Mitochondrial Dysfunction in Neurodevelopmental Disorders: A Systematic Review on Pathways and Mechanisms

Article ID: e071122210702 Pages: 10

  • * (Excluding Mailing and Handling)

Abstract

Background: Neurodevelopmental disorders (NDDs) are types of disorders that are marked by a wide range of genetic and clinical mutability which will affect the development and function of the brain. Mitochondria are increasingly associated with various neurodevelopmental disorders and it is found because of mutation of mitochondrial genes, which leads to mitochondrial dysfunction.

Objective: Understanding the pathways and mechanisms of mitochondrial dysfunction related to neurodevelopmental disorders such as ADHD, Pelizaeus- Merzbacher Disease (PMD), mental retardation, Autism spectrum disorder, Rett's syndrome, and Fragile X syndrome is important. In this review, we discussed the possible factors associated with mitochondria that influence the clinical presentation of NDDs, better understanding of the mechanisms behind these pathways will hopefully be helpful for the diagnosis and treatment approaches.

Conclusion: Mitochondria are simply another subcellular victim of various neurodegenerative pathways, or are they a common denominator on the path to neurodegeneration? A better understanding of functional and molecular mechanistic pathways can lead to the identification of potential targets, thereby opening perspectives for future treatment.

[1]
Gilissen, C.; Hehir-Kwa, J.Y.; Thung, D.T.; van de Vorst, M.; van Bon, B.W.M.; Willemsen, M.H.; Kwint, M.; Janssen, I.M.; Hoischen, A.; Schenck, A.; Leach, R.; Klein, R.; Tearle, R.; Bo, T.; Pfundt, R.; Yntema, H.G.; de Vries, B.B.A.; Kleefstra, T.; Brunner, H.G.; Vissers, L.E.L.M.; Veltman, J.A. Genome sequencing identifies major causes of severe intellectual disability. Nature, 2014, 511(7509), 344-347.
[http://dx.doi.org/10.1038/nature13394] [PMID: 24896178]
[2]
Murray, R.M.; Lewis, S.W. Is schizophrenia a neurodevelopmental disorder? Br. Med. J., 1987, 295, 681.
[http://dx.doi.org/10.1136/bmj.295.6600.681]
[3]
Jones, K.; Smith, D. Recognition of the fetal alcohol syndrome in early infancy. Lancet, 1973, 302(7836), 999-1001.
[http://dx.doi.org/10.1016/S0140-6736(73)91092-1] [PMID: 4127281]
[4]
Whitmore; Kingsley; Hart, Hilary Willems, Guy. A neurodevelopmental approach to specific learning disorders. DMCN, 1999, 41(7), 503-503.
[5]
Neurodevelopmental aspects of schizophrenia, Medscape Psychiatry and Mental Health. 2008. Available from: https://www.medscape.org/viewarticle/420830
[6]
Tărlungeanu, D.C.; Novarino, G. Genomics in neurodevelopmental disorders: an avenue to personalized medicine. Exp. Mol. Med., 2018, 50(8), 1-7.
[http://dx.doi.org/10.1038/s12276-018-0129-7] [PMID: 30089840]
[7]
Cristino, A.S.; Williams, S.M.; Hawi, Z.; An, J.Y.; Bellgrove, M.A.; Schwartz, C.E.; Costa, L.F.; Claudianos, C. Neurodevelopmental and neuropsychiatric disorders represent an interconnected molecular system. Mol. Psychiatry, 2014, 19(3), 294-301.
[http://dx.doi.org/10.1038/mp.2013.16] [PMID: 23439483]
[8]
Hormozdiari, F.; Penn, O.; Borenstein, E.; Eichler, E.E. The discovery of integrated gene networks for autism and related disorders. Genome Res., 2015, 25(1), 142-154.
[http://dx.doi.org/10.1101/gr.178855.114] [PMID: 25378250]
[9]
Li, Y.; Jia, X.; Wu, H.; Xun, G.; Ou, J.; Zhang, Q.; Li, H.; Bai, T.; Hu, Z.; Zou, X.; Xia, K.; Guo, H. Genotype and phenotype correlations for SHANK3 de novo mutations in neurodevelopmental disorders. Am. J. Med. Genet. A., 2018, 176(12), ajmg.a.40666.
[http://dx.doi.org/10.1002/ajmg.a.40666] [PMID: 30537371]
[10]
Casanova, E.L.; Gerstner, Z.; Sharp, J.L.; Casanova, M.F.; Feltus, F.A. Widespread genotype-phenotype correlations in intellectual disability. Front. Psychiatry, 2018, 9, 535.
[http://dx.doi.org/10.3389/fpsyt.2018.00535] [PMID: 30420816]
[11]
Kremer, E.J.; Yu, S.; Pritchard, M.; Nagaraja, R.; Heitz, D.; Lynch, M.; Baker, E.; Hyland, V.J.; Little, R.D.; Wada, M.; Toniolo, D. Isolation of a human DNA sequence which spans the fragile X. Am. J. Hum. Genet., 1991, 49(3), 656-661.
[PMID: 1882843]
[12]
Lubs, H.A.; Stevenson, R.E.; Schwartz, C.E. Fragile X and X-linked intellectual disability: four decades of discovery. Am. J. Hum. Genet., 2012, 90(4), 579-590.
[http://dx.doi.org/10.1016/j.ajhg.2012.02.018] [PMID: 22482801]
[13]
Soden, S.E.; Saunders, C.J.; Willig, L.K.; Farrow, E.G.; Smith, L.D.; Petrikin, J.E.; LePichon, J.B.; Miller, N.A.; Thiffault, I.; Dinwiddie, D.L.; Twist, G.; Noll, A.; Heese, B.A.; Zellmer, L.; Atherton, A.M.; Abdelmoity, A.T.; Safina, N.; Nyp, S.S.; Zuccarelli, B.; Larson, I.A.; Modrcin, A.; Herd, S.; Creed, M.; Ye, Z.; Yuan, X.; Brodsky, R.A.; Kingsmore, S.F. Effectiveness of exome and genome sequencing guided by acuity of illness for diagnosis of neurodevelopmental disorders. Sci. Transl. Med., 2014, 6(265), 265ra168.
[http://dx.doi.org/10.1126/scitranslmed.3010076] [PMID: 25473036]
[14]
Ortiz-González, X.R. Mitochondrial dysfunction: A common denominator in neurodevelopmental disorders? Dev. Neurosci., 2021, 43(3-4), 222-229.
[http://dx.doi.org/10.1159/000517870] [PMID: 34350863]
[15]
Picard, M.; Wallace, D.C.; Burelle, Y. The rise of mitochondria in medicine. Mitochondrion, 2016, 30, 105-116.
[http://dx.doi.org/10.1016/j.mito.2016.07.003] [PMID: 27423788]
[16]
Spinelli, J.B.; Haigis, M.C. The multifaceted contributions of mitochondria to cellular metabolism. Nat. Cell Biol., 2018, 20(7), 745-754.
[http://dx.doi.org/10.1038/s41556-018-0124-1] [PMID: 29950572]
[17]
Vyas, S.; Zaganjor, E.; Haigis, M.C. Mitochondria and Cancer. Cell, 2016, 166(3), 555-566.
[http://dx.doi.org/10.1016/j.cell.2016.07.002] [PMID: 27471965]
[18]
Alston, C.L.; Rocha, M.C.; Lax, N.Z.; Turnbull, D.M.; Taylor, R.W. The genetics and pathology of mitochondrial disease. J. Pathol., 2017, 241(2), 236-250.
[http://dx.doi.org/10.1002/path.4809] [PMID: 27659608]
[19]
Parikh, S.; Goldstein, A.; Koenig, M.K.; Scaglia, F.; Enns, G.M.; Saneto, R.; Anselm, I.; Cohen, B.H.; Falk, M.J.; Greene, C.; Gropman, A.L.; Haas, R.; Hirano, M.; Morgan, P.; Sims, K.; Tarnopolsky, M.; Van Hove, J.L.K.; Wolfe, L.; DiMauro, S. Diagnosis and management of mitochondrial disease: A consensus statement from the mitochondrial medicine society. Genet. Med., 2015, 17(9), 689-701.
[http://dx.doi.org/10.1038/gim.2014.177] [PMID: 25503498]
[20]
Guha, M.; Avadhani, N.G. Mitochondrial retrograde signaling at the crossroads of tumor bioenergetics, genetics and epigenetics. Mitochondrion, 2013, 13(6), 577-591.
[http://dx.doi.org/10.1016/j.mito.2013.08.007] [PMID: 24004957]
[21]
Burgener, A.V.; Bantug, G.R.; Meyer, B.J.; Higgins, R.; Ghosh, A.; Bignucolo, O.; Ma, E.H.; Loeliger, J.; Unterstab, G.; Geigges, M.; Steiner, R.; Enamorado, M.; Ivanek, R.; Hunziker, D.; Schmidt, A.; Müller-Durovic, B.; Grählert, J.; Epple, R.; Dimeloe, S.; Lötscher, J.; Sauder, U.; Ebnöther, M.; Burger, B.; Heijnen, I.; Martínez-Cano, S.; Cantoni, N.; Brücker, R.; Kahlert, C.R.; Sancho, D.; Jones, R.G.; Navarini, A.; Recher, M.; Hess, C. SDHA gain-of-function engages inflammatory mitochondrial retrograde signaling via KEAP1–Nrf2. Nat. Immunol., 2019, 20(10), 1311-1321.
[http://dx.doi.org/10.1038/s41590-019-0482-2] [PMID: 31527833]
[22]
Tan, J.X.; Finkel, T. Mitochondria as intracellular signaling platforms in health and disease. J. Cell Biol., 2020, 219(5), e202002179.
[http://dx.doi.org/10.1083/jcb.202002179] [PMID: 32320464]
[23]
O’Malley, J.; Kumar, R.; Inigo, J.; Yadava, N.; Chandra, D. Mitochondrial stress response and cancer. Trends Cancer, 2020, 6(8), 688-701.
[http://dx.doi.org/10.1016/j.trecan.2020.04.009] [PMID: 32451306]
[24]
Bush, N.R.; Wakschlag, L.S.; LeWinn, K.Z.; Hertz-Picciotto, I.; Nozadi, S.S.; Pieper, S.; Lewis, J.; Biezonski, D.; Blair, C.; Deardorff, J.; Neiderhiser, J.M.; Leve, L.D.; Elliott, A.J.; Duarte, C.S.; Lugo-Candelas, C.; O’Shea, T.M.; Avalos, L.A.; Page, G.P.; Posner, J. Family environment, neurodevelopmental risk, and the environmental influences on child health outcomes (ECHO) initiative: Looking back and moving forward. Front. Psychiatry, 2020, 11, 547.
[http://dx.doi.org/10.3389/fpsyt.2020.00547] [PMID: 32636769]
[25]
Duarte, C.S.; Monk, C.; Weissman, M.M.; Posner, J. Intergenerational psychiatry: a new look at a powerful perspective. World Psychiatry, 2020, 19(2), 175-176.
[http://dx.doi.org/10.1002/wps.20733] [PMID: 32394546]
[26]
Scriver, C.R. The metabolic & molecular bases of inherited disease; McGraw-Hill: MH, 2001.
[27]
Valenti, D.; de Bari, L.; De Filippis, B.; Henrion-Caude, A.; Vacca, R.A. Mitochondrial dysfunction as a central actor in intellectual disability-related diseases: An overview of Down syndrome, autism, Fragile X and Rett syndrome. Neurosci. Biobehav. Rev., 2014, 46(Pt 2), 202-217.
[http://dx.doi.org/10.1016/j.neubiorev.2014.01.012] [PMID: 24548784]
[28]
Iannello, R.C.; Crack, P.J.; de Haan, J.B.; Kola, I. Oxidative stress and neural dysfunction in Down Syndrome. J. Neural Transm. Suppl., 1999, 57, 257-267.
[http://dx.doi.org/10.1007/978-3-7091-6380-1_17] [PMID: 10666681]
[29]
Huang, T.T.; Mantha, S.; Epstein, C.J. The role of oxidative Imbalance in the pathogenesis of Down syndrome. Redox; Genome Interactions in Health and Disease; Fuchs, J.; Podda, M.; Packer, L., Eds.; Dekker: New York, 2003, pp. 409-424.
[30]
Wang, X.; Michaelis, E.K. Selective neuronal vulnerability to oxidative stress in the brain. Front. Aging Neurosci., 2010, 2, 12.
[http://dx.doi.org/10.3389/fnagi.2010.00012] [PMID: 20552050]
[31]
Busciglio, J.; Yankner, B.A. Apoptosis and increased generation of reactive oxygen species in Down’s syndrome neurons in vitro. Nature, 1995, 378(6559), 776-779.
[http://dx.doi.org/10.1038/378776a0] [PMID: 8524410]
[32]
Busciglio, J.; Pelsman, A.; Wong, C.; Pigino, G.; Yuan, M.; Mori, H.; Yankner, B.A. Altered metabolism of the amyloid beta precursor protein is associated with mitochondrial dysfunction in Down’s syndrome. Neuron, 2002, 33(5), 677-688.
[http://dx.doi.org/10.1016/S0896-6273(02)00604-9] [PMID: 11879646]
[33]
Younus, H. Therapeutic potentials of superoxide dismutase. Int. J. Health Sci., 2018, 12(3), 88-93.
[PMID: 29896077]
[34]
Gulesserian, T.; Seidl, R.; Hardmeier, R.; Cairns, N.; Lubec, G. Superoxide dismutase SOD1, encoded on chromosome 21, but not SOD2 is overexpressed in brains of patients with Down syndrome. J. Investig. Med., 2001, 49(1), 41-46.
[http://dx.doi.org/10.2310/6650.2001.34089] [PMID: 11217146]
[35]
Lee, M.; Hyun, D.; Jenner, P.; Halliwell, B. Effect of overexpression of wild-type and mutant Cu/Zn-superoxide dismutases on oxidative damage and antioxidant defences: relevance to Down’s Syndrome and familial amyotrophic lateral sclerosis. J. Neurochem., 2001, 76, 957-965.
[http://dx.doi.org/10.1046/j.1471-4159.2001.00107.x]
[36]
Teller, J.K.; Russo, C.; Debusk, L.M.; Angelini, G.; Zaccheo, D.; Dagna-Bricarelli, F.; Scartezzini, P.; Bertolini, S.; Mann, D.M.A.; Tabaton, M.; Gambetti, P. Presence of soluble amyloid β–peptide precedes amyloid plaque formation in Down’s syndrome. Nat. Med., 1996, 2(1), 93-95.
[http://dx.doi.org/10.1038/nm0196-93] [PMID: 8564851]
[37]
Halliwell, B. Free radicals, antioxidants, and human disease: curiosity, cause, or consequence? Lancet, 1994, 344(8924), 721-724.
[http://dx.doi.org/10.1016/S0140-6736(94)92211-X] [PMID: 7915779]
[38]
Raha, S.; Robinson, B.H. Mitochondria, oxygen free radicals, disease and ageing. Trends Biochem. Sci., 2000, 25(10), 502-508.
[http://dx.doi.org/10.1016/S0968-0004(00)01674-1] [PMID: 11050436]
[39]
Gandhi, S.; Abramov, AY. Mehanism of oxidative stress in neurodegeneration. Oxidative Med. Cell. Longev., 2012, 2012, 11.
[40]
Puisségur, M-P.; Mazure, N.M.; Bertero, T.; Pradelli, L.; Grosso, S.; Robbe-Sermesant, K.; Maurin, T.; Lebrigand, K.; Cardinaud, B.; Hofman, V.; Fourre, S.; Magnone, V.; Ricci, J.E.; Pouysségur, J.; Gounon, P.; Hofman, P.; Barbry, P.; Mari, B. miR-210 is overexpressed in late stages of lung cancer and mediates mitochondrial alterations associated with modulation of HIF-1 activity. Cell Death Differ., 2011, 18(3), 465-478.
[http://dx.doi.org/10.1038/cdd.2010.119] [PMID: 20885442]
[41]
Chen, Z.; Li, Y.; Zhang, H.; Huang, P.; Luthra, R. Hypoxia-regulated microRNA-210 modulates mitochondrial function and decreases ISCU and COX10 expression. Oncogene, 2010, 29(30), 4362-4368.
[http://dx.doi.org/10.1038/onc.2010.193] [PMID: 20498629]
[42]
Elton, T.S.; Sansom, S.E.; Martin, M.M. Trisomy-21 gene dosage over-expression of miRNAs results in the haploinsufficiency of specific target proteins. RNA Biol., 2010, 7(5), 540-547.
[http://dx.doi.org/10.4161/rna.7.5.12685] [PMID: 21081842]
[43]
Delabar, J.M.; Theophile, D.; Rahmani, Z.; Chettouh, Z.; Blouin, J.L.; Prieur, M.; Noel, B.; Sinet, P.M. Molecular mapping of twenty-four features of Down syndrome on chromosome 21. Eur. J. Hum. Genet., 1993, 1(2), 114-124.
[http://dx.doi.org/10.1159/000472398] [PMID: 8055322]
[44]
Antonarakis, S.E.; Lyle, R.; Dermitzakis, E.T.; Reymond, A.; Deutsch, S. Chromosome 21 and Down syndrome: from genomics to pathophysiology. Nat. Rev. Genet., 2004, 5(10), 725-738.
[http://dx.doi.org/10.1038/nrg1448] [PMID: 15510164]
[45]
Chang, X.; Liu, Y.; Mentch, F.; Glessner, J.; Qu, H.; Nguyen, K.; Sleiman, P.M.A.; Hakonarson, H. Mitochondrial DNA haplogroups and risk of attention deficit and hyperactivity disorder in European Americans. Transl. Psychiatry, 2020, 10(1), 370.
[http://dx.doi.org/10.1038/s41398-020-01064-1] [PMID: 33139694]
[46]
Verma, P.; Singh, A.; Nthenge-Ngumbau, D.N.; Rajamma, U.; Sinha, S.; Mukhopadhyay, K.; Mohanakumar, K.P. Attention deficit-hyperactivity disorder suffers from mitochondrial dysfunction. BBA Clin., 2016, 6, 153-158.
[http://dx.doi.org/10.1016/j.bbacli.2016.10.003] [PMID: 27896136]
[47]
Salimi, A.; Nikoosiar Jahromi, M.; Pourahmad, J. Maternal exposure causes mitochondrial dysfunction in brain, liver, and heart of mouse fetus: An explanation for perfluorooctanoic acid induced abortion and developmental toxicity. Environ. Toxicol., 2019, 34(7), 878-885.
[http://dx.doi.org/10.1002/tox.22760] [PMID: 31037826]
[48]
Öğütlü, H.; Esin, İ.S.; Erdem, H.B.; Tatar, A.; Dursun, O.B. Mitochondrial DNA copy number may be associated with attention deficit/hyperactivity disorder severity in treatment: a one-year follow-up study. Int. J. Psychiatry Clin. Pract., 2021, 25(1), 37-42.
[http://dx.doi.org/10.1080/13651501.2021.1879158] [PMID: 33555215]
[49]
Joseph, N.; Zhang-James, Y.; Perl, A.; Faraone, S.V. Oxidative stress and ADHD. J. Atten. Disord., 2015, 19(11), 915-924.
[http://dx.doi.org/10.1177/1087054713510354] [PMID: 24232168]
[50]
Palladino, V.S.; Chiocchetti, A.G.; Frank, L.; Haslinger, D.; McNeill, R.; Radtke, F.; Till, A.; Haupt, S.; Brüstle, O.; Günther, K.; Edenhofer, F.; Hoffmann, P.; Reif, A.; Kittel-Schneider, S. Energy metabolism disturbances in cell models of PARK2 CNV carriers with ADHD. J. Clin. Med., 2020, 9(12), 4092.
[http://dx.doi.org/10.3390/jcm9124092] [PMID: 33353000]
[51]
Inoue, K. Pelizaeus-merzbacher disease: Molecular and cellular pathologies and associated phenotypes. Adv. Exp. Med. Biol., 2019, 1190, 201-216.
[http://dx.doi.org/10.1007/978-981-32-9636-7_13] [PMID: 31760646]
[52]
Hobson, G.M.; Garbern, J.Y. Pelizaeus-merzbacher disease, pelizaeus-merzbacher-like disease 1, and related hypomyelinating disorders. Semin, Neurol., 2012, 32(01), 062-067.
[http://dx.doi.org/10.1055/s-0032-1306388]
[53]
Zheng, X.; Duan, R.; Li, L.; Xing, S.; Ji, H.; Yan, H.; Gao, K.; Wang, J.; Wang, J.; Chen, L. Live-cell superresolution pathology reveals different molecular mechanisms of pelizaeus-merzbacher disease. Sci. Bull., 2020, 65(24), 2061-2064.
[http://dx.doi.org/10.1016/j.scib.2020.08.016]
[54]
Duan, R.; Li, L.; Yan, H.; He, M.; Gao, K.; Xing, S.; Ji, H.; Wang, J.; Cao, B.; Li, D.; Xie, H.; Zhao, S.; Wu, Y.; Jiang, Y.; Xiao, J.; Gu, Q.; Li, M.; Zheng, X.; Chen, L.; Wang, J. Novel insight into the potential pathogenicity of mitochondrial dysfunction resulting from PLP1 duplication mutations in patients with Pelizaeus–Merzbacher disease. Neuroscience, 2021, 476, 60-71.
[http://dx.doi.org/10.1016/j.neuroscience.2021.08.029] [PMID: 34506833]
[55]
Saugier-Veber, P.; Munnich, A.; Bonneau, D.; Rozet, J.M.; Le Merrer, M.; Gil, R.; Boespflug-Tanguy, O. X–linked spastic paraplegia and Pelizaeus–Merzbacher disease are allelic disorders at the proteolipid protein locus. Nat. Genet., 1994, 6(3), 257-262.
[http://dx.doi.org/10.1038/ng0394-257] [PMID: 8012387]
[56]
Osório, M.J.; Goldman, S.A. Neurogenetics of Pelizaeus–Merzbacher disease. Handb. Clin. Neurol., 2018, 148, 701-722.
[http://dx.doi.org/10.1016/B978-0-444-64076-5.00045-4] [PMID: 29478609]
[57]
Bahrambeigi, V.; Song, X.; Sperle, K.; Beck, C.R.; Hijazi, H.; Grochowski, C.M.; Gu, S.; Seeman, P.; Woodward, K.J.; Carvalho, C.M.B.; Hobson, G.M.; Lupski, J.R. Distinct patterns of complex rearrangements and a mutational signature of microhomeology are frequently observed in PLP1 copy number gain structural variants. Genome Med., 2019, 11(1), 80.
[http://dx.doi.org/10.1186/s13073-019-0676-0] [PMID: 31818324]
[58]
Hudson, L.D. Pelizaeus-Merzbacher disease and spastic paraplegia type 2: two faces of myelin loss from mutations in the same gene. J. Child Neurol., 2003, 18(9), 616-624.
[http://dx.doi.org/10.1177/08830738030180090801] [PMID: 14572140]
[59]
Penagarikano, O.; Mulle, J.G.; Warren, S.T. The pathophysiology of fragile x syndrome. Annu. Rev. Genomics Hum. Genet., 2007, 8(1), 109-129.
[http://dx.doi.org/10.1146/annurev.genom.8.080706.092249] [PMID: 17477822]
[60]
Fisch, G.S.; Simensen, R.J.; Schroer, R.J. Longitudinal changes in cognitive and adaptive behavior scores in children and adolescents with the fragile X mutation or autism. J. Autism Dev. Disord., 2002, 32(2), 107-114.
[http://dx.doi.org/10.1023/A:1014888505185] [PMID: 12058838]
[61]
Lubs, H.A. A marker X chromosome. Am. J. Hum. Genet., 1969, 21(3), 231-244.
[PMID: 5794013]
[62]
Sutherland, G.R. Fragile sites on human chromosomes: demonstration of their dependence on the type of tissue culture medium. Science, 1977, 197(4300), 265-266.
[http://dx.doi.org/10.1126/science.877551] [PMID: 877551]
[63]
Berger, R.; Bloomfield, C.D.; Sutherland, G.R. Report of the committee on chromosome rearrangements in neoplasia and on fragile sites. Cytogenet. Genome Res., 1985, 40(1-4), 490-535.
[http://dx.doi.org/10.1159/000132181] [PMID: 3864602]
[64]
Wallace, D.C.; Fan, W. Energetics, epigenetics, mitochondrial genetics. Mitochondrion, 2010, 10(1), 12-31.
[http://dx.doi.org/10.1016/j.mito.2009.09.006] [PMID: 19796712]
[65]
Yao, A.; Jin, S.; Li, X.; Liu, Z.; Ma, X.; Tang, J.; Zhang, Y.Q. Drosophila FMRP regulates microtubule network formation and axonal transport of mitochondria. Hum. Mol. Genet., 2011, 20(1), 51-63.
[http://dx.doi.org/10.1093/hmg/ddq431] [PMID: 20935173]
[66]
Weisz, E.D.; Towheed, A.; Monyak, R.E.; Toth, M.S.; Wallace, D.C.; Jongens, T.A. Loss of Drosophila FMRP leads to alterations in energy metabolism and mitochondrial function. Hum. Mol. Genet., 2018, 27(1), 95-106.
[http://dx.doi.org/10.1093/hmg/ddx387] [PMID: 29106525]
[67]
Griffiths, K.K.; Wang, A.; Wang, L.; Tracey, M.; Kleiner, G.; Quinzii, C.M.; Sun, L.; Yang, G.; Perez-Zoghbi, J.F.; Licznerski, P.; Yang, M.; Jonas, E.A.; Levy, R.J. Inefficient thermogenic mitochondrial respiration due to futile proton leak in a mouse model of fragile X syndrome. FASEB J., 2020, 34(6), 7404-7426.
[http://dx.doi.org/10.1096/fj.202000283RR] [PMID: 32307754]
[68]
Licznerski, P.; Park, H.A.; Rolyan, H.; Chen, R.; Mnatsakanyan, N.; Miranda, P.; Graham, M.; Wu, J.; Cruz-Reyes, N.; Mehta, N.; Sohail, S.; Salcedo, J.; Song, E.; Effman, C.; Effman, S.; Brandao, L.; Xu, G.N.; Braker, A.; Gribkoff, V.K.; Levy, R.J.; Jonas, E.A. ATP synthase c-subunit leak causes aberrant cellular metabolism in fragile X syndrome. Cell, 2020, 182(5), 1170-1185.e9.
[http://dx.doi.org/10.1016/j.cell.2020.07.008] [PMID: 32795412]
[69]
Ha, B.G.; Heo, J.Y.; Jang, Y.J.; Park, T.S.; Choi, J.Y.; Jang, W.Y.; Jeong, S.J. Depletion of mitochondrial components from extracellular vesicles secreted from astrocytes in a mouse model of fragile X syndrome. Int. J. Mol. Sci., 2021, 22(1), 410.
[http://dx.doi.org/10.3390/ijms22010410] [PMID: 33401721]
[70]
Can, K.; Menzfeld, C.; Rinne, L.; Rehling, P.; Kügler, S.; Golubiani, G.; Dudek, J.; Müller, M. Neuronal redox-imbalance in rett syndrome affects mitochondria as well as cytosol and is accompanied by intensified mitochondrial O2 consumption and ROS release. Front. Physiol., 2019, 10, 479.
[http://dx.doi.org/10.3389/fphys.2019.00479] [PMID: 31114506]
[71]
Rett, A. On a unusual brain atrophy syndrome in hyperammonemia in childhood. Wien. Med. Wochenschr., 1966, 116(37), 723-726.
[PMID: 5300597]
[72]
Hagberg, B.; Aicardi, J.; Dias, K.; Ramos, O. A progressive syndrome of autism, dementia, ataxia, and loss of purposeful hand use in girls: Rett’s syndrome: Report of 35 cases. Ann. Neurol., 1983, 14(4), 471-479.
[http://dx.doi.org/10.1002/ana.410140412] [PMID: 6638958]
[73]
American Psychiatric Association. American Psychiatric Association. DSM-5 Task force. Diagnostic and statistical manual of mental disorders: DSM-5; American Psychiatric Association: Washington, D.C, 2013.
[74]
Chahrour, M.; Zoghbi, H.Y. The story of Rett syndrome: from clinic to neurobiology. Neuron, 2007, 56(3), 422-437.
[http://dx.doi.org/10.1016/j.neuron.2007.10.001] [PMID: 17988628]
[75]
Ballas, N.; Lioy, D.T.; Grunseich, C.; Mandel, G. Non–cell autonomous influence of MeCP2-deficient glia on neuronal dendritic morphology. Nat. Neurosci., 2009, 12(3), 311-317.
[http://dx.doi.org/10.1038/nn.2275] [PMID: 19234456]
[76]
Cronk, J.C.; Derecki, N.C.; Ji, E.; Xu, Y.; Lampano, A.E.; Smirnov, I.; Baker, W.; Norris, G.T.; Marin, I.; Coddington, N.; Wolf, Y.; Turner, S.D.; Aderem, A.; Klibanov, A.L.; Harris, T.H.; Jung, S.; Litvak, V.; Kipnis, J. Methyl-CpG binding protein 2 regulates microglia and macrophage gene expression in response to inflammatory stimuli. Immunity, 2015, 42(4), 679-691.
[http://dx.doi.org/10.1016/j.immuni.2015.03.013] [PMID: 25902482]
[77]
Maezawa, I.; Jin, L.W. Rett syndrome microglia damage dendrites and synapses by the elevated release of glutamate. J. Neurosci., 2010, 30(15), 5346-5356.
[http://dx.doi.org/10.1523/JNEUROSCI.5966-09.2010] [PMID: 20392956]
[78]
Maezawa, I.; Swanberg, S.; Harvey, D.; LaSalle, J.M.; Jin, L.W. Rett syndrome astrocytes are abnormal and spread MeCP2 deficiency through gap junctions. J. Neurosci., 2009, 29(16), 5051-5061.
[http://dx.doi.org/10.1523/JNEUROSCI.0324-09.2009] [PMID: 19386901]
[79]
Cuddapah, V.A.; Pillai, R.B.; Shekar, K.V.; Lane, J.B.; Motil, K.J.; Skinner, S.A.; Tarquinio, D.C.; Glaze, D.G.; McGwin, G.; Kaufmann, W.E.; Percy, A.K.; Neul, J.L.; Olsen, M.L. Methyl-CpG-binding protein 2 (MECP2) mutation type is associated with disease severity in Rett syndrome. J. Med. Genet., 2014, 51(3), 152-158.
[http://dx.doi.org/10.1136/jmedgenet-2013-102113] [PMID: 24399845]
[80]
Neul, J.L.; Lane, J.B.; Lee, H.S.; Geerts, S.; Barrish, J.O.; Annese, F.; Baggett, L.M.; Barnes, K.; Skinner, S.A.; Motil, K.J.; Glaze, D.G.; Kaufmann, W.E.; Percy, A.K. Developmental delay in Rett syndrome: data from the natural history study. J. Neurodev. Disord., 2014, 6(1), 20.
[http://dx.doi.org/10.1186/1866-1955-6-20] [PMID: 25071871]
[81]
Samaco, R.C.; Mandel-Brehm, C.; Chao, H.T.; Ward, C.S.; Fyffe-Maricich, S.L.; Ren, J.; Hyland, K.; Thaller, C.; Maricich, S.M.; Humphreys, P.; Greer, J.J.; Percy, A.; Glaze, D.G.; Zoghbi, H.Y.; Neul, J.L. Loss of MeCP2 in aminergic neurons causes cell-autonomous defects in neurotransmitter synthesis and specific behavioral abnormalities. Proc. Natl. Acad. Sci., 2009, 106(51), 21966-21971.
[http://dx.doi.org/10.1073/pnas.0912257106] [PMID: 20007372]
[82]
Valenti, D.; de Bari, L.; Vigli, D.; Lacivita, E.; Leopoldo, M.; Laviola, G.; Vacca, R.A.; De Filippis, B. Stimulation of the brain serotonin receptor 7 rescues mitochondrial dysfunction in female mice from two models of Rett syndrome. Neuropharmacology, 2017, 121, 79-88.
[http://dx.doi.org/10.1016/j.neuropharm.2017.04.024] [PMID: 28419872]
[83]
Zuliani, I.; Urbinati, C.; Valenti, D.; Quattrini, M.C.; Medici, V.; Cosentino, L. The antidiabetic drug metformin rescues aberrant mitochondrial activity and restrains oxidative stress in a female mouse model of rett syndrome. J. Clin. Med. Res., 2020, 9(6), 1669.
[84]
Großer, E.; Hirt, U.; Janc, O.A.; Menzfeld, C.; Fischer, M.; Kempkes, B.; Vogelgesang, S.; Manzke, T.U.; Opitz, L.; Salinas-Riester, G.; Müller, M. Oxidative burden and mitochondrial dysfunction in a mouse model of Rett syndrome. Neurobiol. Dis., 2012, 48(1), 102-114.
[http://dx.doi.org/10.1016/j.nbd.2012.06.007] [PMID: 22750529]
[85]
Bebensee, D.F.; Can, K.; Müller, M. Increased mitochondrial mass and cytosolic redox imbalance in hippocampal astrocytes of a mouse model of rett syndrome: subcellular changes revealed by ratiometric imaging of JC-1 and roGFP1 fluorescence. Oxid. Med. Cell. Longev., 2017, 2017, 1-15.
[http://dx.doi.org/10.1155/2017/3064016] [PMID: 28894505]
[86]
Janc, O.A.; Müller, M. The free radical scavenger Trolox dampens neuronal hyperexcitability, reinstates synaptic plasticity, and improves hypoxia tolerance in a mouse model of Rett syndrome. Front. Cell. Neurosci., 2014, 8, 56.
[http://dx.doi.org/10.3389/fncel.2014.00056] [PMID: 24605086]
[87]
Shulyakova, N.; Andreazza, A.C.; Mills, L.R.; Eubanks, J.H. Mitochondrial dysfunction in the pathogenesis of rett syndrome: implications for mitochondrial-targeted therapies. Front. Cell. Neurosci., 2017, 11, 58.
[http://dx.doi.org/10.3389/fncel.2017.00058] [PMID: 28352216]
[88]
Müller, M. Disturbed redox homeostasis and oxidative stress: Potential players in the developmental regression in Rett syndrome. Neurosci. Biobehav. Rev., 2019, 98, 154-163.
[http://dx.doi.org/10.1016/j.neubiorev.2018.12.009] [PMID: 30639673]
[89]
Forlani, G.; Giarda, E.; Ala, U.; Di Cunto, F.; Salani, M.; Tupler, R.; Kilstrup-Nielsen, C.; Landsberger, N. The MeCP2/YY1 interaction regulates ANT1 expression at 4q35: novel hints for Rett syndrome pathogenesis. Hum. Mol. Genet., 2010, 19(16), 3114-3123.
[http://dx.doi.org/10.1093/hmg/ddq214] [PMID: 20504995]
[90]
Hoshino, A.; Wang, W.; Wada, S.; McDermott-Roe, C.; Evans, C.S.; Gosis, B.; Morley, M.P.; Rathi, K.S.; Li, J.; Li, K.; Yang, S.; McManus, M.J.; Bowman, C.; Potluri, P.; Levin, M.; Damrauer, S.; Wallace, D.C.; Holzbaur, E.L.F.; Arany, Z. The ADP/ATP translocase drives mitophagy independent of nucleotide exchange. Nature, 2019, 575(7782), 375-379.
[http://dx.doi.org/10.1038/s41586-019-1667-4] [PMID: 31618756]
[91]
Bertholet, A.M.; Chouchani, E.T.; Kazak, L.; Angelin, A.; Fedorenko, A.; Long, J.Z.; Vidoni, S.; Garrity, R.; Cho, J.; Terada, N.; Wallace, D.C.; Spiegelman, B.M.; Kirichok, Y. H+ transport is an integral function of the mitochondrial ADP/ATP carrier. Nature, 2019, 571(7766), 515-520.
[http://dx.doi.org/10.1038/s41586-019-1400-3] [PMID: 31341297]
[92]
Cicaloni, V.; Pecorelli, A.; Tinti, L.; Rossi, M.; Benedusi, M.; Cervellati, C.; Spiga, O.; Santucci, A.; Hayek, J.; Salvini, L.; Tinti, C.; Valacchi, G. Proteomic profiling reveals mitochondrial alterations in Rett syndrome. Free Radic. Biol. Med., 2020, 155, 37-48.
[http://dx.doi.org/10.1016/j.freeradbiomed.2020.05.014] [PMID: 32445864]
[93]
Marde, V.S.; Atkare, U.A.; Gawali, S.V.; Tiwari, P.L.; Badole, S.P.; Wankhede, N.L.; Taksande, B.G.; Upaganlawar, A.B.; Umekar, M.J.; Kale, M.B. Alzheimer’s disease and sleep disorders: Insights into the possible disease connections and the potential therapeutic targets. Asian J. Psychiatr., 2022, 68, 102961.
[http://dx.doi.org/10.1016/j.ajp.2021.102961] [PMID: 34890930]
[94]
Marde, V.S.; Tiwari, P.L.; Wankhede, N.L.; Taksande, B.G.; Upaganlawar, A.B.; Umekar, M.J.; Kale, M.B. Neurodegenerative disorders associated with genes of mitochondria. Fut. J. Pharma. Sci., 2021, 7(1), 66.
[http://dx.doi.org/10.1186/s43094-021-00215-5]
[95]
Umare, M.D.; Chimthanawala, N.M.; Trivedi, R.V.; Wankhede, N.L.; Umekar, M.J.; Kale, M.B. Neuropsychiatric Disorders: A Pharmacovigilance Perspective. Bull. Env. Pharmacol. Life Sci., 2021, 10, 141-155.
[96]
Tiwari, P.; Wankhede, N.; Badole, S.; Umare, M.; Taksande, B.; Upaganlawar, A.; Umekar, M.; Kale, M. Mitochondrial dysfunction in ageing: Involvement of oxidative stress and role of melatonin. bull. Env. Pharmacol. Life Sci, 2021, 10, 156-172.
[97]
Coleman, M.; Blass, J.P. Autism and lactic acidosis. J. Autism Dev. Disord., 1985, 15(1), 1-8.
[http://dx.doi.org/10.1007/BF01837894] [PMID: 3980425]