Synthesis of Pyrimido[4, 5-b]quinolones from 6-Aminopyrimidin-4- (thi)one Derivatives (Part I)

Page: [622 - 641] Pages: 20

  • * (Excluding Mailing and Handling)

Abstract

Quinoline and pyrimidine are well-known moieties, which appear in various natural and synthetic products. Furthermore, quinoline-pyrimidine-inspired hybrids are known to have several biological properties. In addition, many pyrimido[4,5-b]quinolinone ring systems, specifically concerning medicinal chemistry, have been reported over the past decade. This review depicts the synthesis of pyrimido[4, 5-b] quinolones (PyQs4,5-b) through 6-aminopyrimidin-4-(thi)one derivatives. The preparation of PyQs4,5-b was clarified through the following chemical reactions: Vilsmeier-Haack formylation, Hantzsch-like reaction, and one-pot three-component reaction.

Graphical Abstract

[1]
Abu-Hashem, A.A.; El-Gazzar, A.B.A.; Abdelgawad, A.A.; Gouda, M.A. Synthesis and chemical reactions of thieno [3, 2-c] quinolines from arylamine derivatives, part (V): A review. Phosphorus Sulfur Silicon Relat. Elem., 2021, 1-24.
[2]
Mahapatra, A.; Prasad, T.; Sharma, T. Pyrimidine: A review on anticancer activity with key emphasis on SAR. Fut. J. Pharm. Sci., 2021, 7(1), 123.
[http://dx.doi.org/10.1186/s43094-021-00274-8]
[3]
El-Gazzar, A.R.B.; El-Enany, M.M.; Mahmoud, M.N. Synthesis, analgesic, anti-inflammatory, and antimicrobial activity of some novel pyrimido [4, 5-b] quinolin-4-ones. Bioorg. Med. Chem., 2008, 16(6), 3261-3273.
[4]
Rajanarendar, E.; Reddy, M.N.; Krishna, S.R.; Murthy, K.R.; Reddy, Y.N.; Rajam, M.V. Design, synthesis, antimicrobial, anti-inflammatory and analgesic activity of novel isoxazolyl pyrimido [4, 5-b] quinolines and isoxazolyl chromeno [2, 3-d] pyrimidin-4-ones. Eur. J. Med. Chem., 2012, 55, 273-283.
[5]
Mukherjee, S.; Pal, M. Quinolines: A new hope against inflammation. Drug discov. Today, 2013, 18(7-8), 389-398.
[http://dx.doi.org/10.1016/j.drudis.2012.11.003]
[6]
Alqasoumi, S.I.; Al-Taweel, A.M.; Alafeefy, A.M.; Noaman, E.; Ghorab, M.M. Novel quinolines and pyrimido [4, 5-b] quinolines bearing biologically active sulfonamide moiety as a new class of antitumor agents. Eur. J. Med. Chem., 2010, 45(2), 738-744.
[http://dx.doi.org/10.1016/j.ejmech.2009.11.021]
[7]
Althuis, T.H.; Kadin, S.B.; Czuba, L.J.; Moore, P.F.; Hess, H.J. Structure-activity relationships in a series of novel 3,4-dihydro-4-oxopyrimido[4,5-b]quinoline-2-carboxylic acid antiallergy agents. J. Med. Chem., 1980, 23(3), 262-269.
[http://dx.doi.org/10.1021/jm00177a010] [PMID: 6767846]
[8]
Abu‐Hashem, A.A.; Gouda, M.A.; Abdelgawad, A.A.M. Vilsmeier-haack cyclisation as a facile synthetic route to thieno [2,3- b] quinolines (Part I). Lett. Org. Chem., 2021, 18(1)
[http://dx.doi.org/10.2174/1570178617999200711175956]
[9]
Abu‐Hashem, A.A.; Abdelgawad, A.A.M. Synthetic and reactions routes to tetrahydro-thieno[3,2-b] quinoline derivatives (Part IV). Mini Rev. Org. Chem., 2022, 19(1), 74-91.
[http://dx.doi.org/10.2174/1570193X18666210218212719]
[10]
Salem, M.A.; Gouda, M.A. El-Bana, Ghada G Chemistry of 2-(piperazin-1-yl) quinoline-3-carbaldehydes. Mini Rev. Org. Chem., 2021, 18(00)
[http://dx.doi.org/10.2174/1570193X18666211001124510]
[11]
Salem, M.A.; Abu-Hashem, A.A.; Abdelgawad, A.A.M.; Gouda, M.A. Synthesis and reactivity of thieno[2,3‐ b]quinoline derivatives (Part II). J. Heterocycl. Chem., 2021, 58(9), 1705-1740.
[http://dx.doi.org/10.1002/jhet.4269]
[12]
Gouda, M.A.; Abu-Hashem, A.A.; Abdelgawad, A.A.M. Recent progress on the chemistry of thieno[3,2‐ b]quinoline derivatives (part III). J. Heterocycl. Chem., 2021, 58(4), 908-927.
[http://dx.doi.org/10.1002/jhet.4205]
[13]
Johnson, T.B.; Hahn, D.A. Pyrimidines: Their amino and aminoöxy derivatives. Chem. Rev., 1933, 13(2), 193-303.
[http://dx.doi.org/10.1021/cr60045a002]
[14]
Mortimer, P.I. The preparation of 3,4-diphenylpyridine and some of its derivatives. Aust. J. Chem., 1968, 21(2), 467-476.
[http://dx.doi.org/10.1071/CH9680467]
[15]
Gütschow, M.; Hecker, T.; Thiele, A.; Hauschildt, S.; Eger, K. Aza analogues of thalidomide. Bioorg. Med. Chem., 2001, 9(4), 1059-1065.
[http://dx.doi.org/10.1016/S0968-0896(00)00323-0] [PMID: 11354662]
[16]
Chern, J.W.; Wise, D.S.; Butler, W.; Townsend, L.B. Synthesis of 5-substituted uracils, uridines and 2′-deoxyuridine analogs. J. Org. Chem., 1988, 53(24), 5622-5628.
[http://dx.doi.org/10.1021/jo00259a005]
[17]
Zajac, M.A.; Zakrzewski, A.G.; Kowal, M.G.; Narayan, S. A novel method of caffeine synthesis from uracil. Synth. Commun., 2003, 33(19), 3291-3297.
[http://dx.doi.org/10.1081/SCC-120023986]
[18]
Ishiyama, H.; Nakajima, H.; Nakata, H.; Kobayashi, J. Synthesis of hybrid analogues of caffeine and eudistomin D and its affinity for adenosine receptors. Bioorg. Med. Chem., 2009, 17(13), 4280-4284.
[http://dx.doi.org/10.1016/j.bmc.2009.05.036] [PMID: 19481943]
[19]
Crepaldi, P.; Cacciari, B.; Bonache, M.C.; Spalluto, G.; Varani, K.; Borea, P.A.; Kügelgen, I.; Hoffmann, K.; Pugliano, M.; Razzari, C.; Cattaneo, M. 6-Amino-2-mercapto-3H-pyrimidin-4-one derivatives as new candidates for the antagonism at the P2Y12 receptors. Bioorg. Med. Chem., 2009, 17(13), 4612-4621.
[http://dx.doi.org/10.1016/j.bmc.2009.04.061] [PMID: 19464902]
[20]
Cheng, C.C.; Lewis, L.R. Pyrimidines. XIV. Synthesis of 1-substituted 5,6-dihydrocytosines and an improved synthesis of 1-substituted uracils. J. Heterocycl. Chem., 1964, 1(5), 260-262.
[http://dx.doi.org/10.1002/jhet.5570010512]
[21]
Marchand, C.; Abdelmalak, M.; Kankanala, J.; Huang, S.Y.; Kiselev, E.; Fesen, K.; Kurahashi, K.; Sasanuma, H.; Takeda, S.; Aihara, H.; Wang, Z.; Pommier, Y. Deazaflavin inhibitors of tyrosyl-DNA phosphodiesterase 2 (TDP2) specific for the human enzyme and active against cellular TDP2. ACS Chem. Biol., 2016, 11(7), 1925-1933.
[http://dx.doi.org/10.1021/acschembio.5b01047] [PMID: 27128689]
[22]
Dickens, M.P.; Roxburgh, P.; Hock, A.; Mezna, M.; Kellam, B.; Vousden, K.H.; Fischer, P.M. 5-Deazaflavin derivatives as inhibitors of p53 ubiquitination by HDM2. Bioorg. Med. Chem., 2013, 21(22), 6868-6877.
[http://dx.doi.org/10.1016/j.bmc.2013.09.038] [PMID: 24113239]
[23]
Yamazaki, S.; Tsai, L.; Stadtman, T.C. Analogs of 8-hydroxy-5-deazaflavin cofactor: Relative activity as substrates for 8-hydroxy-5-deazaflavin-dependent NADP+ reductase from Methanococcus vannielii. Biochemistry, 1982, 21(5), 934-939.
[http://dx.doi.org/10.1021/bi00534a019] [PMID: 7074062]
[24]
Ali, H.I.; Ashida, N.; Nagamatsu, T. Antitumor studies. Part 4: Design, synthesis, antitumor activity, and molecular docking study of novel 2-substituted 2-deoxoflavin-5-oxides, 2-deoxoalloxazine-5-oxides, and their 5-deaza analogs. Bioorg. Med. Chem., 2008, 16(2), 922-940.
[http://dx.doi.org/10.1016/j.bmc.2007.10.014] [PMID: 17962027]
[25]
Israel, M.; Protopapa, H.K.; Schlein, H.N.; Modest, E.J. Pyrimidine derivatives. V. synthesis of substituted pyrimidines from 4-amino-6-chloro-2-methylthiopyrimidine 1-3. J. Med. Chem., 1964, 7(1), 5-10.
[http://dx.doi.org/10.1021/jm00331a002] [PMID: 14186027]
[26]
Pfleiderer, W.; Fink, H. Untersuchungen in der Pyrimidinreihe, XII. Umsetzungen mit 4-Chlor-cytosin. Justus Liebigs Ann. Chem., 1962, 657(1), 149-155.
[http://dx.doi.org/10.1002/jlac.19626570120]
[27]
Ali, H.I.; Ashida, N.; Nagamatsu, T. Antitumor studies. Part 3: Design, synthesis, antitumor activity, and molecular docking study of novel 2-methylthio-, 2-amino-, and 2-(N-substituted amino)-10-alkyl-2-deoxo-5-deazaflavins. Bioorg. Med. Chem., 2007, 15(19), 6336-6352.
[http://dx.doi.org/10.1016/j.bmc.2007.06.058] [PMID: 17644399]
[28]
Dueymes, C.; Décout, J.L.; Peltié, P.; Fontecave, M. Fluorescent deazaflavin–oligonucleotide probes for selective detection of DNA. Angew. Chem. Int. Ed. Engl., 2002, 114(3), 504-507.
[29]
Malki, W.H.; Gouda, A.M.; Ali, H.E.; Al-Rousan, R.; Samaha, D.; Abdalla, A.N. Structural-based design, synthesis, and antitumor activity of novel alloxazine analogues with potential selective kinase inhibition. Eur. J. Med. Chem., 2018, 152, 31-52.
[30]
Siddiqui, I.R.; Rai, P.; Rahila, R.; Sagir, H.; Singh, P. Sustainable construction: Admicellar catalysed synthesis of pyrimido[4,5-b]quinolines in an aqueous system. RSC Advances, 2015, 5(35), 27603-27609.
[http://dx.doi.org/10.1039/C5RA00791G]
[31]
Du, B.X.; Zhao, B.; Cai, G.; Li, Y.L.; Wang, X.S. Mild and efficient one-pot three-component synthesis of benzopyrimidoquinoline-tetraone derivatives in ionic liquids. J. Chem. Res., 2012, 36(8), 453-456.
[http://dx.doi.org/10.3184/174751912X13384724679874]
[32]
Safari, J.; Tavakoli, M.; Ghasemzadeh, M.A. A highly effective synthesis of pyrimido [4, 5-b] quinoline-tetraones using H3PW12O40/chitosan/NiCo2O4 as a novel magnetic nanocomposite. Polyhedron, 2020, 182, 114459.
[33]
Hosseini, F.S.; Bayat, M. Efficient synthesis of novel Naphthacene derivatives based on Thiouracil. J. Sulfur Chem., 2018, 39(5), 483-494.
[http://dx.doi.org/10.1080/17415993.2018.1458850]
[34]
Chen, Y.; Wu, S.; Tu, S.; Shi, F.; Li, C. An efficient synthesis of new benzo[1′2′6,7]quinolino[2,3- d]-pyrimidine derivatives via three-component microwave-assisted reaction. J. Heterocycl. Chem., 2008, 45(4), 1243-1246.
[http://dx.doi.org/10.1002/jhet.5570450452]
[35]
Bharti, R.; Kumari, P.; Parvin, T.; Choudhury, L.H. Molecular diversity from the three-component reaction of 2-hydroxy-1,4-naphthaquinone, aldehydes and 6-aminouracils: A reaction condition dependent MCR. RSC Advances, 2017, 7(7), 3928-3933.
[http://dx.doi.org/10.1039/C6RA18828A]
[36]
Kumari, P.; Yadav, R.; Bharti, R.; Parvin, T. Regioselective synthesis of pyrimidine-fused tetrahydropyridines and pyridines by microwave-assisted one-pot reaction. Mol. Divers., 2020, 24(1), 107-117.
[http://dx.doi.org/10.1007/s11030-019-09929-4]
[37]
Zare, A.; Lotfifar, N.; Dianat, M. Preparation, characterization and application of nano-[Fe3O4@-SiO2@R-NHMe2][H2PO4] as a novel magnetically recoverable catalyst for the synthesis of pyrimido[4,5-b]quinolines. J. Mol. Struct., 2020, 1211, 128030.
[http://dx.doi.org/10.1016/j.molstruc.2020.128030]
[38]
Jalili, F.; Zarei, M.; Zolfigol, M.A.; Rostamnia, S.; Moosavi-Zare, A.R. SBA-15/PrN (CH2PO3H2) 2 as a novel and efficient mesoporous solid acid catalyst with phosphorous acid tags and its application on the synthesis of new pyrimido [4, 5-b] quinolones and pyrido [2, 3-d] pyrimidines via anomeric based oxidation. Microporous Mesoporous Mater., 2020, 294, 109865.
[http://dx.doi.org/10.1016/j.micromeso.2019.109865]
[39]
Moghaddampour, I. M.; Shirini, F.; Langarudi, M. S. N. Agarentrapped sulfonated DABCO: A gelly acidic catalyst for the acceleration of one-pot synthesis of 1,2,4-triazoloquinazolinone andsome pyrimidine derivatives. J. Mol. Struct., 2021, 1226(Part A), 129336.
[http://dx.doi.org/10.1016/j.molstruc.2020.129336]
[40]
Mohammadi, K.; Shirini, F.; Yahyazadeh, A. 1,3-Disulfonic acid imidazolium hydrogen sulfate: A reusable and efficient ionic liquid for the one-pot multi-component synthesis of pyrimido[4,5-b]quinoline derivatives. RSC Advances, 2015, 5(30), 23586-23590.
[http://dx.doi.org/10.1039/C5RA02198G]
[41]
Upadhyay, A.; Sharma, L.K.; Singh, V.K.; Singh, R.K.P. An efficient one pot three component synthesis of fused pyridines via electrochemical approach. Tetrahedron Lett., 2016, 57(50), 5599-5604.
[http://dx.doi.org/10.1016/j.tetlet.2016.10.111]
[42]
Khillare, K.R.; Aher, D.S.; Chavan, L.D.; Shankarwar, S.G. Cesium salt of 2-molybdo-10-tungstophosphoric acid as an efficient and reusable catalyst for the synthesis of uracil derivatives via a green route. RSC Advances, 2021, 11(54), 33980-33989.
[http://dx.doi.org/10.1039/D1RA05190C]
[43]
Hovsepyan, T.R.; Karakhanyan, G.S.; Israelyan, S.G.; Panosyan, G.A. Three-component one-pot synthesis of new 2, 5, 6, 7-and 2, 5, 8, 10-substituted pyrimido [4, 5-b] quinoline-4, 6-diones and-2, 4, 6-triones. Russ. J. Gen. Chem., 2018, 88(6), 1114-1119.
[http://dx.doi.org/10.1134/S1070363218060117]
[44]
Hoseinikhah, S.S.; Mirjalili, B.B.F.; Salehi, N.; Bamoniri, A. An efficient synthesis of pyrimido [4, 5-b] quinoline and indenopyrido [2, 3-d] pyrimidine derivatives in the presence of Fe3O4@ nano-cellulose/Sb (V) as bio-based magnetic nano-catalyst. Sci. Iran., 2021.
[45]
Araghi, R.; Mirjalili, B.B.F.; Zamani, L.; Khabnadideh, S.; Zomoridian, K.; Faghih, Z.; Arabi, H. Docking, synthesis and evaluation of the antifungal activity of pyrimido [4,5-b]quinolins. Iran. J. Pharm. Res., 2020, 19(1), 251-259.
[http://dx.doi.org/10.22037/ijpr.2020.1101010] [PMID: 32922484]
[46]
Mohsenimehr, M.; Mamaghani, M.; Shirini, F.; Sheykhan, M.; Abbaspour, S.; Shafei Sabet, L. One-pot synthesis of novel pyrimido[4,5-b]quinolines and pyrido[2,3-d:6,5d′]dipyrimidines using encapsulated- γ-Fe2O3 nanoparticles. J. Chem. Sci., 2015, 127(11), 1895-1904.
[http://dx.doi.org/10.1007/s12039-015-0964-1]
[47]
Sepehrmansouri, H.; Zarei, M.; Zolfigol, M.A.; Moosavi-Zare, A.R.; Rostamnia, S.; Moradi, S. Multilinker phosphorous acid anchored En/MIL-100(Cr) as a novel nanoporous catalyst for the synthesis of new N-heterocyclic pyrimido[4,5-b]quinolines. Molecular Catalysis, 2020, 481, 110303.
[http://dx.doi.org/10.1016/j.mcat.2019.01.023]
[48]
Masoumi, M.; Bayat, M.; Hosseini, F.S. One-pot multi-component synthesis of new bis-pyridopyrimidine and bis-pyrimidoquinolone derivatives. Heliyon, 2020, 6(9), e05047.
[http://dx.doi.org/10.1016/j.heliyon.2020.e05047]
[49]
Abdelmoniem, A.M.; Ghozlan, S.A. Butenschön, H.; Abdelmoniem, D.M. An efficient one-pot three-component synthesis of tetrakis (uracil) and their corresponding bis-fused derivatives. Arkivoc, 2019, 2019(5), 163-177.
[http://dx.doi.org/10.24820/ark.5550190.p010.875]
[50]
Diab, H.M.; Salem, M.E.; Abdelhamid, I.A.; Elwahy, A.H.M. Synthesis of novel star-shaped molecules based on a 1,3,5-triazine core linked to different heterocyclic systems as novel hybrid molecules. RSC Advances, 2020, 10(72), 44066-44078.
[http://dx.doi.org/10.1039/D0RA09025E] [PMID: 35517173]
[51]
Eid, E.M.; Hassaneen, H.M.E.; Elwahy, A.H.M.; Abdelhamid, I.A. Hantzsch-like synthesis of novel bis(hexahydroacridine-1,8-diones), bis(tetrahydrodipyrazolo[3,4- b:4′3′- e]pyridines), and bis(pyrimido[4,5- b]quinolines) incorporating thieno[2,3- b]thiophenes. J. Chem. Res., 2020, 44(11-12), 653-659.
[http://dx.doi.org/10.1177/1747519820917886]
[52]
Baharfar, R.; Azimi, R. Sulfanilic acid functionalized mesoporous SBA-15: A water-tolerant solid acid catalyst for the synthesis of uracil fused spirooxindoles as antioxidant agents. J. Chem. Sci., 2015, 127(8), 1389-1395.
[http://dx.doi.org/10.1007/s12039-015-0910-2]
[53]
Abdelmoniem, A.M.; Hassaneen, H.M.; Abdelhamid, I.A. An efficient one‐pot synthesis of novel spiro cyclic 2‐oxindole derivatives of pyrimido [4, 5‐b] quinoline, pyrido [2, 3‐d: 6, 5‐d′] dipyrimidine and indeno [2′ 1′ 5, 6] pyrido [2, 3‐d] pyrimidine in water. J. Heterocycl. Chem., 2016, 53(6), 2084-2090.
[http://dx.doi.org/10.1002/jhet.2480]
[54]
Naeimi, H.; Rashid, Z.; Zarnani, A.H.; Ghahremanzadeh, R. MnFe2O4@NH2@2AB-Ni: A novel, highly active, stable and magnetically recoverable nanocatalyst and use of this heterogeneous catalyst in green synthesis of spirooxindoles in water. New J. Chem., 2014, 38(11), 5527-5535.
[http://dx.doi.org/10.1039/C4NJ01182A]
[55]
Mohamed, M.F.; Abdelmoniem, A.M.; Elwahy, A.H.M.; Abdelhamid, I.A. DNA fragmentation, cell cycle arrest, and docking study of novel bis spiro-cyclic 2-oxindole of pyrimido [4, 5-b] quinoline-4, 6-dione derivatives against breast carcinoma. Curr. Cancer Drug Targets, 2018, 18(4), 372-381.
[http://dx.doi.org/10.2174/1568009617666170630143311] [PMID: 28669339]
[56]
Melik-Ohanjanyan, R.G.; Hovsepyan, T.R.; Karakhanyan, G.S.; Israelyan, S.G.; Nersesyan, L.E.; Panosyan, G.A. One-step three-component synthesis of new 2,5,6,7-functionalized 5,8-dihydro-pyrido-[2,3-d]pyrimidin-4(3H)-ones. Russ. J. Org. Chem., 2018, 54(1), 107-111.
[http://dx.doi.org/10.1134/S1070428018010104]
[57]
Elgazzar, A.B.A.; Gafaar, A.M.; Hafez, H.N.; Aly, A.S. Novel syntheses and reactions of polynuclear heterocyclic derivatives derived from thioxopyridopyrimidine, with a new ring system. Phosphorus Sulfur Silicon Relat. Elem., 2006, 181(8), 1859-1883.
[http://dx.doi.org/10.1080/10426500500543768]
[58]
El-Gazzar, A.B.A.; Aly, A.S.; Zaki, M.E.A.; Hafez, H.N. Synthesis and preliminary antimicrobial activity of new pyrimido[4,5-b]-quinoline and pyrido[2,3-d]pyrimidine. Phosphorus Sulfur Silicon Relat. Elem., 2008, 183(9), 2119-2138.
[http://dx.doi.org/10.1080/10426500701851283]