of achiral aziridines to optically active allylic amines. Helv. Chim. Acta, 1993, 76(7), 2602-2615.
[http://dx.doi.org/10.1002/hlca.19930760719]
[89]
Yadav, J.S.; Bandyopadhyay, A.; Reddy, B.V.S. Indium mediated efficient conversion of 2-Iodomethyl aziridines to chiral allylic amines. Synlett, 2001, 2001(10), 1608-1610.
[http://dx.doi.org/10.1055/s-2001-17441]
[90]
Dickinson, J.M.; Murphy, J.A. Pyrrolidines and allylic amines from radical-induced cleavage of aziridines. Tetrahedron, 1992, 48(7), 1317-1326.
[http://dx.doi.org/10.1016/S0040-4020(01)90793-8]
[91]
Hodgson, D.M.; Fleming, M.J.; Stanway, S.J. One-carbon homologation of N-sulfonylaziridines to allylic amines using dimethylsulfonium methylide. Org. Lett., 2005, 7(15), 3295-3298.
[http://dx.doi.org/10.1021/ol051124p] [PMID: 16018644]
[92]
Wender, I.; Levine, R.; Orchin, M. Homologation of alcohols. J. Am. Chem. Soc., 1949, 71(12), 4160-4161.
[http://dx.doi.org/10.1021/ja01180a520]
[93]
Watanabe, K.; Kudo, K.; Mori, S.; Sugita, N. Selective formation of 2-phenylethanol in the homologation of benzyl alcohol. Bull. Chem. Soc. Jpn., 1986, 59(8), 2565-2570.
[http://dx.doi.org/10.1246/bcsj.59.2565]
[94]
Zhu, L.L.; Li, X.X.; Zhou, W.; Li, X.; Chen, Z. Divergent synthetic routes for ring expansion or cyclization from 1,4-allylic diol derivatives via gold(I) catalysis or zinc(II) mediation. J. Org. Chem., 2011, 76(21), 8814-8823.
[http://dx.doi.org/10.1021/jo2015517] [PMID: 21919452]
[95]
Gupta, M.K.; Li, Z.; Snowden, T.S. One-pot synthesis of trichloromethyl carbinols from primary alcohols. J. Org. Chem., 2012, 77(10), 4854-4860.
[http://dx.doi.org/10.1021/jo300725v] [PMID: 22559051]
[96]
Gupta, M.K.; Li, Z.; Snowden, T.S. Preparation of one-carbon homologated amides from aldehydes or primary alcohols. Org. Lett., 2014, 16(6), 1602-1605.
[http://dx.doi.org/10.1021/ol500200n] [PMID: 24593196]
[97]
Li, Z.; Gupta, M.K.; Snowden, T.S. One-carbon homologation of primary alcohols and the reductive homologation of aldehydes involving a jocic-type reaction. Eur. J. Org. Chem., 2015, 2015(32), 7009-7019.
[http://dx.doi.org/10.1002/ejoc.201501089]
[98]
Kagawa, N.; Nibbs, A.E.; Rawal, V.H. One-carbon homologation of primary alcohols to carboxylic acids, esters, and amides via mitsunobu reactions with MAC reagents. Org. Lett., 2016, 18(10), 2363-2366.
[http://dx.doi.org/10.1021/acs.orglett.6b00790] [PMID: 27135854]
[99]
Nuzillard, J.M.; Boumendjel, A.; Massiot, G. A new synthesis of αβ-unsaturated aldehydes. Tetrahedron Lett., 1989, 30(29), 3779-3780.
[http://dx.doi.org/10.1016/S0040-4039(01)80653-5]
[100]
Cabezas, J.A.; Oehlsehlager, A.C. Two-carbon homologation of aldehydes. Synthesis of trans-αβ-unsaturated aldehydes. Tetrahedron Lett., 1995, 36, 5127-5130.
[101]
Maeta, H.; Suzuki, K. Two- and four-carbon homologation of aldehyde by AgClO4-catalyzed addition of alkoxyalkenylzirconocene chloride. Tetrahedron Lett., 1993, 34(2), 341-344.
[http://dx.doi.org/10.1016/S0040-4039(00)60583-X]
[102]
McLeod, D.; McNulty, J. DualPhos: a versatile, chemoselective reagent for two-carbon aldehyde to latent (E)-alkenal homologation and application in the total synthesis of phomolide G. R. Soc. Open Sci., 2016, 3(11), 160374-160380.
[http://dx.doi.org/10.1098/rsos.160374] [PMID: 28018615]
[103]
Valenta, P.; Drucker, N.A.; Bode, J.W.; Walsh, P.J. Simple one-pot conversion of aldehydes and ketones to enals. Org. Lett., 2009, 11(10), 2117-2119.
[http://dx.doi.org/10.1021/ol9005757] [PMID: 19419211]
[104]
Petroski, R.J.; Vermillion, K.; Cossé, A.A. Two-carbon homologation of aldehydes and ketones to αβ-unsaturated aldehydes. Molecules, 2011, 16(6), 5062-5078.
[http://dx.doi.org/10.3390/molecules16065062] [PMID: 21694671]
[105]
Petroski, R.J.; Bartelt, R.J. Direct aldehyde homologation utilized to construct a conjugated-tetraene hydrocarbon insect pheromone. J. Agric. Food Chem., 2007, 55(6), 2282-2287.
[http://dx.doi.org/10.1021/jf063337e] [PMID: 17319690]
[106]
Barma, D.K.; Lu, B.; Baati, R.; Mioskowski, C.; Falck, J.R. Convenient preparation of (Z)-α-halo-αβ-unsaturated aldehydes: Synthesis of a Laurencia flexilis toxin. Tetrahedron Lett., 2008, 49(28), 4359-4361.
[http://dx.doi.org/10.1016/j.tetlet.2008.05.026]
[107]
a) Horne, D.; Gaudino, J.; Thompson, W.J. A convenient method for the synthesis of α-Ketoesters from aldehydes. Tetrahedron Lett., 1984, 25(33), 3529-3532.
[http://dx.doi.org/10.1016/S0040-4039(01)91067-6];
b) Fetizon, M.; Hanna, I.; Rens, J. Chemistry of 1,4-dioxene II. Tetrahedron Lett., 1985, 26(29), 3453-3456.
[http://dx.doi.org/10.1016/S0040-4039(00)98662-3]
[108]
Dondoni, A.; Fantin, G.; Fogagnolo, M.; Medici, A.; Pedrini, P. Thiazolylmethylenetriphenylphosporane and its benzo derivative: stable and practical wittig reagents for the synthesis of vinylthiazoles and vinylbenzo. Tetrahedron, 1988, 44(7), 2021-2031.
[http://dx.doi.org/10.1016/S0040-4020(01)90345-X]
[109]
Dondoni, A.; Merino, P.; Orduna, J.; Perrone, D. Two-carbon chain extension of chiral aldehydes via 2-alkenylthiazoles: synthesis of γ-functionalized alkanals. Synthesis, 1993, 1993(3), 277-279.
[http://dx.doi.org/10.1055/s-1993-25844]
[110]
Shen, Y.; Qi, M. An effective synthesis of 2,2-difluoro-3-hydroxy esters. J. Fluor. Chem., 1994, 67(3), 229-232.
[http://dx.doi.org/10.1016/0022-1139(93)02961-D]
[111]
Valla, A.; Cartier, D.; Laurent, A.; Valla, B.; Labia, R.; Potier, P. two-carbons homologation of methyl ketones examplified for the synthesis of citral from 6-methyl-5-hepten-2-one. Synth. Commun., 2003, 33(7), 1195-1201.
[http://dx.doi.org/10.1081/SCC-120017196]
[112]
You, L.; Al-Rashid, Z.F.; Figueroa, R.; Ghosh, S.K.; Li, G.; Lu, T.; Hsung, R.P. A Two-carbon homologation of aldehydes and ketones using ynamides. Synlett, 2007, 1656-1662.
[113]
Mahata, P.K.; Barun, O.; Ila, H.; Junjappa, H. Formation of acetaldehyde enolate from vinyl acetate and its reaction with aromatic and heterocyclic aldehydes: an efficient synthesis of enals and polyenals. Synlett, 2000, 1345-1347.
[114]
Frost, C.G.; Hartley, B.C. Tandem molybdenum catalyzed hydrosilylations: an expedient synthesis of β-aryl aldehydes. Org. Lett., 2007, 9(21), 4259-4261.
[http://dx.doi.org/10.1021/ol701812w] [PMID: 17854195]
[115]
Jeon, S.J.; Chen, Y.K.; Walsh, P.J. Catalytic asymmetric synthesis of hydroxy enol ethers: approach to a two-carbon homologation of aldehydes. Org. Lett., 2005, 7(9), 1729-1732.
[http://dx.doi.org/10.1021/ol050255n] [PMID: 15844892]
[116]
Bellassoued, M.; Lensen, N.; Bakasse, M.; Mouelhi, S. Two-carbon homologation of aldehydes via silyl ketene acetals: A new stereoselective approach to (E)-alkenoic acids. J. Org. Chem., 1998, 63(24), 8785-8789.
[http://dx.doi.org/10.1021/jo980853y]
[117]
Bellassoued, M.; Mouelhi, S.; Lensen, N. Two-carbon homologation of aldehydes via silyl ketene acetals. 2. Study of the stereochemical control in the formation of (E)-alkenoic acids. J. Org. Chem., 2001, 66(15), 5054-5057.
[http://dx.doi.org/10.1021/jo010092q] [PMID: 11463256]
[118]
Bellassoued, M.; Mouelhi, S.; Fromentin, P.; Gonzalez, A. Two-carbon homologation of ketones via sily ketene acetals: Synthesis of αβ-unsaturated acids and α-trimethylsilyl δ-ketoacids. J. Organomet. Chem., 2005, 690(9), 2172-2179.
[http://dx.doi.org/10.1016/j.jorganchem.2005.01.049]
[119]
Lee, D.; Danishefsky, S.J. Cascade resulting in the reductive ethynylation of aldehydes: dissection of its components. J. Am. Chem. Soc., 2010, 132(12), 4427-4430.
[http://dx.doi.org/10.1021/ja910825g] [PMID: 20201522]
[120]
Baati, R.; Mioskowski, C.; Kashinath, D.; Kodepelly, S.; Lu, B.; Falck, J.R. Stereoselective synthesis of methyl (Z)-α-methoxyacrylates via two-carbon homologation of aldehydes. Tetrahedron Lett., 2009, 50(4), 402-405.
[http://dx.doi.org/10.1016/j.tetlet.2008.11.027]
[121]
Lebel, H.; Ladjel, C. Rhodium-catalyzed cascade reactions: A methylenation–hydroboration homologative process. J. Organomet. Chem., 2005, 690(23), 5198-5205.
[http://dx.doi.org/10.1016/j.jorganchem.2005.03.058]
[122]
Ramachary, D.B.; Kishor, M.; Ramakumar, K. A novel and green protocol for two-carbon homologation: a direct amino acid/K2CO3-catalyzed four-component reaction of aldehydes, active methylenes, Hantzsch esters and alkyl halides. Tetrahedron Lett., 2006, 47(5), 651-656.
[http://dx.doi.org/10.1016/j.tetlet.2005.11.128]
[123]
Kajjout, M.; Zemmouri, R.; Eddarir, S.; Rolando, C. An efficient access to (Z)-β-fluoroallyl alcohols based on the two carbon homologation of aromatic aldehydes by Horner–Wadsworth–Emmons reaction with 2-(diethoxyphosphinyl)-2-fluoro-ethanethioic acid, S-ethyl ester followed by reduction with sodium borohydride. Tetrahedron, 2012, 68(15), 3225-3230.
[http://dx.doi.org/10.1016/j.tet.2012.02.039]
[124]
a) Shimada, K.; Otaki, A.; Yanakawa, M.; Mabuchi, S.; Yamakado, N.; Shimoguchi, T.; Inoue, K.; Kagawa, T.; Shoji, K.; Takikawa, Y. A pummerer-type novel ring fission of 2-methylsulfinyl-5,6-dihydro-4h-1,3,4-thiadiazine derivatives: A homologation of aldehydes and ketones. Bull. Chem. Soc. Jpn., 1996, 69(4), 1043-1054.
[http://dx.doi.org/10.1246/bcsj.69.1043];
b) Shimada, K.; Otaki, A.; Yanakawa, M.; Mabuchi, S.; Yamakado, N.; Shimoguchi, T.; Inoue, K.; Kagawa, T.; Shoji, K.; Takikawa, Y. A homologation of aldehydes and ketones via the formation and the subsequent pummerer-type ring fission of 2-methylsulfinyl-5,6-dihydro-4h-1,3,4-thiadiazine derivatives. Chem. Lett., 1995, 24(10), 925-926.
[http://dx.doi.org/10.1246/cl.1995.925]
[125]
McNulty, J.; Zepeda-Velázquez, C.; McLeod, D. Development of a robust reagent for the two-carbon homologation of aldehydes to (E)-αβ-unsaturated aldehydes in water. Green Chem., 2013, 15(11), 3146-3149.
[http://dx.doi.org/10.1039/c3gc41383g]
[126]
Hayashi, Y.; Sakamoto, D.; Okamura, D. One-Pot Synthesis of (S)-Baclofen via aldol condensation of acetaldehyde with diphenylprolinol silyl ether mediated asymmetric michael reaction as a key step. Org. Lett., 2016, 18(1), 4-7.
[http://dx.doi.org/10.1021/acs.orglett.5b02839] [PMID: 26636719]
[127]
a) Gutsche, C.D.; Redmore, D. Carbocyclic Ring Expansion Reactions; Academic Press: New York, 1968. ;
b) Krow, G.R. One carbon ring expansions of bridged bicyclic ketones. Tetrahedron, 1987, 43(1), 3-38.
[http://dx.doi.org/10.1016/S0040-4020(01)89927-0];
c) Deprés, J.P.; Navarro, B.; Greene, A.E. A new two-carbon olefin homologation procedure that leads to α-chloroenones. An efficient synthesis of, -muscone. Tetrahedron, 1989, 45(10), 2989-2998.
[http://dx.doi.org/10.1016/S0040-4020(01)80126-5]
[128]
Ishibashi, H.; Ohnishi, M.; Senda, T.; Ikeda, M. New preparation of αβ-unsaturated esters from 1-alkenes via two carbon homologation route. synthesis of queen substance. Synth. Commun., 1989, 19(5-6), 857-864.
[http://dx.doi.org/10.1080/00397918908051004]
[129]
Padilla-Salinas, R.; Walvoord, R.R.; Tcyrulnikov, S.; Kozlowski, M.C. Nitroethylation of vinyl triflates and bromides. Org. Lett., 2013, 15(15), 3966-3969.
[http://dx.doi.org/10.1021/ol401747u] [PMID: 23885976]
[130]
a) Ebenezer, W.J.; Wight, P. Comprehensive Organic Functional Group Transformations; Pergamon: Oxford, 1995, Vol. 3, p. 53.
[http://dx.doi.org/10.1016/B0-08-044705-8/00166-7];
b) Battistuzzi, G.; Cacchi, S.; Fabrizi, G. An efficient palladium-catalyzed synthesis of cinnamaldehydes from acrolein diethyl acetal and aryl iodides and bromides. Org. Lett., 2003, 5(5), 777-780.
[http://dx.doi.org/10.1021/ol034071p] [PMID: 12605513];
c) Suzuki, T.; Tokunaga, M.; Wakatsuki, Y. Efficient transformation of propargylic alcohols to αβ-unsaturated aldehydes catalyzed by ruthenium/water under neutral conditions. Tetrahedron Lett., 2002, 43(42), 7531-7533.
[http://dx.doi.org/10.1016/S0040-4039(02)01821-X];
d) Nicolaou, K.C.; Zhong, Y-L.; Baran, P.S. A new method for the one-step synthesis of αβ-unsaturated carbonyl systems from saturated alcohols and carbonyl compounds. J. Am. Chem. Soc., 2000, 122(31), 7596-7597.
[http://dx.doi.org/10.1021/ja001825b];
e) Reid, M.; Rowe, D.J.; Taylor, R.J.K. Two carbon homologated αβ-unsaturated aldehydes from alcohols using the in situ oxidation-Wittig reaction. Chem. Commun. (Camb.), 2003, (18), 2284-2285.
[http://dx.doi.org/10.1039/B306738F] [PMID: 14518876]
[131]
Prashad, M.; Lu, Y.; Repič, O. A novel two-carbon homologation with N-vinylacetamides and ethyl vinyl ether as acetaldehyde anion equivalents in the synthesis of 9H-xanthene, 9H-thioxanthene, and 9,10-dihydro-9-acridine carboxaldehydes. J. Org. Chem., 2004, 69(2), 584-586.
[http://dx.doi.org/10.1021/jo0303057] [PMID: 14725481]
[132]
Schuda, P.F.; Greenlee, W.J.; Chakravarty, P.K.; Eskola, P. A short and efficient synthesis of (3S,4S)-4-[(tert-Butyloxycarbonyl)-amino]-5-cyclohexyl-3-hydroxypentanoic acid ethyl ester. J. Org. Chem., 1988, 53(4), 873-875.
[http://dx.doi.org/10.1021/jo00239a036]
[133]
Vidal, A.; Nefzi, A.; Houghten, R.A. Solid-phase synthesis of αα-difluoro-β-amino acids via the reformatsky reaction. J. Org. Chem., 2001, 66(24), 8268-8272.
[http://dx.doi.org/10.1021/jo010872z] [PMID: 11722240]
[134]
Srećo, B.; Benedeković, G.; Popsavin, M.; Hadžić, P.; Kojić, V.; Bogdanović, G.; Divjaković, V.; Popsavin, V. Heteroannelated (+)-muricatacin mimics: synthesis, antiproliferative properties and structure–activity relationships. Tetrahedron, 2011, 67(48), 9358-9367.
[http://dx.doi.org/10.1016/j.tet.2011.09.132]
[135]
a) Secrist, J.A.; Barnes, K.D.; Wu, S-R. Trends in synthetic carbohydrate chemistry. Br. Polym. J., 1989, 23(3), 280-290.;
b) Danishefsky, S.J.; DeNinno, M.P. Totally synthetic routes to the higher monosaccharides. Angew. Chem. Int. Ed. Engl., 1987, 26(1), 15-23.
[http://dx.doi.org/10.1002/anie.198700151];
c) Jørgensen, M.; Iversen, E.H.; Madsen, R. A convenient route to higher sugars by two-carbon chain elongation using Wittig/dihydroxylation reactions. J. Org. Chem., 2001, 66(13), 4625-4629.
[http://dx.doi.org/10.1021/jo010128e] [PMID: 11421783]
[136]
Davies, S.G.; Nicholson, R.L.; Smith, A.D. A SuperQuat glycolate aldol approach to the asymmetric synthesis of hexose monosaccharides. Org. Biomol. Chem., 2005, 3(2), 348-359.
[http://dx.doi.org/10.1039/b415943h] [PMID: 15632978]
[137]
Ajish Kumar, K.S.; Chaudhari, V.D.; Dhavale, D.D. Efficient synthesis of (+)-1,8,8a-tri-epi-swainsonine, (+)-1,2-di-epi-lentiginosine, (+)-9a-epi-homocastanospermine and (−)-9-deoxy-9a-epi-homocastanospermine from a D-glucose-derived aziridine carboxylate, and study of their glycosidase inhibitory activities. Org. Biomol. Chem., 2008, 6(4), 703-711.
[http://dx.doi.org/10.1039/b712753g] [PMID: 18264570]
[138]
Draskovits, M.; Stanetty, C.; Baxendale, I.R.; Mihovilovic, M.D. Indium- and Zinc-mediated acyloxyallylation of protected and unprotected aldotetroses—revealing a pronounced diastereodivergence and a fundamental difference in the performance of the mediating metal. J. Org. Chem., 2018, 83(5), 2647-2659.
[http://dx.doi.org/10.1021/acs.joc.7b03063] [PMID: 29369620]
[139]
Gamboa Marin, O.J.; Hussain, N.; Ravicoularamin, G.; Ameur, N.; Gormand, P.; Sauvageau, J.; Gauthier, C. Total synthesis of 6-amino-2,6-dideoxy-α-Kdo from D-mannose. Org. Lett., 2020, 22(15), 5783-5788.
[http://dx.doi.org/10.1021/acs.orglett.0c01847] [PMID: 32663012]
[140]
Hudlicky, T.; Olivo, H.F.; Natchus, M.G.; Umpierrez, E.F.; Pandolfi, E.; Volonterio, C. Synthesis of. β-methoxy enones via a new two-carbon extension of carboxylic acids. J. Org. Chem., 1990, 55(15), 4767-4770.
[http://dx.doi.org/10.1021/jo00302a056]
[141]
Barton, D.H.R.; Liu, W. Two carbon homologation of carboxylic acids using acrylamide as a radical trap. Tetrahedron Lett., 1997, 38(14), 2431-2434.
[http://dx.doi.org/10.1016/S0040-4039(97)00418-8]
[142]
Fino, J.R.; Mattingly, P.G.; Ray, K.A. A convenient method for the preparation of hapten phosphoramidites. Bioconjug. Chem., 1996, 7(2), 274-280.
[http://dx.doi.org/10.1021/bc960004m] [PMID: 8983351]
[143]
Suzuki, K.; Ohkuma, T.; Tsuchihashi, G. Preparation of enaminones by two-carbon homologation of amides with lithium (triphenylsilyl)acetylide. J. Org. Chem., 1987, 52(13), 2929-2930.
[http://dx.doi.org/10.1021/jo00389a052]
[144]
Takacs, J.M.; Helle, M.A.; Seely, F.L. An improved procedure for the two carbon homologation of esters to α β-unsaturated esters. Tetrahedron Lett., 1986, 27(11), 1257-1260.
[http://dx.doi.org/10.1016/S0040-4039(00)84232-X]
[145]
Thenappan, A.; Burton, D.J. Preparation of α-fluoro-αβ-unsaturated esters two carbon homologation of esters. Tetrahedron Lett., 1989, 30(41), 5571-5574.
[http://dx.doi.org/10.1016/S0040-4039(01)93802-X]
[146]
Webb, D.; Jamison, T.F. A continuous homologation of esters: an efficient telescoped reduction-olefination sequence. Org. Lett., 2012, 14(10), 2465-2467.
[http://dx.doi.org/10.1021/ol300722e] [PMID: 22545983]
[147]
Choi, H.G.; Park, D.S.; Lee, W.K.; Sim, T. An efficient synthesis of 1,4-dideoxy-1,4-imino-D- and L-arabinitol and 1,4-dideoxy-1,4-imino-D- and L-xylitol from chiral aziridines. Tetrahedron Lett., 2013, 54(43), 5775-5777.
[http://dx.doi.org/10.1016/j.tetlet.2013.08.040]
[148]
Nagasawa, T.; Kuwahara, S. Enantioselective total synthesis of aspergillide C. Org. Lett., 2009, 11(3), 761-764.
[http://dx.doi.org/10.1021/ol802803x] [PMID: 19128025]
[149]
Komatsubara, M.; Umeki, T.; Fukuda, T.; Iwao, M. Modular synthesis of lamellarins via regioselective assembly of 3,4,5-differentially arylated pyrrole-2-carboxylates. J. Org. Chem., 2014, 79(2), 529-537.
[http://dx.doi.org/10.1021/jo402181w] [PMID: 24364699]
[150]
Jamieson, M.L.; Hume, P.A.; Furkert, D.P.; Brimble, M.A. Divergent reactivity via cobalt catalysis: An epoxide olefination. Org. Lett., 2016, 18(3), 468-471.
[http://dx.doi.org/10.1021/acs.orglett.5b03514] [PMID: 26829490]
[151]
a) Fraga, B.M. Natural sesquiterpenoids. Nat. Prod. Rep., 1998, 15, 73-92.
[http://dx.doi.org/10.1039/a815073y];
b) Fraga, B.M. Natural sesquiterpenoids. Nat. Prod. Rep., 1997, 14(2), 145-162.
[http://dx.doi.org/10.1039/np9971400145];
c) Ciceri, P.; Demnitz, F.W.J.; Souza, M.C.F.; Lehmann, M. A common approach to the synthesis of monocyclofarnesyl sesquiterpenes. J. Braz. Chem. Soc., 1998, 9(4), 409-414.
[http://dx.doi.org/10.1590/S0103-50531998000400015]
[152]
Lee, H.K.; Chun, J.S.; Pak, C.S. Facile conversion of 2-azetidinones to 2-piperidones: application to a formal synthesis of Prosopis and Cassia alkaloids. Tetrahedron, 2003, 59(34), 6445-6454.
[http://dx.doi.org/10.1016/S0040-4020(03)01063-9]
[153]
Falomir, E.; Murga, J.; Carda, M.; Marco, J.A. Stereoselective synthesis of spicigerolide. Tetrahedron Lett., 2003, 44(3), 539-541.
[http://dx.doi.org/10.1016/S0040-4039(02)02588-1] [PMID: 12839461]
[154]
Banwell, M.G.; Loong, D.T.J. A chemoenzymatic total synthesis of the phytotoxic undecenolide (−)-cladospolide A. Org. Biomol. Chem., 2004, 2(14), 2050-2060.
[http://dx.doi.org/10.1039/B401829J] [PMID: 15254633]
[155]
Fanning, K.N.; Sutherland, A. A facile synthesis of (S)-gizzerosine, a potent agonist of the histamine H2-receptor. Tetrahedron Lett., 2007, 48(48), 8479-8481.
[http://dx.doi.org/10.1016/j.tetlet.2007.09.165]
[156]
Hjelmgaard, T.; Faure, S.; Lemoine, P.; Viossat, B.; Aitken, D.J. Rapid assembly of the polyhydroxylated β-amino acid constituents of microsclerodermins C, D, and E. Org. Lett., 2008, 10(5), 841-844.
[http://dx.doi.org/10.1021/ol702962z] [PMID: 18254636]
[157]
Khrimian, A.; Lance, D.R.; Mastro, V.C.; Elkinton, J.S. Improved synthesis of (3E,6Z,9Z)-1,3,6,9-nonadecatetraene, attraction inhibitor of bruce spanworm, Operophtera bruceata, to pheromone traps for monitoring winter moth, Operophtera brumata. J. Agric. Food Chem., 2010, 58(3), 1828-1833.
[http://dx.doi.org/10.1021/jf903468c] [PMID: 20041659]
[158]
Samaja, G.A.; Castro, O.; Alvarez, L.D.; Dansey, M.V.; Escudero, D.S.; Veleiro, A.S.; Pecci, A.; Burton, G. 27-Nor-Δ4-dafachronic acid is a synthetic ligand of Caenorhabditis elegans DAF-12 receptor. Bioorg. Med. Chem. Lett., 2013, 23(10), 2893-2896.
[http://dx.doi.org/10.1016/j.bmcl.2013.03.071] [PMID: 23570785]
[159]
Das, S.; Induvadana, B.; Ramana, C.V. Metal-mediated alkynediol cycloisomerization: first and second generation formal total syntheses of didemniserinolipid B. Tetrahedron, 2013, 69(7), 1881-1896.
[http://dx.doi.org/10.1016/j.tet.2012.12.045]
[160]
Poirier, D.; Maltais, R. NMR-assisted structure elucidation of an anticancer steroid-β-enaminone derivative. Magnetochemistry, 2017, 3(4), 37-45.
[http://dx.doi.org/10.3390/magnetochemistry3040037]
[161]
Datrika, R.; Kallam, S.R.; Gajare, V.; Khobare, S.; Rama, V.S.; Kommi, M.; Hindupur, R.M.; Vidavulur, S.; Tadikonda, P.V. Synthesis of (+)-Patulolide C using R-(+)-γ-Valerolactone as a chiral synthon. ChemistrySelect, 2017, 2(21), 5828-5831.
[http://dx.doi.org/10.1002/slct.201700921]
[162]
Kawamoto, T.; Oritani, K.; Curran, D.P.; Kamimura, A. Thiol-catalyzed radical decyanation of aliphatic nitriles with sodium borohydride. Org. Lett., 2018, 20(7), 2084-2087.
[http://dx.doi.org/10.1021/acs.orglett.8b00626] [PMID: 29517914]
[163]
Tymann, D.C.; Benedix, L.; Iovkova, L.; Pallach, R.; Henke, S.; Tymann, D.; Hiersemann, M. Photochemical approach to the cyclohepta[b]indole scaffold by annulative two-carbon ring-expansion. Chemistry, 2020, 26(52), 11974-11978.
[http://dx.doi.org/10.1002/chem.202002581] [PMID: 32463529]