LncRNAs and MiRNAs: New Targets for Resveratrol in Ovarian Cancer Research

Page: [3238 - 3248] Pages: 11

  • * (Excluding Mailing and Handling)

Abstract

Ovarian cancer (OC) is the 3rd common gynecologic cancer. Numerous procedures are involved in the growth of OC, like migration, angiogenesis, proliferation, apoptosis, invasion, and metastasis. Therefore, a better knowledge of the molecular processes complicated in ovarian tumorigenesis can lead to better measures for the prevention and treatment of the disease and its diagnosis. Long non-coding RNAs (LncRNAs), a subclass of non-coding RNAs, are much more diverse than previously thought. It is suggested that these RNAs may play a role in controlling complex cellular signaling mechanisms via binding to proteins and influencing their function. Nevertheless, our acquaintance with the participation of LncRNAs in the pathogenesis of OC is still restricted. Especially, we do not yet recognize how to pharmacologically correct the epi-mutations. Resveratrol, a natural polyphenol mostly derived from grapes, has been evaluated in many studies to find its cancer therapeutic potential. In the current paper, we aimed to review the role of resveratrol as a potential natural product on lncRNAs as novel diagnostic and therapeutic targets in OC and represent new insights for further investigations.

[1]
Siegel, R.L.; Miller, K.D.; Jemal, A. Cancer statistics, 2016. CA Cancer J. Clin., 2016, 66(1), 7-30.
[http://dx.doi.org/10.3322/caac.21332] [PMID: 26742998]
[2]
Yeung, T.L.; Leung, C.S.; Yip, K.P.; Au Yeung, C.L.; Wong, S.T.C.; Mok, S.C. Cellular and molecular processes in ovarian cancer metastasis. A review in the theme: Cell and molecular processes in cancer metastasis. Am. J. Physiol. Cell Physiol., 2015, 309(7), C444-C456.
[http://dx.doi.org/10.1152/ajpcell.00188.2015] [PMID: 26224579]
[3]
Statello, L.; Guo, C.J.; Chen, L.L.; Huarte, M. Gene regulation by long non-coding RNAs and its biological functions. Nat. Rev. Mol. Cell Biol., 2021, 22(2), 96-118.
[http://dx.doi.org/10.1038/s41580-020-00315-9] [PMID: 33353982]
[4]
Gil, N.; Ulitsky, I. Regulation of gene expression by cis-acting long non-coding RNAs. Nat. Rev. Genet., 2020, 21(2), 102-117.
[http://dx.doi.org/10.1038/s41576-019-0184-5] [PMID: 31729473]
[5]
Zhan, L.; Li, J.; Wei, B. Long non-coding RNAs in ovarian cancer. J. Exper. Clin. Cancer Res., 2018, 37(1), 120.
[6]
Yap, K.L.; Li, S.; Muñoz-Cabello, A.M.; Raguz, S.; Zeng, L.; Mujtaba, S.; Gil, J.; Walsh, M.J.; Zhou, M.M. Molecular interplay of the noncoding RNA ANRIL and methylated histone H3 lysine 27 by polycomb CBX7 in transcriptional silencing of INK4a. Mol. Cell, 2010, 38(5), 662-674.
[http://dx.doi.org/10.1016/j.molcel.2010.03.021] [PMID: 20541999]
[7]
Holdt, L.M.; Hoffmann, S.; Sass, K.; Langenberger, D.; Scholz, M.; Krohn, K.; Finstermeier, K.; Stahringer, A.; Wilfert, W.; Beutner, F.; Gielen, S.; Schuler, G.; Gäbel, G.; Bergert, H.; Bechmann, I.; Stadler, P.F.; Thiery, J.; Teupser, D. Alu elements in ANRIL non-coding RNA at chromosome 9p21 modulate atherogenic cell functions through trans-regulation of gene networks. PLoS Genet., 2013, 9(7), e1003588.
[http://dx.doi.org/10.1371/journal.pgen.1003588] [PMID: 23861667]
[8]
Rosa, S.; Duncan, S.; Dean, C. Mutually exclusive sense–antisense transcription at FLC facilitates environmentally induced gene repression. Nat. Commun., 2016, 7(1), 13031.
[http://dx.doi.org/10.1038/ncomms13031] [PMID: 27713408]
[9]
Csorba, T.; Questa, J.I.; Sun, Q.; Dean, C. Antisense COOLAIR mediates the coordinated switching of chromatin states at FLC during vernalization. Proc. Natl. Acad. Sci. USA, 2014, 111(45), 16160-16165.
[http://dx.doi.org/10.1073/pnas.1419030111] [PMID: 25349421]
[10]
Kino, T.; Hurt, D.E.; Ichijo, T.; Nader, N.; Chrousos, G.P. Noncoding RNA gas5 is a growth arrest- and starvation-associated repressor of the glucocorticoid receptor. Sci. Signal., 2010, 3(107), ra8.
[http://dx.doi.org/10.1126/scisignal.2000568] [PMID: 20124551]
[11]
Tripathi, V.; Ellis, J.D.; Shen, Z.; Song, D.Y.; Pan, Q.; Watt, A.T.; Freier, S.M.; Bennett, C.F.; Sharma, A.; Bubulya, P.A.; Blencowe, B.J.; Prasanth, S.G.; Prasanth, K.V. The nuclear-retained noncoding RNA MALAT1 regulates alternative splicing by modulating SR splicing factor phosphorylation. Mol. Cell, 2010, 39(6), 925-938.
[http://dx.doi.org/10.1016/j.molcel.2010.08.011] [PMID: 20797886]
[12]
Kumar P, P.; Emechebe, U.; Smith, R.; Franklin, S.; Moore, B.; Yandell, M.; Lessnick, S.L.; Moon, A.M. Coordinated control of senescence by lncRNA and a novel T-box3 co-repressor complex. eLife, 2014, 3, e02805.
[http://dx.doi.org/10.7554/eLife.02805] [PMID: 24876127]
[13]
Lin, A.; Hu, Q.; Li, C.; Xing, Z.; Ma, G.; Wang, C.; Li, J.; Ye, Y.; Yao, J.; Liang, K.; Wang, S.; Park, P.K.; Marks, J.R.; Zhou, Y.; Zhou, J.; Hung, M.C.; Liang, H.; Hu, Z.; Shen, H.; Hawke, D.H.; Han, L.; Zhou, Y.; Lin, C.; Yang, L. The LINK-A lncRNA interacts with PtdIns(3,4,5)P3 to hyperactivate AKT and confer resistance to AKT inhibitors. Nat. Cell Biol., 2017, 19(3), 238-251.
[http://dx.doi.org/10.1038/ncb3473] [PMID: 28218907]
[14]
Gong, C.; Maquat, L.E. lncRNAs transactivate STAU1-mediated mRNA decay by duplexing with 3′ UTRs via Alu elements. Nature, 2011, 470(7333), 284-288.
[http://dx.doi.org/10.1038/nature09701] [PMID: 21307942]
[15]
Liu, W.; Yao, D.; Huang, B. LncRNA PVT1 promotes cervical cancer progression by sponging miR-503 to upregulate ARL2 expression. Open Life Sci., 2021, 16(1), 1-13.
[http://dx.doi.org/10.1515/biol-2021-0002] [PMID: 33817293]
[16]
Patch, A.M.; Christie, E.L.; Etemadmoghadam, D.; Garsed, D.W.; George, J.; Fereday, S.; Nones, K.; Cowin, P.; Alsop, K.; Bailey, P.J.; Kassahn, K.S.; Newell, F.; Quinn, M.C.J.; Kazakoff, S.; Quek, K.; Wilhelm-Benartzi, C.; Curry, E.; Leong, H.S.; Hamilton, A.; Mileshkin, L.; Au-Yeung, G.; Kennedy, C.; Hung, J.; Chiew, Y.E.; Harnett, P.; Friedlander, M.; Quinn, M.; Pyman, J.; Cordner, S.; O’Brien, P.; Leditschke, J.; Young, G.; Strachan, K.; Waring, P.; Azar, W.; Mitchell, C.; Traficante, N.; Hendley, J.; Thorne, H.; Shackleton, M.; Miller, D.K.; Arnau, G.M.; Tothill, R.W.; Holloway, T.P.; Semple, T.; Harliwong, I.; Nourse, C.; Nourbakhsh, E.; Manning, S.; Idrisoglu, S.; Bruxner, T.J.C.; Christ, A.N.; Poudel, B.; Holmes, O.; Anderson, M.; Leonard, C.; Lonie, A.; Hall, N.; Wood, S.; Taylor, D.F.; Xu, Q.; Fink, J.L.; Waddell, N.; Drapkin, R.; Stronach, E.; Gabra, H.; Brown, R.; Jewell, A.; Nagaraj, S.H.; Markham, E.; Wilson, P.J.; Ellul, J.; McNally, O.; Doyle, M.A.; Vedururu, R.; Stewart, C.; Lengyel, E.; Pearson, J.V.; Waddell, N.; deFazio, A.; Grimmond, S.M.; Bowtell, D.D.L. Whole–genome characterization of chemoresistant ovarian cancer. Nature, 2015, 521(7553), 489-494.
[http://dx.doi.org/10.1038/nature14410] [PMID: 26017449]
[17]
Papp, E.; Hallberg, D.; Konecny, G.E.; Bruhm, D.C.; Adleff, V.; Noë, M.; Kagiampakis, I.; Palsgrove, D.; Conklin, D.; Kinose, Y.; White, J.R.; Press, M.F.; Drapkin, R.; Easwaran, H.; Baylin, S.B.; Slamon, D.; Velculescu, V.E.; Scharpf, R.B. Integrated genomic, epigenomic, and expression analyses of ovarian cancer cell lines. Cell Rep., 2018, 25(9), 2617-2633.
[http://dx.doi.org/10.1016/j.celrep.2018.10.096] [PMID: 30485824]
[18]
Peracchio, C.; Alabiso, O.; Valente, G.; Isidoro, C. Involvement of autophagy in ovarian cancer: A working hypothesis. J. Ovarian Res., 2012, 5(1), 22.
[http://dx.doi.org/10.1186/1757-2215-5-22] [PMID: 22974323]
[19]
Rauf, A.; Imran, M.; Butt, M.S.; Nadeem, M.; Peters, D.G.; Mubarak, M.S. Resveratrol as an anti-cancer agent: A review. Crit. Rev. Food Sci. Nutr., 2018, 58(9), 1428-1447.
[http://dx.doi.org/10.1080/10408398.2016.1263597] [PMID: 28001084]
[20]
Ko, J.H.; Sethi, G.; Um, J.Y.; Shanmugam, M.K.; Arfuso, F.; Kumar, A.P.; Bishayee, A.; Ahn, K.S. The role of resveratrol in cancer therapy. Int. J. Mol. Sci., 2017, 18(12), 2589.
[http://dx.doi.org/10.3390/ijms18122589] [PMID: 29194365]
[21]
Aggarwal, B.B.; Bhardwaj, A.; Aggarwal, R.S.; Seeram, N.P.; Shishodia, S.; Takada, Y. Role of resveratrol in prevention and therapy of cancer: Preclinical and clinical studies. Anticancer Res., 2004, 24(5A), 2783-2840.
[PMID: 15517885]
[22]
Bayoglu Tekin, Y.; Guven, S.; Kirbas, A.; Kalkan, Y.; Tumkaya, L.; Guvendag Guven, E.S. Is resveratrol a potential substitute for leuprolide acetate in experimental endometriosis? Eur. J. Obstet. Gynecol. Reprod. Biol., 2015, 184, 1-6.
[http://dx.doi.org/10.1016/j.ejogrb.2014.10.041] [PMID: 25462211]
[23]
Kolahdouz Mohammadi, R; Arablou, T. Resveratrol and endometriosis: In vitro and animal studies and underlying mechanisms. Biomed. Pharmacother., 2017, 91, 220-228.
[24]
Ozcan Cenksoy, P; Oktem, M; Erdem, O; Karakaya, C; Cenksoy, C; Erdem, A A potential novel treatment strategy: Inhibition of angiogenesis and inflammation by resveratrol for regression of endometriosis in an experimental rat model. Gynecol. Endocrinol., 2015, 31(3), 219-224.
[http://dx.doi.org/10.3109/09513590.2014.976197]
[25]
Dull, A.M.; Moga, M.A.; Dimienescu, O.G.; Sechel, G.; Burtea, V.; Anastasiu, C.V. Therapeutic approaches of resveratrol on endometriosis via anti-inflammatory and anti-angiogenic pathways. Molecules, 2019, 24(4), 667.
[http://dx.doi.org/10.3390/molecules24040667] [PMID: 30781885]
[26]
Kodarahmian, M; Amidi, F; Moini, A; Kashani, L; Shabani Nashtaei, M; Pazhohan, A The modulating effects of Resveratrol on the expression of MMP-2 and MMP-9 in endometriosis women: A randomized exploratory trial. Gynecol. Endocrinol., 2019, 35(8), 719-726.
[27]
Tili, E.; Michaille, J.J.; Alder, H.; Volinia, S.; Delmas, D.; Latruffe, N.; Croce, C.M. Resveratrol modulates the levels of microRNAs targeting genes encoding tumor-suppressors and effectors of TGFβ signaling pathway in SW480 cells. Biochem. Pharmacol., 2010, 80(12), 2057-2065.
[http://dx.doi.org/10.1016/j.bcp.2010.07.003] [PMID: 20637737]
[28]
Webb, P.M.; Jordan, S.J. Epidemiology of epithelial ovarian cancer. Best Pract. Res. Clin. Obstet. Gynaecol., 2017, 41, 3-14.
[http://dx.doi.org/10.1016/j.bpobgyn.2016.08.006] [PMID: 27743768]
[29]
El-Sherif, A.; El-Sherif, S.; Taylor, A.H.; Ayakannu, T. Ovarian cancer: Lifestyle, diet and nutrition. Nutr. Cancer, 2021, 73(7), 1092-1107.
[http://dx.doi.org/10.1080/01635581.2020.1792948] [PMID: 32674720]
[30]
Králíčková, M.; Laganà, A.S.; Ghezzi, F.; Vetvicka, V. Endometriosis and risk of ovarian cancer: What do we know? Arch. Gynecol. Obstet., 2020, 301(1), 1-10.
[http://dx.doi.org/10.1007/s00404-019-05358-8] [PMID: 31745637]
[31]
Wang, L.; Wang, L.; Zhang, J.; Wang, B.; Liu, H. Association between diabetes mellitus and subsequent ovarian cancer in women. Medicine (Baltimore), 2017, 96(16), e6396.
[http://dx.doi.org/10.1097/MD.0000000000006396] [PMID: 28422831]
[32]
Su, L.; Wang, J.; Tao, Y.; Shao, X.; Ding, Y.; Cheng, X.; Zhu, Y. BRCA2 N372H polymorphism and risk of epithelial ovarian cancer. Medicine (Baltimore), 2015, 94(42), e1695.
[http://dx.doi.org/10.1097/MD.0000000000001695] [PMID: 26496279]
[33]
Pu, D.; Jiang, S.W.; Wu, J. Association between MTHFR gene polymorphism and the risk of ovarian cancer: A meta-analysis of the literature. Curr. Pharm. Des., 2014, 20(11), 1632-1638.
[http://dx.doi.org/10.2174/13816128113199990564] [PMID: 24720627]
[34]
King, M.C.; Marks, J.H.; Mandell, J.B. Breast and ovarian cancer risks due to inherited mutations in BRCA1 and BRCA2. Science, 2003, 302(5645), 643-646.
[http://dx.doi.org/10.1126/science.1088759] [PMID: 14576434]
[35]
Tanha, K.; Mottaghi, A.; Nojomi, M.; Moradi, M.; Rajabzadeh, R.; Lotfi, S.; Janani, L. Investigation on factors associated with ovarian cancer: An umbrella review of systematic review and meta-analyses. J. Ovarian Res., 2021, 14(1), 153.
[http://dx.doi.org/10.1186/s13048-021-00911-z] [PMID: 34758846]
[36]
Sun, H.; Wang, H.; Wang, X.; Aoki, Y.; Wang, X.; Yang, Y.; Cheng, X.; Wang, Z.; Wang, X. Aurora-A/SOX8/FOXK1 signaling axis promotes chemoresistance via suppression of cell senescence and induction of glucose metabolism in ovarian cancer organoids and cells. Theranostics, 2020, 10(15), 6928-6945.
[http://dx.doi.org/10.7150/thno.43811] [PMID: 32550913]
[37]
Chen, S.S.; Song, J.; Tu, X.Y.; Zhao, J.H.; Ye, X.Q. The association between MMP-12 82 A/G polymorphism and susceptibility to various malignant tumors: A meta-analysis. Int. J. Clin. Exp. Med., 2015, 8(7), 10845-10854.
[PMID: 26379878]
[38]
Zhang, W.; Zhang, Z. Associations between XRCC2 rs3218536 and ERCC2 rs13181 polymorphisms and ovarian cancer. Oncotarget, 2016, 7(52), 86621-86629.
[http://dx.doi.org/10.18632/oncotarget.13361] [PMID: 27863412]
[39]
Xiao, X.; Cai, F.; Niu, X.; Shi, H.; Zhong, Y. Association between P16INK4a promoter methylation and ovarian cancer: A meta-analysis of 12 published studies. PLoS One, 2016, 11(9), e0163257.
[http://dx.doi.org/10.1371/journal.pone.0163257] [PMID: 27648827]
[40]
Qiu, W.; Lu, H.; Qi, Y.; Wang, X. Dietary fat intake and ovarian cancer risk: A meta-analysis of epidemiological studies. Oncotarget, 2016, 7(24), 37390-37406.
[http://dx.doi.org/10.18632/oncotarget.8940] [PMID: 27119509]
[41]
Mungenast, F.; Thalhammer, T. Estrogen biosynthesis and action in ovarian cancer. Front. Endocrinol. (Lausanne), 2014, 5, 192.
[http://dx.doi.org/10.3389/fendo.2014.00192] [PMID: 25429284]
[42]
Diep, C.H.; Daniel, A.R.; Mauro, L.J.; Knutson, T.P.; Lange, C.A. Progesterone action in breast, uterine, and ovarian cancers. J. Mol. Endocrinol., 2015, 54(2), R31-R53.
[http://dx.doi.org/10.1530/JME-14-0252] [PMID: 25587053]
[43]
Lau, K.M.; LaSpina, M.; Long, J.; Ho, S.M. Expression of estrogen receptor (ER)-alpha and ER-beta in normal and malignant prostatic epithelial cells: Regulation by methylation and involvement in growth regulation. Cancer Res., 2000, 60(12), 3175-3182.
[PMID: 10866308]
[44]
Arcidiacono, B.; Iiritano, S.; Nocera, A.; Possidente, K.; Nevolo, M.T.; Ventura, V.; Foti, D.; Chiefari, E.; Brunetti, A. Insulin resistance and cancer risk: An overview of the pathogenetic mechanisms. Exp. Diabetes Res., 2012, 2012, 789174.
[http://dx.doi.org/10.1155/2012/789174] [PMID: 22701472]
[45]
Kaaks, R.; Lukanova, A. Energy balance and cancer: The role of insulin and insulin-like growth factor-I. Proc. Nutr. Soc., 2001, 60(1), 91-106.
[http://dx.doi.org/10.1079/PNS200070] [PMID: 11310428]
[46]
Esposito, K.; Nappo, F.; Marfella, R.; Giugliano, G.; Giugliano, F.; Ciotola, M.; Quagliaro, L.; Ceriello, A.; Giugliano, D. Inflammatory cytokine concentrations are acutely increased by hyperglycemia in humans: Role of oxidative stress. Circulation, 2002, 106(16), 2067-2072.
[http://dx.doi.org/10.1161/01.CIR.0000034509.14906.AE] [PMID: 12379575]
[47]
Ness, R.B. Endometriosis and ovarian cancer: Thoughts on shared pathophysiology. Am. J. Obstet. Gynecol., 2003, 189(1), 280-294.
[http://dx.doi.org/10.1067/mob.2003.408] [PMID: 12861175]
[48]
Wang, Q.; Gu, T.; Ma, L.; Bu, S.; Zhou, W.; Mao, G.; Wang, L.; Guo, Y.; Lai, D. Efficient iron utilization compensates for loss of extracellular matrix of ovarian cancer spheroids. Free Radic. Biol. Med., 2021, 164, 369-380.
[http://dx.doi.org/10.1016/j.freeradbiomed.2021.01.001] [PMID: 33450374]
[49]
Barry, J.A.; Azizia, M.M.; Hardiman, P.J. Risk of endometrial, ovarian and breast cancer in women with polycystic ovary syndrome: A systematic review and meta-analysis. Hum. Reprod. Update, 2014, 20(5), 748-758.
[http://dx.doi.org/10.1093/humupd/dmu012] [PMID: 24688118]
[50]
Kuper, H.; Cramer, D.W.; Titus-Ernstoff, L. Risk of ovarian cancer in the United States in relation to anthropometric measures: Does the association depend on menopausal status? Cancer Causes Control, 2002, 13(5), 455-463.
[http://dx.doi.org/10.1023/A:1015751105039] [PMID: 12146850]
[51]
Liu, Z.; Zhang, T.T.; Zhao, J.J.; Qi, S.F.; Du, P.; Liu, D.W.; Tian, Q.B. The association between overweight, obesity and ovarian cancer: A meta-analysis. Jpn. J. Clin. Oncol., 2015, 45(12), hyv150.
[http://dx.doi.org/10.1093/jjco/hyv150] [PMID: 26491203]
[52]
Reeves, G.K.; Pirie, K.; Beral, V.; Green, J.; Spencer, E.; Bull, D. Cancer incidence and mortality in relation to body mass index in the million women study: Cohort study. BMJ, 2007, 335(7630), 1134.
[http://dx.doi.org/10.1136/bmj.39367.495995.AE] [PMID: 17986716]
[53]
Weiss, N.S.; Harlow, B.L. Why does hysterectomy without bilateral oophorectomy influence the subsequent incidence of ovarian cancer? Am. J. Epidemiol., 1986, 124(5), 856-858.
[http://dx.doi.org/10.1093/oxfordjournals.aje.a114463] [PMID: 3766518]
[54]
Irwin, K.L.; Weiss, N.S.; Lee, N.C.; Peterson, H.B. Tubal sterilization, hysterectomy, and the subsequent occurrence of epithelial ovarian cancer. Am. J. Epidemiol., 1991, 134(4), 362-369.
[http://dx.doi.org/10.1093/oxfordjournals.aje.a116098] [PMID: 1877597]
[55]
Yousefi, H.; Maheronnaghsh, M.; Molaei, F.; Mashouri, L.; Reza Aref, A.; Momeny, M.; Alahari, S.K. Long noncoding RNAs and exosomal lncRNAs: Classification, and mechanisms in breast cancer metastasis and drug resistance. Oncogene, 2020, 39(5), 953-974.
[http://dx.doi.org/10.1038/s41388-019-1040-y] [PMID: 31601996]
[56]
Wang, J.Y.; Lu, A.Q.; Chen, L.J. LncRNAs in ovarian cancer. Clin. Chim. Acta., 2019, 490, 17-27.
[http://dx.doi.org/10.1016/j.cca.2018.12.013]
[57]
Cantile, M.; Di Bonito, M.; Cerrone, M.; Collina, F.; De Laurentiis, M.; Botti, G. Long non-coding RNA HOTAIR in breast cancer therapy. Cancers, 2020, 12(5), 1197.
[http://dx.doi.org/10.3390/cancers12051197] [PMID: 32397382]
[58]
Toy, H.I.; Okmen, D.; Kontou, P.I.; Georgakilas, A.G.; Pavlopoulou, A. HOTAIR as a prognostic predictor for diverse human cancers: A meta- and bioinformatics analysis. Cancers, 2019, 11(6), 778.
[http://dx.doi.org/10.3390/cancers11060778] [PMID: 31195674]
[59]
Saeedi, N.; Ghorbian, S. Analysis of clinical important of LncRNA-HOTAIR gene variations and ovarian cancer susceptibility. Mol. Biol. Rep., 2020, 47(10), 7421-7427.
[http://dx.doi.org/10.1007/s11033-020-05797-6] [PMID: 32901358]
[60]
Soda, N.; Umer, M.; Kashaninejad, N.; Kasetsirikul, S.; Kline, R.; Salomon, C.; Nguyen, N.T.; Shiddiky, M.J.A. PCR-free detection of long non-coding HOTAIR RNA in ovarian cancer cell lines and plasma samples. Cancers, 2020, 12(8), 2233.
[http://dx.doi.org/10.3390/cancers12082233] [PMID: 32785167]
[61]
Yang, C.; Li, H.; Zhang, T.; Chu, Y.; Chen, D.; Zuo, J. miR-200c overexpression inhibits the invasion and tumorigenicity of epithelial ovarian cancer cells by suppressing lncRNA HOTAIR in mice. J. Cell. Biochem., 2020, 121(2), 1514-1523.
[http://dx.doi.org/10.1002/jcb.29387] [PMID: 31535411]
[62]
Zhang, Y.; Guo, J.; Cai, E.; Cai, J.; Wen, Y.; Lu, S.; Li, X.; Han, Q.; Jiang, J.; Li, T.; Wang, Z. HOTAIR maintains the stemness of ovarian cancer stem cells via the miR-206/TBX3 axis. Exp. Cell Res., 2020, 395(2), 112218.
[http://dx.doi.org/10.1016/j.yexcr.2020.112218] [PMID: 32771526]
[63]
Jiang, J.; Wang, S.; Wang, Z.; Cai, J.; Han, L.; Xie, L.; Han, Q.; Wang, W.; Zhang, Y.; He, X.; Yang, C. HOTAIR promotes paclitaxel resistance by regulating CHEK1 in ovarian cancer. Cancer Chemother. Pharmacol., 2020, 86(2), 295-305.
[http://dx.doi.org/10.1007/s00280-020-04120-1] [PMID: 32743678]
[64]
Yuan, J.; Yi, K.; Yang, L. LncRNA NEAT1 promotes proliferation of ovarian cancer cells and angiogenesis of co-incubated human umbilical vein endothelial cells by regulating FGF9 through sponging miR-365. Medicine (Baltimore), 2021, 100(3), e23423.
[http://dx.doi.org/10.1097/MD.0000000000023423] [PMID: 33545926]
[65]
Luo, M.; Zhang, L.; Yang, H.; Luo, K.; Qing, C. Long non-coding RNA NEAT1 promotes ovarian cancer cell invasion and migration by interacting with miR-1321 and regulating tight junction protein 3 expression. Mol. Med. Rep., 2020, 22(4), 3429-3439.
[http://dx.doi.org/10.3892/mmr.2020.11428] [PMID: 32945443]
[66]
Xu, H.; Sun, X.; Huang, Y.; Si, Q.; Li, M. Long non-coding RNA NEAT1 modifies cell proliferation, colony formation, apoptosis, migration and invasion via the miR-4500/BZW1 axis in ovarian cancer. Mol. Med. Rep., 2020, 22(4), 3347-3357.
[http://dx.doi.org/10.3892/mmr.2020.11408] [PMID: 32945505]
[67]
Yong, W.; Yu, D.; Jun, Z.; Yachen, D.; Weiwei, W.; Midie, X.; Xingzhu, J.; Xiaohua, W. Long noncoding RNA NEAT1, regulated by LIN28B, promotes cell proliferation and migration through sponging miR-506 in high-grade serous ovarian cancer. Cell Death Dis., 2018, 9(9), 861.
[http://dx.doi.org/10.1038/s41419-018-0908-z] [PMID: 30154460]
[68]
Zhu, M.; Yang, L.; Wang, X. NEAT1 knockdown suppresses the cisplatin resistance in ovarian cancer by regulating miR-770-5p/PARP1 axis. Cancer Manag. Res., 2020, 12, 7277-7289.
[http://dx.doi.org/10.2147/CMAR.S257311] [PMID: 32884343]
[69]
Zhu, Z.; Song, L.; He, J.; Sun, Y.; Liu, X.; Zou, X. Ectopic expressed long non-coding RNA H19 contributes to malignant cell behavior of ovarian cancer. Int. J. Clin. Exp. Pathol., 2015, 8(9), 10082-10091.
[PMID: 26617715]
[70]
Chen, C.L.; Ip, S.M.; Cheng, D.; Wong, L.C.; Ngan, H.Y. Loss of imprinting of the IGF-II and H19 genes in epithelial ovarian cancer. Clin. Cancer Res., 2000, 6(2), 474-479.
[PMID: 10690526]
[71]
Li, J.; Huang, Y.; Deng, X.; Luo, M.; Wang, X.; Hu, H.; Liu, C.; Zhong, M. Long noncoding RNA H19 promotes transforming growth factor-β-induced epithelial–mesenchymal transition by acting as a competing endogenous RNA of miR-370-3p in ovarian cancer cells. OncoTargets Ther., 2018, 11, 427-440.
[http://dx.doi.org/10.2147/OTT.S149908] [PMID: 29403287]
[72]
Sajadpoor, Z.; Amini-Farsani, Z.; Teimori, H.; Shamsara, M.; Sangtarash, M.H.; Ghasemi-Dehkordi, P.; Yadollahi, F. Valproic acid promotes apoptosis and cisplatin sensitivity through downregulation of H19 Noncoding RNA in ovarian A2780 Cells. Appl. Biochem. Biotechnol., 2018, 185(4), 1132-1144.
[http://dx.doi.org/10.1007/s12010-017-2684-0] [PMID: 29468525]
[73]
Wu, X.; Wang, Y.; Zhong, W.; Cheng, H.; Tian, Z. The long non-coding RNA MALAT1 enhances ovarian cancer cell stemness by inhibiting YAP translocation from nucleus to cytoplasm. Med. Sci. Monit., 2020, 26, e922012.
[http://dx.doi.org/10.12659/MSM.922012] [PMID: 32433460]
[74]
Bai, L.; Wang, A.; Zhang, Y.; Xu, X.; Zhang, X. Knockdown of MALAT1 enhances chemosensitivity of ovarian cancer cells to cisplatin through inhibiting the Notch1 signaling pathway. Exp. Cell Res., 2018, 366(2), 161-171.
[http://dx.doi.org/10.1016/j.yexcr.2018.03.014] [PMID: 29548748]
[75]
Sun, Q.; Li, Q.; Xie, F. LncRNA-MALAT1 regulates proliferation and apoptosis of ovarian cancer cells by targeting miR-503-5p. OncoTargets Ther., 2019, 12, 6297-6307.
[http://dx.doi.org/10.2147/OTT.S214689] [PMID: 31496733]
[76]
Zhou, D.; Zhang, L.; Sun, W.; Guan, W.; Lin, Q.; Ren, W.; Zhang, J.; Xu, G. Cytidine monophosphate kinase is inhibited by the TGF-β signalling pathway through the upregulation of miR-130b-3p in human epithelial ovarian cancer. Cell. Signal., 2017, 35, 197-207.
[http://dx.doi.org/10.1016/j.cellsig.2017.04.009] [PMID: 28414100]
[77]
Pa, M.; Naizaer, G.; Seyiti, A.; Kuerbang, G. Long Noncoding RNA MALAT1 functions as a sponge of MiR-200c in ovarian cancer. Oncol. Res., 2022.
[http://dx.doi.org/10.3727/096504017X15049198963076] [PMID: 28899458]
[78]
Gordon, M.A.; Babbs, B.; Cochrane, D.R.; Bitler, B.G.; Richer, J.K. The long non-coding RNA MALAT1 promotes ovarian cancer progression by regulating RBFOX2- mediated alternative splicing. Mol. Carcinog., 2019, 58(2), 196-205.
[http://dx.doi.org/10.1002/mc.22919] [PMID: 30294913]
[79]
Guo, C.; Wang, X.; Chen, L.P.; Li, M.; Li, M.; Hu, Y.H.; Ding, W.H.; Wang, X. Long non-coding RNA MALAT1 regulates ovarian cancer cell proliferation, migration and apoptosis through Wnt/β-catenin signaling pathway. Eur. Rev. Med. Pharmacol. Sci., 2018, 22(12), 3703-3712.
[PMID: 29949143]
[80]
Wang, J; Xu, W; He, Y; Xia, Q; Liu, S. LncRNA MEG3 impacts proliferation, invasion, and migration of ovarian cancer cells through regulating PTEN. Inflam. Res., 2018, 67(11-12), 927-36.
[http://dx.doi.org/10.1007/s00011-018-1186-z]
[81]
Tao, P.; Yang, B.; Zhang, H.; Sun, L.; Wang, Y.; Zheng, W. The overexpression of lncRNA MEG3 inhibits cell viability and invasion and promotes apoptosis in ovarian cancer by sponging miR-205-5p. Int. J. Clin. Exp. Pathol., 2020, 13(5), 869-879.
[PMID: 32509057]
[82]
Vallino, L.; Ferraresi, A.; Vidoni, C.; Secomandi, E.; Esposito, A.; Dhanasekaran, D.N.; Isidoro, C. Modulation of non-coding RNAs by resveratrol in ovarian cancer cells: In silico analysis and literature review of the anti-cancer pathways involved. J. Tradit. Complement. Med., 2020, 10(3), 217-229.
[http://dx.doi.org/10.1016/j.jtcme.2020.02.006] [PMID: 32670816]
[83]
Yao, S.; Gao, M.; Wang, Z.; Wang, W.; Zhan, L.; Wei, B. Upregulation of microRNA-34a sensitizes ovarian cancer cells to resveratrol by targeting Bcl-2. Yonsei Med. J., 2021, 62(8), 691-701.
[http://dx.doi.org/10.3349/ymj.2021.62.8.691] [PMID: 34296546]
[84]
Ferraresi, A.; Phadngam, S.; Morani, F.; Galetto, A.; Alabiso, O.; Chiorino, G.; Isidoro, C. Resveratrol inhibits IL-6-induced ovarian cancer cell migration through epigenetic up-regulation of autophagy. Mol. Carcinog., 2017, 56(3), 1164-1181.
[http://dx.doi.org/10.1002/mc.22582] [PMID: 27787915]
[85]
El-kott, A.F.; Shati, A.A.; Ali Al-kahtani, M.; Alharbi, S.A. The apoptotic effect of resveratrol in ovarian cancer cells is associated with downregulation of galectin-3 and stimulating miR-424-3p transcription. J. Food Biochem., 2019, 43(12), e13072.
[http://dx.doi.org/10.1111/jfbc.13072] [PMID: 31603261]