Cancer is a multi-step process involving alterations in epigenetic and genetic processes. Oral squamous cell carcinoma is a frequent oral malignancy that originates from the transformation of normal cells into malignant cells as a consequence of failures in a series of normal molecular and cellular processes. The mechanism of human carcinogenesis is often seen as a double-edged sword, with the body's system being thought to counteract the detrimental consequences of neoplastic cell proliferation while simultaneously promoting tumor development. Various transcription factors play a significant part in cancer regulation, with the activator protein-1 family of transcription factors (TFs) being the most prominent regulatory protein family. The Jun, Fos, ATF, and MAF protein families are all present in the AP-1 dimeric complex. While certain AP-1 proteins, including JunB and c-Fos, are known to be majorly oncogenic in function, experimental studies have shown that other AP-1 proteins, such as JunB and c-Fos, also play a critical role in tumor suppression. The aim of this review is to offer breakthrough information on the role of molecular mechanisms mediated by AP-1 TFs in tumor development and its environment.