Ubiquitous Existence of Cation-Proton Antiporter and its Structurefunction Interplay: A Clinical Prospect

Page: [43 - 58] Pages: 16

  • * (Excluding Mailing and Handling)

Abstract

Sodium, potassium, and protons are the most important ions for life on earth, and their homeostasis is crucially needed for the survival of cells. The biological cells have developed a system that regulates and maintains the integrity of the cells by facilitating the exchange of these ions. These systems include the specific type of ion transporter membrane proteins such as cation-proton antiporters. Cation proton antiporters induce the active transport of cations like Na+, K+ or Ca+ across the cell membrane in exchange for protons (H+) and make the organism able to survive in alkaline conditions, high or fluctuating pH, stressed temperature or osmolarity. The secondary transporter proteins exploit the properties of various specific structural components to carry out efficient active transport. Ec-NhaA crystal structure was resolved at acidic pH at which the protein is downregulated, which discloses the presence of 12 transmembrane (TM) helices. This structural fold, the “NhaA fold,” is speculated to contribute to the cation-binding site and conformational alterations during transport in various antiporters. Irrespective of the variation in the composition of amino acids and lengths of proteins, several other members of the CPA family, such as NmABST, PaNhaP, and MjNhaP1, share the common structural features of the Ec-NhaA. The present review elucidates the existence of CPAs throughout all the kingdoms and the structural intercorrelation with their function. The interplay in the structurefunction of membrane transporter protein may be implemented to explore the plethora of biological events such as conformation, folding, ion binding and translocation etc.

Graphical Abstract

[1]
Meury, J.; Kepes, A. The regulation of potassium fluxes for the adjustment and maintenance of potassium levels in Escherichia coli. Eur. J. Biochem., 1981, 119(1), 165-170.
[http://dx.doi.org/10.1111/j.1432-1033.1981.tb05589.x] [PMID: 7042336]
[2]
Dreyer, I.; Uozumi, N. Potassium channels in plant cells. FEBS J., 2011, 278(22), 4293-4303.
[http://dx.doi.org/10.1111/j.1742-4658.2011.08371.x] [PMID: 21955642]
[3]
Etherton, B.; Higinbotham, N. Transmembrane potential measurements of cells of higher plants as related to salt uptake. Science, 1960, 131(3398), 409-410.
[http://dx.doi.org/10.1126/science.131.3398.409] [PMID: 13820900]
[4]
Cheeseman, J.M.; Hanson, J.B. Mathematical analysis of the dependence of cell potential on external potassium in corn roots. Plant Physiol., 1979, 63(1), 1-4.
[http://dx.doi.org/10.1104/pp.63.1.1] [PMID: 16660655]
[5]
Maathuis, F.M.; Sanders, D. Energization of potassium uptake in Arabidopsis thaliana. Planta, 1993, 191(3), 302-307.
[http://dx.doi.org/10.1007/BF00195686]
[6]
Hasanuzzaman, M.; Bhuyan, M.; Nahar, K.; Hossain, M.; Mahmud, J.; Hossen, M.; Masud, A. Moumita; Fujita, M. Potassium: A vital regulator of plant responses and tolerance to abiotic stresses. Agronomy (Basel), 2018, 8(3), 31.
[http://dx.doi.org/10.3390/agronomy8030031]
[7]
Gohara, D.W.; Di Cera, E. Molecular mechanisms of enzyme activation by monovalent cations. J. Biol. Chem., 2016, 291(40), 20840-20848.
[http://dx.doi.org/10.1074/jbc.R116.737833] [PMID: 27462078]
[8]
Kronzucker, H.J.; Coskun, D.; Schulze, L.M.; Wong, J.R.; Britto, D.T. Sodium as nutrient and toxicant. Plant Soil, 2013, 369(1-2), 1-23.
[http://dx.doi.org/10.1007/s11104-013-1801-2]
[9]
Isayenkov, S.V.; Dabravolski, S.A.; Pan, T.; Shabala, S. Phylogenetic diversity and physiological roles of plant monovalent cation/H+ antiporters. Front. Plant Sci., 2020, 11, 573564.
[http://dx.doi.org/10.3389/fpls.2020.573564] [PMID: 33123183]
[10]
Lo, C.J.; Leake, M.C.; Berry, R.M. Fluorescence measurement of intracellular sodium concentration in single Escherichia coli cells. Biophys. J., 2006, 90(1), 357-365.
[http://dx.doi.org/10.1529/biophysj.105.071332] [PMID: 16227503]
[11]
Uozumi, N.; Dreyer, I. Structure-function correlates in plant ion channels. In: Comprehensive Biophysics; Academic Press: Cambridge, MA, USA, 2012; Vol. 6, pp. 234-245.
[http://dx.doi.org/10.1016/B978-0-12-374920-8.00628-7]
[12]
Brett, C.L.; Donowitz, M.; Rao, R. Evolutionary origins of eukaryotic sodium/proton exchangers. Am. J. Physiol. Cell Physiol., 2005, 288(2), C223-C239.
[http://dx.doi.org/10.1152/ajpcell.00360.2004] [PMID: 15643048]
[13]
Dwivedi, M.; Shaw, A. Implication of cation-proton antiporters (CPA) in human health and diseases causing microorganisms. Biochimie, 2021, 182, 85-98.
[http://dx.doi.org/10.1016/j.biochi.2021.01.004] [PMID: 33453344]
[14]
Padan, E.; Michel, H.; Nha, A. A unique structural fold of secondary active transporters. Isr. J. Chem., 2015, 55(11-12), 1233-1239.
[http://dx.doi.org/10.1002/ijch.201500044]
[15]
Maes, M.; Rimon, A.; Kozachkov-Magrisso, L.; Friedler, A.; Padan, E. Revealing the ligand binding site of NhaA Na+/H+ antiporter and its pH dependence. J. Biol. Chem., 2012, 287(45), 38150-38157.
[http://dx.doi.org/10.1074/jbc.M112.391128] [PMID: 22915592]
[16]
Quick, M.; Dwivedi, M.; Padan, E. Insight into the direct interaction of Na+ with NhaA and mechanistic implications. Sci. Rep., 2021, 11(1), 7045.
[http://dx.doi.org/10.1038/s41598-021-86318-8] [PMID: 33782459]
[17]
Hunte, C.; Screpanti, E.; Venturi, M.; Rimon, A.; Padan, E.; Michel, H. Structure of a Na+/H+ antiporter and insights into mechanism of action and regulation by pH. Nature, 2005, 435(7046), 1197-1202.
[http://dx.doi.org/10.1038/nature03692] [PMID: 15988517]
[18]
Lee, C.; Yashiro, S.; Dotson, D.L.; Uzdavinys, P.; Iwata, S.; Sansom, M.S.P.; von Ballmoos, C.; Beckstein, O.; Drew, D.; Cameron, A.D. Crystal structure of the sodium–proton antiporter NhaA dimer and new mechanistic insights. J. Gen. Physiol., 2014, 144(6), 529-544.
[http://dx.doi.org/10.1085/jgp.201411219] [PMID: 25422503]
[19]
Padan, E.; Kozachkov, L.; Herz, K.; Rimon, A. NhaA crystal structure: Functional–structural insights. J. Exp. Biol., 2009, 212(11), 1593-1603.
[http://dx.doi.org/10.1242/jeb.026708] [PMID: 19448069]
[20]
Rimon, A.; Dwivedi, M.; Friedler, A.; Padan, E. Asp133 residue in NhaA Na+/H+ antiporter is required for stability cation binding and transport. J. Mol. Biol., 2018, 430(6), 867-880.
[http://dx.doi.org/10.1016/j.jmb.2018.01.014] [PMID: 29410365]
[21]
Călinescu, O.; Dwivedi, M.; Patiño-Ruiz, M.; Padan, E.; Fendler, K. Lysine 300 is essential for stability but not for electrogenic transport of the Escherichia coli NhaA Na+/H+ antiporter. J. Biol. Chem., 2017, 292(19), 7932-7941.
[http://dx.doi.org/10.1074/jbc.M117.778175] [PMID: 28330875]
[22]
Dwivedi, M. Site-directed mutations reflecting functional and structural properties of Ec-NhaA. Biochimie, 2021, 180, 79-89.
[http://dx.doi.org/10.1016/j.biochi.2020.10.017] [PMID: 33129932]
[23]
Dwivedi, M.; Sukenik, S.; Friedler, A.; Padan, E. The Ec-NhaA antiporter switches from antagonistic to synergistic antiport upon a single point mutation. Sci. Rep., 2016, 6(1), 23339.
[http://dx.doi.org/10.1038/srep23339] [PMID: 27021484]
[24]
Huang, Y.; Chen, W.; Dotson, D.L.; Beckstein, O.; Shen, J. Mechanism of pH-dependent activation of the sodium-proton antiporter NhaA. Nat. Commun., 2016, 7(1), 12940.
[http://dx.doi.org/10.1038/ncomms12940] [PMID: 27708266]
[25]
Patiño-Ruiz, M.; Dwivedi, M.; Călinescu, O.; Karabel, M.; Padan, E.; Fendler, K. Replacement of Lys-300 with a glutamine in the NhaA Na+/H+ antiporter of Escherichia coli yields a functional electrogenic transporter. J. Biol. Chem., 2019, 294(1), 246-256.
[http://dx.doi.org/10.1074/jbc.RA118.004903] [PMID: 30409911]
[26]
Fliegel, L.; Fröhlich, O. The Na+/H+ exchanger: An update on structure, regulation and cardiac physiology. Biochem. J., 1993, 296(2), 273-285.
[http://dx.doi.org/10.1042/bj2960273] [PMID: 8257412]
[27]
Fliegel, L. Regulation of myocardial Na +/H + exchanger activity. Basic Res. Cardiol., 2001, 96(4), 301-305.
[http://dx.doi.org/10.1007/s003950170036] [PMID: 11518184]
[28]
Sakuta, H.; Lin, C.H.; Hiyama, T.Y.; Matsuda, T.; Yamaguchi, K.; Shigenobu, S.; Kobayashi, K.; Noda, M. SLC9A4 in the organum vascu-losum of the lamina terminalis is a [Na+] sensor for the control of water intake. Pflugers Arch., 2020, 472(5), 609-624.
[http://dx.doi.org/10.1007/s00424-020-02389-y] [PMID: 32372285]
[29]
Kinaneh, S.; Knany, Y.; Khoury, E.E.; Ismael-Badarneh, R.; Hamoud, S.; Berger, G.; Abassi, Z.; Azzam, Z.S. Identification, localization and expression of NHE isoforms in the alveolar epithelial cells. PLoS One, 2021, 16(4), e0239240.
[http://dx.doi.org/10.1371/journal.pone.0239240] [PMID: 33882062]
[30]
Masrati, G.; Dwivedi, M.; Rimon, A.; Gluck-Margolin, Y.; Kessel, A.; Ashkenazy, H.; Mayrose, I.; Padan, E.; Ben-Tal, N. Broad phyloge-netic analysis of cation/proton antiporters reveals transport determinants. Nat. Commun., 2018, 9(1), 4205.
[http://dx.doi.org/10.1038/s41467-018-06770-5] [PMID: 30310075]
[31]
Padan, E.; Bibi, E.; Ito, M.; Krulwich, T.A. Alkaline pH homeostasis in bacteria: New insights. Biochim. Biophys. Acta Biomembr., 2005, 1717(2), 67-88.
[http://dx.doi.org/10.1016/j.bbamem.2005.09.010] [PMID: 16277975]
[32]
Krulwich, T.A.; Sachs, G.; Padan, E. Molecular aspects of bacterial pH sensing and homeostasis. Nat. Rev. Microbiol., 2011, 9(5), 330-343.
[http://dx.doi.org/10.1038/nrmicro2549] [PMID: 21464825]
[33]
Padan, E. Functional and structural dynamics of NhaA, a prototype for Na+ and H+ antiporters, which are responsible for Na+ and H+ ho-meostasis in cells. Biochim. Biophys. Acta Bioenerg., 2014, 1837(7), 1047-1062.
[http://dx.doi.org/10.1016/j.bbabio.2013.12.007] [PMID: 24361841]
[34]
Preiss, L.; Hicks, D.B.; Suzuki, S.; Meier, T.; Krulwich, T.A. Alkaliphilic bacteria with impact on industrial applications, concepts of early life forms, and bioenergetics of ATP synthesis. Front. Bioeng. Biotechnol., 2015, 3, 75.
[35]
Kudo, T.; Hino, M.; Kitada, M.; Horikoshi, K. DNA sequences required for the alkalophily of Bacillus sp. strain C-125 are located close together on its chromosomal DNA. J. Bacteriol., 1990, 172(12), 7282-7283.
[http://dx.doi.org/10.1128/jb.172.12.7282-7283.1990] [PMID: 2254287]
[36]
Hamamoto, T.; Hashimoto, M.; Hino, M.; Kitada, M.; Seto, Y.; Kudo, T.; Horikoshi, K. Characterization of a gene responsible for the Na +/H + antiporter system of alkalophilic Bacillus species strain C-125. Mol. Microbiol., 1994, 14(5), 939-946.
[http://dx.doi.org/10.1111/j.1365-2958.1994.tb01329.x] [PMID: 7715455]
[37]
Kajiyama, Y.; Otagiri, M.; Sekiguchi, J.; Kosono, S.; Kudo, T. Complex formation by the mrpABCDEFG gene products, which constitute a principal Na+/H+ antiporter in Bacillus subtilis. J. Bacteriol., 2007, 189(20), 7511-7514.
[http://dx.doi.org/10.1128/JB.00968-07] [PMID: 17693497]
[38]
Morino, M.; Natsui, S.; Swartz, T.H.; Krulwich, T.A.; Ito, M. Single gene deletions of mrpA to mrpG and mrpE point mutations affect activity of the Mrp Na+/H+ antiporter of alkaliphilic Bacillus and formation of hetero-oligomeric Mrp complexes. J. Bacteriol., 2008, 190(12), 4162-4172.
[http://dx.doi.org/10.1128/JB.00294-08] [PMID: 18408029]
[39]
Swartz, T.H.; Ikewada, S.; Ishikawa, O.; Ito, M.; Krulwich, T.A. The Mrp system: A giant among monovalent cation/proton antiporters? Extremophiles, 2005, 9(5), 345-354.
[http://dx.doi.org/10.1007/s00792-005-0451-6] [PMID: 15980940]
[40]
Ito, M.; Morino, M.; Krulwich, T.A. Mrp antiporters have important roles in diverse bacteria and archaea. Front. Microbiol., 2017, 8, 2325.
[http://dx.doi.org/10.3389/fmicb.2017.02325] [PMID: 29218041]
[41]
Krulwich, T.A.; Hicks, D.B.; Ito, M. Cation/proton antiporter complements of bacteria: Why so large and diverse? Mol. Microbiol., 2009, 74(2), 257-260.
[http://dx.doi.org/10.1111/j.1365-2958.2009.06842.x] [PMID: 19682259]
[42]
Saier, M.H., Jr; Yen, M.R.; Noto, K.; Tamang, D.G.; Elkan, C. The transporter classification database: Recent advances. Nucleic Acids Res., 2009, 37(Database), D274-D278.
[http://dx.doi.org/10.1093/nar/gkn862] [PMID: 19022853]
[43]
Saier, M.H., Jr; Tran, C.V.; Barabote, R.D. TCDB: The Transporter Classification Database for membrane transport protein analyses and information. Nucleic Acids Res., 2006, 34(90001), D181-D186.
[http://dx.doi.org/10.1093/nar/gkj001] [PMID: 16381841]
[44]
Kosono, S.; Haga, K.; Tomizawa, R.; Kajiyama, Y.; Hatano, K.; Takeda, S.; Wakai, Y.; Hino, M.; Kudo, T. Characterization of a multigene-encoded sodium/hydrogen antiporter (sha) from Pseudomonas aeruginosa: Its involvement in pathogenesis. J. Bacteriol., 2005, 187(15), 5242-5248.
[http://dx.doi.org/10.1128/JB.187.15.5242-5248.2005] [PMID: 16030218]
[45]
Dzioba-Winogrodzki, J.; Winogrodzki, O.; Krulwich, T.A.; Boin, M.A.; Häse, C.C.; Dibrov, P. The Vibrio cholerae Mrp system: Cati-on/proton antiport properties and enhancement of bile salt resistance in a heterologous host. J. Mol. Microbiol. Biotechnol., 2009, 16(3-4), 176-186.
[PMID: 18311075]
[46]
Putnoky, P.; Kereszt, A.; Nakamura, T.; Endre, G.; Grosskopf, E.; Kiss, P.; Kondorosi, A. The pha gene cluster of Rhizobium meliloti involved in pH adaptation and symbiosis encodes a novel type of K+ efflux system. Mol. Microbiol., 1998, 28(6), 1091-1101.
[http://dx.doi.org/10.1046/j.1365-2958.1998.00868.x] [PMID: 9680201]
[47]
Yamaguchi, T.; Tsutsumi, F.; Putnoky, P.; Fukuhara, M.; Nakamura, T. pH-dependent regulation of the multi-subunit cation/proton anti-porter Pha1 system from Sinorhizobium meliloti. Microbiology (Reading), 2009, 155(8), 2750-2756.
[http://dx.doi.org/10.1099/mic.0.028563-0] [PMID: 19460820]
[48]
Waditee, R.; Hibino, T.; Tanaka, Y.; Nakamura, T.; Incharoensakdi, A.; Takabe, T. Halotolerant cyanobacterium Aphanothece halophytica contains an Na(+)/H(+) antiporter, homologous to eukaryotic ones, with novel ion specificity affected by C-terminal tail. J. Biol. Chem., 2001, 276(40), 36931-36938.
[http://dx.doi.org/10.1074/jbc.M103650200] [PMID: 11479290]
[49]
Jasso-Chávez, R.; Apolinario, E.E.; Sowers, K.R.; Ferry, J.G. MrpA functions in energy conversion during acetate-dependent growth of Methanosarcina acetivorans. J. Bacteriol., 2013, 195(17), 3987-3994.
[http://dx.doi.org/10.1128/JB.00581-13] [PMID: 23836862]
[50]
Jasso-Chávez, R.; Diaz-Perez, C.; Rodríguez-Zavala, J.S.; Ferry, J.G. Functional Role of MrpA in the MrpABCDEFG Na+/H+ Antiporter Complex from the Archaeon Methanosarcina acetivorans. J. Bacteriol., 2016, 199(2), e00662-e16.
[PMID: 27799324]
[51]
Mathiesen, C.; Hägerhäll, C. The ‘antiporter module’ of respiratory chain Complex I includes the MrpC/NuoK subunit - a revision of the modular evolution scheme. FEBS Lett., 2003, 549(1-3), 7-13.
[http://dx.doi.org/10.1016/S0014-5793(03)00767-1] [PMID: 12914915]
[52]
Moparthi, V.K.; Kumar, B.; Mathiesen, C.; Hägerhäll, C. Homologous protein subunits from Escherichia coli NADH: quinone oxidoreduc-tase can functionally replace MrpA and MrpD in Bacillus subtilis. Biochim. Biophys. Acta Bioenerg., 2011, 1807(4), 427-436.
[http://dx.doi.org/10.1016/j.bbabio.2011.01.005] [PMID: 21236240]
[53]
Sazanov, L.A. The mechanism of coupling between electron transfer and proton translocation in respiratory complex I. J. Bioenerg. Biomembr., 2014, 46(4), 247-253.
[http://dx.doi.org/10.1007/s10863-014-9554-z] [PMID: 24943718]
[54]
Padan, E.; Landau, M. Sodium-Proton (Na+/H+) antiporters: Properties and roles in health and disease. Met. Ions Life Sci., 2016, 16, 391-458.
[http://dx.doi.org/10.1007/978-3-319-21756-7_12] [PMID: 26860308]
[55]
Bobulescu, I.A.; Di Sole, F.; Moe, O.W. Na+/H+ exchangers: Physiology and link to hypertension and organ ischemia. Curr. Opin. Nephrol. Hypertens., 2005, 14(5), 485-494.
[http://dx.doi.org/10.1097/01.mnh.0000174146.52915.5d] [PMID: 16046909]
[56]
Donowitz, M.; Ming Tse, C.; Fuster, D. SLC9/NHE gene family, a plasma membrane and organellar family of Na+/H+ exchangers. Mol. Aspects Med., 2013, 34(2-3), 236-251.
[http://dx.doi.org/10.1016/j.mam.2012.05.001] [PMID: 23506868]
[57]
Odunewu, A.; Fliegel, L. Acidosis-mediated regulation of the NHE1 isoform of the Na+/H+ exchanger in renal cells. Am. J. Physiol. Renal Physiol., 2013, 305(3), F370-F381.
[http://dx.doi.org/10.1152/ajprenal.00598.2012] [PMID: 23678047]
[58]
Pouysségur, J.; Franchi, A.; L’Allemain, G.; Paris, S. Cytoplasmic pH, a key determinant of growth factor-induced DNA synthesis in qui-escent fibroblasts. FEBS Lett., 1985, 190(1), 115-119.
[http://dx.doi.org/10.1016/0014-5793(85)80439-7] [PMID: 4043390]
[59]
Grinstein, S.; Rotin, D.; Mason, M.J. Na+/H+ exchange and growth factor-induced cytosolic pH changes. Role in cellular proliferation. Biochim. Biophys. Acta Rev. Biomembr., 1989, 988(1), 73-97.
[http://dx.doi.org/10.1016/0304-4157(89)90004-X] [PMID: 2535787]
[60]
Reshkin, S.J.; Bellizzi, A.; Albarani, V.; Guerra, L.; Tommasino, M.; Paradiso, A.; Casavola, V. Phosphoinositide 3-kinase is involved in the tumor-specific activation of human breast cancer cell Na(+)/H(+) exchange, motility, and invasion induced by serum deprivation. J. Biol. Chem., 2000, 275(8), 5361-5369.
[http://dx.doi.org/10.1074/jbc.275.8.5361] [PMID: 10681510]
[61]
Reshkin, S.J.; Bellizzi, A.; Caldeira, S.; Albarani, V.; Malanchi, I.; Poignee, M.; Alunni-Fabbroni, M.; Casavola, V.; Tommasino, M. Na +/H + exchanger‐dependent intracellular alkalinization is an early event in malignant transformation and plays an essential role in the de-velopment of subsequent transformation‐associated phenotypes. FASEB J., 2000, 14(14), 2185-2197.
[http://dx.doi.org/10.1096/fj.00-0029com] [PMID: 11053239]
[62]
Reshkin, S.J.; Bellizzi, A.; Cardone, R.A.; Tommasino, M.; Casavola, V.; Paradiso, A. Paclitaxel induces apoptosis via protein kinase A- and p38 mitogen-activated protein-dependent inhibition of the Na+/H+ exchanger (NHE) NHE isoform 1 in human breast cancer cells. Clin. Cancer Res., 2003, 9(6), 2366-2373.
[PMID: 12796407]
[63]
Rich, I.N.; Worthington-White, D.; Garden, O.A.; Musk, P. Apoptosis of leukemic cells accompanies reduction in intracellular pH after targeted inhibition of the Na+/H+exchanger. Blood, 2000, 95(4), 1427-1434.
[http://dx.doi.org/10.1182/blood.V95.4.1427.004k48_1427_1434] [PMID: 10666221]
[64]
Alfarouk, K.O.; Verduzco, D.; Rauch, C.; Muddathir, A.K.; Bashir, A.H.H.; Elhassan, G.O.; Ibrahim, M.E.; Orozco, J.D.P.; Cardone, R.A.; Reshkin, S.J.; Harguindey, S. Glycolysis, tumor metabolism, cancer growth and dissemination. A new pH-based etiopathogenic perspec-tive and therapeutic approach to an old cancer question. Oncoscience, 2014, 1(12), 777-802.
[http://dx.doi.org/10.18632/oncoscience.109] [PMID: 25621294]
[65]
Andersen, A.P.; Samsøe-Petersen, J.; Oernbo, E.K.; Boedtkjer, E.; Moreira, J.M.A.; Kveiborg, M.; Pedersen, S.F. The net acid extruders NHE1, NBCn1 and MCT4 promote mammary tumor growth through distinct but overlapping mechanisms. Int. J. Cancer, 2018, 142(12), 2529-2542.
[http://dx.doi.org/10.1002/ijc.31276] [PMID: 29363134]
[66]
Parker, M.D.; Myers, E.J.; Schelling, J.R. Na+–H+ exchanger-1 (NHE1) regulation in kidney proximal tubule. Cell. Mol. Life Sci., 2015, 72(11), 2061-2074.
[http://dx.doi.org/10.1007/s00018-015-1848-8] [PMID: 25680790]
[67]
Onishi, A.; Fu, Y.; Darshi, M.; Crespo-Masip, M.; Huang, W.; Song, P.; Patel, R.; Kim, Y.C.; Nespoux, J.; Freeman, B.; Soleimani, M.; Thomson, S.; Sharma, K.; Vallon, V. Effect of renal tubule-specific knockdown of the Na +/H + exchanger NHE3 in Akita diabetic mice. Am. J. Physiol. Renal Physiol., 2019, 317(2), F419-F434.
[http://dx.doi.org/10.1152/ajprenal.00497.2018] [PMID: 31166707]
[68]
Madhu, S.V.; Chawla, R.; Makkar, B.M.; Ghosh, S.; Saboo, B.; Kalra, S. RSSDI-ESI clinical practice recommendations for the management of type 2 diabetes mellitus 2020. Indian J. Endocrinol. Metab., 2020, 24(1), 1-122.
[http://dx.doi.org/10.4103/ijem.IJEM_225_20] [PMID: 32699774]
[69]
Lin, Y.C.; Chang, Y.H.; Yang, S.Y.; Wu, K.D.; Chu, T.S. Update of pathophysiology and management of diabetic kidney disease. J. Formos. Med. Assoc., 2018, 117(8), 662-675.
[http://dx.doi.org/10.1016/j.jfma.2018.02.007] [PMID: 29486908]
[70]
Tsujii, M.; Tanudjaja, E.; Uozumi, N. Diverse physiological functions of cation proton antiporters across bacteria and plant cells. Int. J. Mol. Sci., 2020, 21(12), 4566.
[http://dx.doi.org/10.3390/ijms21124566] [PMID: 32604959]
[71]
Lescat, M.; Reibel, F.; Pintard, C.; Dion, S.; Glodt, J.; Gateau, C.; Launay, A.; Ledda, A.; Cruvellier, S.; Tourret, J.; Tenaillon, O. The con-served nhaAR operon is drastically divergent between B2 and non-B2 Escherichia coli and is involved in extra-intestinal virulence. PLoS One, 2014, 9(9), e108738.
[http://dx.doi.org/10.1371/journal.pone.0108738] [PMID: 25268639]
[72]
Stolyar, S.; He, Q.; Joachimiak, M.P.; He, Z.; Yang, Z.K.; Borglin, S.E.; Joyner, D.C.; Huang, K.; Alm, E.; Hazen, T.C.; Zhou, J.; Wall, J.D.; Arkin, A.P.; Stahl, D.A. Response of Desulfovibrio vulgaris to alkaline stress. J. Bacteriol., 2007, 189(24), 8944-8952.
[http://dx.doi.org/10.1128/JB.00284-07] [PMID: 17921288]
[73]
Galimand, M.; Carniel, E.; Courvalin, P. Resistance of Yersinia pestis to antimicrobial agents. Antimicrob. Agents Chemother., 2006, 50(10), 3233-3236.
[http://dx.doi.org/10.1128/AAC.00306-06] [PMID: 17005799]
[74]
Herz, K.; Vimont, S.; Padan, E.; Berche, P. Roles of NhaA, NhaB, and NhaD Na+/H+ antiporters in survival of Vibrio cholerae in a saline environment. J. Bacteriol., 2003, 185(4), 1236-1244.
[http://dx.doi.org/10.1128/JB.185.4.1236-1244.2003] [PMID: 12562793]
[75]
Krulwich, T.A. Na+/H+ antiporters. Biochim. Biophys. Acta Rev. Bioenerg., 1983, 726(4), 245-264.
[http://dx.doi.org/10.1016/0304-4173(83)90011-3] [PMID: 6320869]
[76]
Padan, E.; Maisler, N.; Taglicht, D.; Karpel, R.; Schuldiner, S. Deletion of ant in Escherichia coli reveals its function in adaptation to high salinity and an alternative Na+/H+ antiporter system(s). J. Biol. Chem., 1989, 264(34), 20297-20302.
[http://dx.doi.org/10.1016/S0021-9258(19)47061-0] [PMID: 2555351]
[77]
Brey, R.N.; Rosen, B.P.; Sorensen, E.N. Cation/proton antiport systems in Escherichia coli. Properties of the potassium/proton antiporter. J. Biol. Chem., 1980, 255(1), 39-44.
[http://dx.doi.org/10.1016/S0021-9258(19)86259-2] [PMID: 6985610]
[78]
Höhner, R.; Aboukila, A.; Kunz, H.H.; Venema, K. Proton gradients and proton-dependent transport processes in the chloroplast. Front. Plant Sci., 2016, 7, 218.
[http://dx.doi.org/10.3389/fpls.2016.00218] [PMID: 26973667]
[79]
Beck, J.C.; Rosen, B.P. Cation/proton antiport systems in Escherichia coli: Properties of the sodium/proton antiporter. Arch. Biochem. Biophys., 1979, 194(1), 208-214.
[http://dx.doi.org/10.1016/0003-9861(79)90611-8] [PMID: 36033]
[80]
Plack, R.H., Jr; Rosen, B.P. Cation/proton antiport systems in Escherichia coli. Absence of potassium/proton antiporter activity in a pH-sensitive mutant. J. Biol. Chem., 1980, 255(9), 3824-3825.
[http://dx.doi.org/10.1016/S0021-9258(19)85594-1] [PMID: 6989828]
[81]
Pechous, R.D.; Broberg, C.A.; Stasulli, N.M.; Miller, V.L.; Goldman, W.E. In vivo transcriptional profiling of Yersinia pestis reveals a nov-el bacterial mediator of pulmonary inflammation. MBio, 2015, 6(1), e02302-e02314.
[http://dx.doi.org/10.1128/mBio.02302-14] [PMID: 25691593]
[82]
Yang, R. Plague: Recognition, treatment, and prevention. J. Clin. Microbiol., 2017, 56(1), e01519-e17.
[PMID: 29070654]
[83]
Eisen, R.J.; Gage, K.L. Adaptive strategies of Yersinia pestis to persist during inter-epizootic and epizootic periods. Vet. Res., 2009, 40(2), 01.
[http://dx.doi.org/10.1051/vetres:2008039] [PMID: 18803931]
[84]
Minato, Y.; Ghosh, A.; Faulkner, W.J.; Lind, E.J.; Schesser Bartra, S.; Plano, G.V.; Jarrett, C.O.; Hinnebusch, B.J.; Winogrodzki, J.; Dibrov, P.; Häse, C.C. Na+/H+ antiport is essential for Yersinia pestis virulence. Infect. Immun., 2013, 81(9), 3163-3172.
[http://dx.doi.org/10.1128/IAI.00071-13] [PMID: 23774602]
[85]
Parkhill, J.; Wren, B.W.; Thomson, N.R.; Titball, R.W.; Holden, M.T.G.; Prentice, M.B.; Sebaihia, M.; James, K.D.; Churcher, C.; Mungall, K.L.; Baker, S.; Basham, D.; Bentley, S.D.; Brooks, K.; Cerdeño-Tárraga, A.M.; Chillingworth, T.; Cronin, A.; Davies, R.M.; Davis, P.; Dougan, G.; Feltwell, T.; Hamlin, N.; Holroyd, S.; Jagels, K.; Karlyshev, A.V.; Leather, S.; Moule, S.; Oyston, P.C.F.; Quail, M.; Ruther-ford, K.; Simmonds, M.; Skelton, J.; Stevens, K.; Whitehead, S.; Barrell, B.G. Genome sequence of Yersinia pestis, the causative agent of plague. Nature, 2001, 413(6855), 523-527.
[http://dx.doi.org/10.1038/35097083] [PMID: 11586360]
[86]
Mourin, M.; Wai, A.; O’Neil, J.; Hausner, G.; Dibrov, P. Physiological, structural, and functional analysis of the paralogous cation–proton antiporters of NhaP type from Vibrio cholerae. Int. J. Mol. Sci., 2019, 20(10), 2572.
[http://dx.doi.org/10.3390/ijms20102572] [PMID: 31130620]
[87]
Aagesen, A.M.; Schubiger, C.B.; Hobson, E.C.; Dibrov, P.; Häse, C.C. Effects of chromosomal deletion of the operon encoding the multi-ple resistance and pH-related antiporter in Vibrio cholerae. Microbiology, 2016, 162(12), 2147-2158.
[http://dx.doi.org/10.1099/mic.0.000384] [PMID: 27902431]
[88]
Dibrov, P.; Dibrov, E.; Pierce, G.N. Na+-NQR (Na+-translocating NADH:ubiquinone oxidoreductase) as a novel target for antibiotics. FEMS Microbiol. Rev., 2017, 41(5), 653-671.
[http://dx.doi.org/10.1093/femsre/fux032] [PMID: 28961953]
[89]
Resch, C.T.; Winogrodzki, J.L.; Patterson, C.T.; Lind, E.J.; Quinn, M.J.; Dibrov, P.; Häse, C.C. The putative Na+/H+ antiporter of Vibrio cholerae, Vc-NhaP2, mediates the specific K+/H+ exchange in vivo. Biochemistry, 2010, 49(11), 2520-2528.
[http://dx.doi.org/10.1021/bi902173y] [PMID: 20163190]
[90]
Resch, C.T.; Winogrodzki, J.L.; Häse, C.C.; Dibrov, P. Insights into the biochemistry of the ubiquitous NhaP family of cation/H + anti-portersThis paper is one of a selection of papers published in a Special Issue entitled CSBMCB 53rd Annual Meeting-Membrane Proteins in Health and Disease, and has undergone the Journal’s usual peer review process. Biochem. Cell Biol., 2011, 89(2), 130-137.
[http://dx.doi.org/10.1139/O10-149] [PMID: 21455265]
[91]
Mourin, M.; Schubiger, C.B.; Resch, C.T.; Häse, C.C.; Dibrov, P. Physiology of the Vc-NhaP paralogous group of cation–proton anti-porters in Vibrio cholerae. Mol. Cell. Biochem., 2017, 428(1-2), 87-99.
[http://dx.doi.org/10.1007/s11010-016-2919-3] [PMID: 28083717]
[92]
Hebditch, M.; Carballo-Amador, M.A.; Charonis, S.; Curtis, R.; Warwicker, J. Protein–Sol: A web tool for predicting protein solubility from sequence. Bioinformatics, 2017, 33(19), 3098-3100.
[http://dx.doi.org/10.1093/bioinformatics/btx345] [PMID: 28575391]
[93]
Radchenko, M.V.; Tanaka, K.; Waditee, R.; Oshimi, S.; Matsuzaki, Y.; Fukuhara, M.; Kobayashi, H.; Takabe, T.; Nakamura, T. Potassi-um/proton antiport system of Escherichia coli. J. Biol. Chem., 2006, 281(29), 19822-19829.
[http://dx.doi.org/10.1074/jbc.M600333200] [PMID: 16687400]
[94]
Mesbah, N.M.; Cook, G.M.; Wiegel, J. The halophilic alkalithermophile Natranaerobius thermophilus adapts to multiple environmental extremes using a large repertoire of Na+(K+)/H+ antiporters. Mol. Microbiol., 2009, 74(2), 270-281.
[http://dx.doi.org/10.1111/j.1365-2958.2009.06845.x] [PMID: 19708921]
[95]
Fisher, E.; Dawson, A.M.; Polshyna, G.; Lisak, J.; Crable, B.; Perera, E.; Ranganathan, M.; Thangavelu, M.; Basu, P.; Stolz, J.F. Transfor-mation of inorganic and organic arsenic Byalkaliphilus oremlandiisp. nov. Strain OhILAs. Ann. N. Y. Acad. Sci., 2008, 1125(1), 230-241.
[http://dx.doi.org/10.1196/annals.1419.006] [PMID: 18378595]
[96]
Paulino, C.; Wöhlert, D.; Kapotova, E.; Yildiz, Ö.; Kühlbrandt, W. Structure and transport mechanism of the sodium/proton antiporter MjNhaP1. eLife, 2014, 3, e03583.
[http://dx.doi.org/10.7554/eLife.03583] [PMID: 25426803]
[97]
Lee, C.; Kang, H.J.; von Ballmoos, C.; Newstead, S.; Uzdavinys, P.; Dotson, D.L.; Iwata, S.; Beckstein, O.; Cameron, A.D.; Drew, D. A two-domain elevator mechanism for sodium/proton antiport. Nature, 2013, 501(7468), 573-577.
[http://dx.doi.org/10.1038/nature12484] [PMID: 23995679]
[98]
Goswami, P.; Paulino, C.; Hizlan, D.; Vonck, J.; Yildiz, Ö.; Kühlbrandt, W. Structure of the archaeal Na +/H + antiporter NhaP1 and func-tional role of transmembrane helix 1. EMBO J., 2011, 30(2), 439-449.
[http://dx.doi.org/10.1038/emboj.2010.321] [PMID: 21151096]
[99]
Paulino, C.; Kühlbrandt, W. pH- and sodium-induced changes in a sodium/proton antiporter. eLife, 2014, 3, e01412.
[http://dx.doi.org/10.7554/eLife.01412] [PMID: 24473071]
[100]
Gerchman, Y.; Rimon, A.; Venturi, M.; Padan, E. Oligomerization of NhaA, the Na+/H+ antiporter of Escherichia coli in the membrane and its functional and structural consequences. Biochemistry, 2001, 40(11), 3403-3412.
[http://dx.doi.org/10.1021/bi002669o] [PMID: 11258962]
[101]
Moormeier, D.E.; Bose, J.L.; Horswill, A.R.; Bayles, K.W. Temporal and stochastic control of Staphylococcus aureus biofilm develop-ment. MBio, 2014, 5(5), e01341-e14.
[http://dx.doi.org/10.1128/mBio.01341-14] [PMID: 25316695]
[102]
Prax, M.; Bertram, R. Metabolic aspects of bacterial persisters. Front. Cell. Infect. Microbiol., 2014, 4, 148.
[http://dx.doi.org/10.3389/fcimb.2014.00148] [PMID: 25374846]
[103]
Nozaki, K.; Inaba, K.; Kuroda, T.; Tsuda, M.; Tsuchiya, T. Cloning and sequencing of the gene for Na+/H+ antiporter of Vibrio parahae-molyticus. Biochem. Biophys. Res. Commun., 1996, 222(3), 774-779.
[http://dx.doi.org/10.1006/bbrc.1996.0820] [PMID: 8651921]
[104]
Ren, Q.; Chen, K.; Paulsen, I.T. TransportDB: A comprehensive database resource for cytoplasmic membrane transport systems and outer membrane channels. Nucleic Acids Res., 2007, 35(Database), D274-D279.
[http://dx.doi.org/10.1093/nar/gkl925] [PMID: 17135193]
[105]
Allakhverdiev, S.I.; Murata, N. Salt stress inhibits photosystems II and I in cyanobacteria. Photosynth. Res., 2008, 98(1-3), 529-539.
[http://dx.doi.org/10.1007/s11120-008-9334-x] [PMID: 18670904]
[106]
Wang, H.L.; Postier, B.L.; Burnap, R.L. Polymerase chain reaction-based mutageneses identify key transporters belonging to multigene families involved in Na+ and pH homeostasis of Synechocystis sp. PCC 6803. Mol. Microbiol., 2002, 44(6), 1493-1506.
[http://dx.doi.org/10.1046/j.1365-2958.2002.02983.x] [PMID: 12067339]
[107]
Tsunekawa, K.; Shijuku, T.; Hayashimoto, M.; Kojima, Y.; Onai, K.; Morishita, M.; Ishiura, M.; Kuroda, T.; Nakamura, T.; Kobayashi, H.; Sato, M.; Toyooka, K.; Matsuoka, K.; Omata, T.; Uozumi, N. Identification and characterization of the Na+/H+ antiporter Nhas3 from the thylakoid membrane of Synechocystis sp. PCC 6803. J. Biol. Chem., 2009, 284(24), 16513-16521.
[http://dx.doi.org/10.1074/jbc.M109.001875] [PMID: 19372598]
[108]
Elanskaya, I.V.; Karandashova, I.V.; Bogachev, A.V.; Hagemann, M. Functional analysis of the Na+/H+ antiporter encoding genes of the cyanobacterium Synechocystis PCC 6803. Biochemistry (Mosc.), 2002, 67(4), 432-440.
[http://dx.doi.org/10.1023/A:1015281906254] [PMID: 11996656]
[109]
Mikkat, S.; Milkowski, C.; Hagemann, M. The gene sll 0273 of the cyanobacterium Synechocystis sp. strain PCC6803 encodes a protein essential for growth at low Na+/K+ ratios. Plant Cell Environ., 2000, 23(6), 549-559.
[http://dx.doi.org/10.1046/j.1365-3040.2000.00565.x]
[110]
Hamada, A.; Hibino, T.; Nakamura, T.; Takabe, T. Na+/H+ antiporter from Synechocystis species PCC 6803, homologous to SOS1, con-tains an aspartic residue and long C-terminal tail important for the carrier activity. Plant Physiol., 2001, 125(1), 437-446.
[http://dx.doi.org/10.1104/pp.125.1.437] [PMID: 11154351]
[111]
Billini, M.; Stamatakis, K.; Sophianopoulou, V. Two members of a network of putative Na+/H+ antiporters are involved in salt and pH tolerance of the freshwater cyanobacterium Synechococcus elongatus. J. Bacteriol., 2008, 190(19), 6318-6329.
[http://dx.doi.org/10.1128/JB.00696-08] [PMID: 18641132]
[112]
Walker, D.J.; Leigh, R.A.; Miller, A.J. Potassium homeostasis in vacuolate plant cells. Proc. Natl. Acad. Sci. USA, 1996, 93(19), 10510-10514.
[http://dx.doi.org/10.1073/pnas.93.19.10510] [PMID: 11607707]
[113]
Venema, K.; Belver, A.; Marín-Manzano, M.C.; Rodríguez-Rosales, M.P.; Donaire, J.P. A novel intracellular K+/H+ antiporter related to Na+/H+ antiporters is important for K+ ion homeostasis in plants. J. Biol. Chem., 2003, 278(25), 22453-22459.
[http://dx.doi.org/10.1074/jbc.M210794200] [PMID: 12695519]
[114]
Ye, C.Y.; Yang, X.; Xia, X.; Yin, W. Comparative analysis of cation/proton antiporter superfamily in plants. Gene, 2013, 521(2), 245-251.
[http://dx.doi.org/10.1016/j.gene.2013.03.104] [PMID: 23562718]
[115]
Ma, W.; Ren, Z.; Zhou, Y.; Zhao, J.; Zhang, F.; Feng, J.; Liu, W.; Ma, X. Genome-wide Identification of the Gossypium hirsutum NHX genes reveals that the endosomal-type GhNHX4A is critical for the salt tolerance of cotton. Int. J. Mol. Sci., 2020, 21(20), 7712.
[http://dx.doi.org/10.3390/ijms21207712] [PMID: 33081060]
[116]
Jha, A.; Joshi, M.; Yadav, N.S.; Agarwal, P.K.; Jha, B. Cloning and characterization of the Salicornia brachiata Na+/H+ antiporter gene SbNHX1 and its expression by abiotic stress. Mol. Biol. Rep., 2011, 38(3), 1965-1973.
[http://dx.doi.org/10.1007/s11033-010-0318-5] [PMID: 20853145]
[117]
Saghafi, D; Delangiz, N; Lajayer, BA; Ghorbanpour, M An overview on improvement of crop productivity in saline soils by halotolerant and halophilic PGPRs. 3 Biotech, 2019, 9(7), 261.
[118]
Roychoudhury, A.; Chakraborty, M. Biochemical and molecular basis of varietal difference in plant salt tolerance. ARRB, 2013, 3, 422-454.
[119]
Almeida, D.M.; Oliveira, M.M.; Saibo, N.J.M. Regulation of Na+ and K+ homeostasis in plants: Towards improved salt stress tolerance in crop plants. Genet. Mol. Biol., 2017, 40(Suppl. 1), 326-345.
[http://dx.doi.org/10.1590/1678-4685-gmb-2016-0106] [PMID: 28350038]
[120]
Isayenkov, S.V.; Maathuis, F.J.M. Plant salinity stress: Many unanswered questions remain. FEBS J., 2011, 278, 4261.
[121]
Covarrubias, A.J.; Perrone, R.; Grozio, A.; Verdin, E. NAD+ metabolism and its roles in cellular processes during ageing. Nat. Rev. Mol. Cell Biol., 2021, 22(2), 119-141.
[http://dx.doi.org/10.1038/s41580-020-00313-x] [PMID: 33353981]
[122]
Lu, S.; Li, Z.; Gorfe, A.A.; Zheng, L. Intracellular Ca2+ regulation of H+/Ca2+ antiporter YfkE mediated by a Ca2+ mini-sensor. Proc. Natl. Acad. Sci. USA, 2020, 117(19), 10313-10321.
[http://dx.doi.org/10.1073/pnas.1918604117] [PMID: 32341169]