Polymeric Adsorbents: Innovative Materials for Water Treatments

Page: [105 - 110] Pages: 6

  • * (Excluding Mailing and Handling)

Abstract

Background: Removing heavy metal ions and various organic contaminants from water (surface water, groundwater, drinking water, and wastewater) using inexpensive and readily available adsorbents is essential in all environmental and human aspects. This study aims to explore the various adsorbents with a particular emphasis on polymeric adsorbents for their applications in the removal of heavy metal ions and emerging contaminants from water.

Methods: A brief review as a perspective article on polymeric adsorbents with a particular emphasis on their applications in water treatment, consequences, challenges, and relevant issues/ perspectives that need to be resolved in the future is highlighted.

Results: Due to the increasing global human population with rapid urbanization, industrialization, and environmental change, removing heavy metals and emerging contaminants from water fonts has become a primary environmental concern and a huge challenge to ensure safe water supplies. This directs an utmost demand to develop various water treatment and recycling methods. Different types of adsorbents, including polymeric adsorbents, have also been discussed. The study indicates the presence and structural behaviors (e.g., functional groups, degradation, adsorption, desorption), adsorption-desorption process, regeneration, safe removal and disposal procedure, and toxicity of the adsorbents are vital to use them safely for an extended period in the application of water treatment.

Conclusion: A brief discussion on adsorption, methods, various types of polymeric adsorbents, and their applications for removing organic and/or heavy metal contaminants from water and wastewater is presented in this review as a perspective article. A better understanding of the preparation of polymers from inexpensive, readily available, natural sources and toxicity issues is still needed to be considered, particularly in the human-related exposure and relevant risk on the water and wastewater treatment.

[1]
Chen, K.; Feng, Q.; Ma, D.; Huang, X. Hydroxyl modification of silica aerogel: An effective adsorbent for cationic and anionic dyes. Colloids Surf. A Physicochem. Eng. Asp., 2021, 616, 126331.
[http://dx.doi.org/10.1016/j.colsurfa.2021.126331]
[2]
Ihsanullah, I.; Jamal, A.; Ilyas, M.; Zubair, M.; Khan, G.; Atieh, M.A. Bioremediation of dyes: Current status and prospects. J. Water Process Eng., 2020, 38, 101680.
[http://dx.doi.org/10.1016/j.jwpe.2020.101680]
[3]
Waly, A.I.; Khedr, M.A.; Ali, H.M.; Ahmed, I.M. Application of amino-functionalized cellulose-poly(glycidyl methacrylate) graft copolymer (AM-Cell-g-PGMA)adsorbent for dyes removal from wastewater. Clean. Eng. Technol., 2022, 6, 100374.
[http://dx.doi.org/10.1016/j.clet.2021.100374]
[4]
Abdullah, N.; Yusof, N.; Lau, W.J.; Jaafar, J.; Ismail, A.F. Recent trends of heavy metal removal from water/wastewater by membrane technologies. J. Ind. Eng. Chem., 2019, 76, 17-38.
[http://dx.doi.org/10.1016/j.jiec.2019.03.029]
[5]
Badmus, S.O.; Oyehan, T.A.; Saleh, T.A. Enhanced efficiency of polyamide membranes by incorporating cyclodextrin-graphene oxide for water purification. J. Mol. Liq., 2021, 340, 116991.
[http://dx.doi.org/10.1016/j.molliq.2021.116991]
[6]
Hong, J.; Kang, L.; Shi, X.; Wei, R.; Mai, X.; Pan, D.; Naik, N.; Guo, Z. Highly efficient removal of trace lead (II) from wastewater by 1,4-dicarboxybenzene modified Fe/Co metal organic nanosheets. J. Mater. Sci. Technol., 2022, 98, 212-218.
[http://dx.doi.org/10.1016/j.jmst.2021.05.021]
[7]
Sang, G.; Xu, P.; Yan, T.; Murugadoss, V.; Naik, N.; Ding, Y.; Guo, Z. Interface engineered microcellular magnetic conductive polyurethane nanocomposite foams for electromagnetic interference shielding. Nano-Micro Lett., 2021, 13(1), 153.
[http://dx.doi.org/10.1007/s40820-021-00677-5] [PMID: 34236560]
[8]
Baimenov, A.; Berillo, D.; Azat, S.; Nurgozhin, T.; Inglezakis, V. Removal of Cd2+ from water by use of super-macroporous cryogels and comparison to commercial adsorbents. Polymers (Basel), 2020, 12(10), 2405.
[http://dx.doi.org/10.3390/polym12102405] [PMID: 33086639]
[9]
Dlamini, D.S.; Tesha, J.M.; Vilakati, G.D.; Mamba, B.B.; Mishra, A.K.; Thwala, J.M.; Li, J. A critical review of selected membrane- and powder-based adsorbents for water treatment: Sustainability and effectiveness. J. Clean. Prod., 2020, 277, 123497.
[http://dx.doi.org/10.1016/j.jclepro.2020.123497]
[10]
Chowdhury, I.R.; Chowdhury, S.; Mazumder, M.A.J.; Al-Ahmed, A. Removal of lead ions (Pb2+) from water and wastewater: a review on the low-cost adsorbents. Appl. Water Sci., 2022, 12(8), 185.
[http://dx.doi.org/10.1007/s13201-022-01703-6] [PMID: 35754932]
[11]
Aigbe, R.; Kavaz, D. Unravel the potential of zinc oxide nanoparticle-carbonized sawdust matrix for removal of lead (II) ions from aqueous solution. Chin. J. Chem. Eng., 2021, 29, 92-102.
[http://dx.doi.org/10.1016/j.cjche.2020.05.007]
[12]
Dai, Y.; Sun, Q.; Wang, W.; Lu, L.; Liu, M.; Li, J.; Yang, S.; Sun, Y.; Zhang, K.; Xu, J.; Zheng, W.; Hu, Z.; Yang, Y.; Gao, Y.; Chen, Y.; Zhang, X.; Gao, F.; Zhang, Y. Utilizations of agricultural waste as adsorbent for the removal of contaminants: A review. Chemosphere, 2018, 211, 235-253.
[http://dx.doi.org/10.1016/j.chemosphere.2018.06.179] [PMID: 30077103]
[13]
Phuengphai, P.; Singjanusong, T.; Kheangkhun, N.; Wattanakornsiri, A. Removal of copper(II) from aqueous solution using chemically modified fruit peels as efficient low-cost biosorbents. Water Sci. Eng., 2021, 14(4), 286-294.
[http://dx.doi.org/10.1016/j.wse.2021.08.003]
[14]
Khatoon, A.; Uddin, M.K.; Rao, R.A.K. Adsorptive remediation of Pb(II) from aqueous media using Schleichera oleosa bark. Environ. Technol. Innovat., 2018, 11, 1-14.
[http://dx.doi.org/10.1016/j.eti.2018.04.004]
[15]
Chowdhury, I.R.; Mazumder, M.A.J.; Chowdhury, S.; Qasem, M.A.A.; Aziz, M.A. Model-based application for the removal of Pb2+ from aqueous solution using highly porous carboxylated activated carbon from jute stick. Curr. Anal. Chem., 2021, 10, 1-10.
[16]
Amen, R.; Yaseen, M.; Mukhtar, A.; Klemeš, J.J.; Saqib, S.; Ullah, S.; Al-Sehemi, A.G.; Rafiq, S.; Babar, M.; Fatt, C.L.; Ibrahim, M.; Asif, S.; Qureshi, K.S.; Akbar, M.M.; Bokhari, A. Lead and cadmium removal from wastewater using eco-friendly biochar adsorbent derived from rice husk, wheat straw, and corncob. Clean. Eng. Technol., 2020, 1, 100006.
[http://dx.doi.org/10.1016/j.clet.2020.100006]
[17]
Kalak, T.; Cierpiszewski, R.; Ulewicz, M. High efficiency of the removal process of Pb(II) and Cu(II) ions with the use of fly ash from incineration of sunflower and wood waste using the CFBC technology. Energies, 2021, 14(6), 1771.
[http://dx.doi.org/10.3390/en14061771]
[18]
Koohzad, E.; Jafari, D.; Esmaeili, H. Adsorption of lead and arsenic ions from aqueous solution by activated carbon prepared from tamarix leaves. ChemistrySelect, 2019, 4(42), 12356-12367.
[http://dx.doi.org/10.1002/slct.201903167]
[19]
Elkhaleefa, A.; Ali, I.H.; Brima, E.I.; Shigidi, I.; Elhag, A.B.; Karama, B. Evaluation of the adsorption efficiency on the removal of lead(II) ions from aqueous solutions using Azadirachta indica leaves as an adsorbent. Processes (Basel), 2021, 9(3), 559.
[http://dx.doi.org/10.3390/pr9030559]
[20]
Lv, D.; Liu, Y.; Zhou, J.; Yang, K.; Lou, Z.; Baig, S.A.; Xu, X. Application of EDTA-functionalized bamboo activated carbon (BAC) for Pb(II) and Cu(II) removal from aqueous solutions. Appl. Surf. Sci., 2018, 428, 648-658.
[http://dx.doi.org/10.1016/j.apsusc.2017.09.151]
[21]
Fiyadh, S.S.; AlSaadi, M.A.; Jaafar, W.Z.; AlOmar, M.K.; Fayaed, S.S.; Mohd, N.S.; Hin, L.S.; El-Shafie, A. Review on heavy metal adsorption processes by carbon nanotubes. J. Clean. Prod., 2019, 230, 783-793.
[http://dx.doi.org/10.1016/j.jclepro.2019.05.154]
[22]
Türkmen, D.; Bakhshpour, M.; Akgönüllü, S. Aşır, S.; Denizli, A. Heavy metal ions removal from wastewater using cryogels: A review. Front. Sustain., 2022, 3, 765592.
[http://dx.doi.org/10.3389/frsus.2022.765592]
[23]
Plesu, N.; Macarie, L.; Popa, A.; Ilia, G. Polymeric supports for water treatment applications. Water-Formed Deposits, 2022, 2022, 397-433.
[http://dx.doi.org/10.1016/B978-0-12-822896-8.00026-1]
[24]
Ennigrou, D.J.; Sik Ali, M.B.; Dhahbi, M.; Ferid, M. Removal of heavy metals from aqueous solution by polyacrylic acid enhanced ultrafiltration. Desalinat. Water Treat., 2015, 56(10), 2682-2688.
[http://dx.doi.org/10.1080/19443994.2014.982958]
[25]
Sun, J.; Sun, G.; Zhao, X.; Liu, X.; Zhao, H.; Xu, C.; Yan, L.; Jiang, X.; Cui, Y. Ultrafast and efficient removal of Pb(II) from acidic aqueous solution using a novel polyvinyl alcohol superabsorbent. Chemosphere, 2021, 282, 131032.
[http://dx.doi.org/10.1016/j.chemosphere.2021.131032] [PMID: 34098306]
[26]
Masry, B.A.; Elhady, M.A.; Mousaa, I.M. Fabrication of a novel polyvinylpyrrolidone/abietic acid hydrogel by gamma irradiation for the recovery of Zn, Co, Mn and Ni from aqueous acidic solution. Inorg. Nano-met. Chem, 2022, 1-12.
[http://dx.doi.org/10.1080/24701556.2022.2034860]
[27]
Jakóbik-Kolon, A.; Milewski, A. Zdybał D.; Mitko, K.; Laskowska, E.; Mielańczyk, A.; Bok-Badura, J. Zinc sorption on modified waste poly(methyl methacrylate). Materials (Basel), 2017, 10(7), 755.
[http://dx.doi.org/10.3390/ma10070755] [PMID: 28773117]
[28]
Hyder, M.K.M.Z.; Mir, S.H. Performance of metal-based nanoparticles and nanocomposites for water decontamination. Inorg.-. Org. Composit. Water Wastewater Treat., 2021, 2, 65-112.
[29]
Guo, D.; Huang, S.; Zhu, Y. The adsorption of heavy metal ions by poly (amidoamine) dendrimer-functionalized nanomaterials: A review. Nanomaterials (Basel), 2022, 12(11), 1831.
[http://dx.doi.org/10.3390/nano12111831] [PMID: 35683687]
[30]
Mazumder, M.A.J.; Alhaffar, M.T.; Ali, S.A. Immobilization of two polyelectrolytes leading to a novel hydrogel for high-performance Hg2+ removal to ppb and sub-ppb levels. Chem. Eng. J., 2018, 334, 1440-1454.
[http://dx.doi.org/10.1016/j.cej.2017.11.083]
[31]
Ali, S.A.; Mazumder, M.A.J. A new resin embedded with chelating motifs of biogenic methionine for the removal of Hg(II) at ppb levels. J. Hazard. Mater., 2018, 350, 169-179.
[http://dx.doi.org/10.1016/j.jhazmat.2018.02.033] [PMID: 29477885]
[32]
Ali, S.A.; Yaagoob, I.Y.; Mazumder, M.A.J.; Al-Muallem, H.A. Fast removal of methylene blue and Hg(II) from aqueous solution using a novel super-adsorbent containing residues of glycine and maleic acid. J. Hazard. Mater., 2019, 369, 642-654.
[http://dx.doi.org/10.1016/j.jhazmat.2019.02.082] [PMID: 30826557]
[33]
Mubarak, S.A.; Ali, S.A.; Yaagoob, I.Y.; Mazumder, M.A.J. Design and synthesis of a dual-purpose superadsorbent containing a high density of chelating motifs for the fast mitigation of methylene blue and Pb(II). ACS Omega, 2020, 5(43), 27833-27845.
[http://dx.doi.org/10.1021/acsomega.0c02860] [PMID: 33163766]
[34]
Ali, S.A.; Mubarak, S.A.; Yaagoob, I.Y.; Arshad, Z.; Mazumder, M.A.J. A sorbent containing pH-responsive chelating residues of aspartic and maleic acids for mitigation of toxic metal ions, cationic, and anionic dyes. RSC Advances, 2022, 12(10), 5938-5952.
[http://dx.doi.org/10.1039/D1RA09234K] [PMID: 35424571]
[35]
Chowdhury, S.; Chowdhury, I.R.; Kabir, F.; Mazumder, M.A.J.; Zahir, M.H.; Alhooshani, K. Alginate-based biotechnology: a review on the arsenic removal technologies and future possibilities. J. Water Supply: Res. Technol.-. AQUA, 2019, 68(6), 369-389.
[36]
Qamar, S.A.; Qamar, M.; Basharat, A.; Bilal, M.; Cheng, H.; Iqbal, H.M.N. Alginate-based nano-adsorbent materials – Bioinspired solution to mitigate hazardous environmental pollutants. Chemosphere, 2022, 288(Pt 3), 132618.
[http://dx.doi.org/10.1016/j.chemosphere.2021.132618] [PMID: 34678347]
[37]
Ammar, C.; Alminderej, F.M. EL-Ghoul, Y.; Jabli, M.; Shafiquzzaman, M. Preparation and characterization of a new polymeric multi-layered material based k-carrageenan and alginate for efficient bio-sorption of methylene blue dye. Polymers (Basel), 2021, 13(3), 411.
[http://dx.doi.org/10.3390/polym13030411] [PMID: 33525384]
[38]
Chadha, U.; Bhardwaj, P.; Selvaraj, S.K.; Kumari, K.; Isaac, T.S.; Panjwani, M.; Kulkarni, K.; Mathew, R.M.; Satheesh, A.M.; Pal, A.; Gunreddy, N.; Dubey, O.; Singh, S.; Latha, S.; Chakravorty, A.; Badoni, B.; Banavoth, M.; Sonar, P.; Manoharan, M.; Paramasivam, V. Advances in chitosan biopolymer composite materials: from bioengineering, wastewater treatment to agricultural applications. Mater. Res. Express, 2022, 9(5), 052002.
[http://dx.doi.org/10.1088/2053-1591/ac5a9d]
[39]
Naushad, M.; Ahamad, T.; Al-Sheetan, K.M. Development of a polymeric nanocomposite as a high performance adsorbent for Pb(II) removal from water medium: Equilibrium, kinetic and antimicrobial activity. J. Hazard. Mater., 2021, 407, 124816.
[http://dx.doi.org/10.1016/j.jhazmat.2020.124816] [PMID: 33352425]
[40]
Saleh, T.A. Sarı A.; Tuzen, M. Development and characterization of bentonite-gum arabic composite as novel highly-efficient adsorbent to remove thorium ions from aqueous media. Cellulose, 2021, 28(16), 10321-10333.
[http://dx.doi.org/10.1007/s10570-021-04158-1]
[41]
Nordin, A.H.; Wong, S.; Ngadi, N.; Mohammad Zainol, M.; Abd Latif, N.A.F.; Nabgan, W. Surface functionalization of cellulose with polyethyleneimine and magnetic nanoparticles for efficient removal of anionic dye in wastewater. J. Environ. Chem. Eng., 2021, 9(1), 104639.
[http://dx.doi.org/10.1016/j.jece.2020.104639]
[42]
Meneses, I.P.; Novaes, S.D.; Dezotti, R.S.; Oliveira, P.V.; Petri, D.F.S. CTAB-modified carboxymethyl cellulose/bagasse cryogels for the efficient removal of bisphenol A, methylene blue and Cr(VI) ions: Batch and column adsorption studies. J. Hazard. Mater., 2022, 421, 126804.
[http://dx.doi.org/10.1016/j.jhazmat.2021.126804] [PMID: 34388928]
[43]
Hu, X.S.; Liang, R.; Sun, G. Super-adsorbent hydrogel for removal of methylene blue dye from aqueous solution. J. Mater. Chem. A Mater. Energy Sustain., 2018, 6(36), 17612-17624.
[http://dx.doi.org/10.1039/C8TA04722G]
[44]
Yu, T.; Xue, Z.; Zhao, X.; Chen, W.; Mu, T. Green synthesis of porous β-cyclodextrin polymers for rapid and efficient removal of organic pollutants and heavy metal ions from water. New J. Chem., 2018, 42(19), 16154-16161.
[http://dx.doi.org/10.1039/C8NJ03438A]
[45]
Beyki, M.H.; Shemirani, F.; Malakootikhah, J.; Minaeian, S.; Khani, R. Catalytic synthesis of graphene-like polyaniline derivative - MFe2O4 (M; Cu, Mn) nanohybrid as multifunctionality water decontaminant. React. Funct. Polym., 2018, 125, 108-117.
[http://dx.doi.org/10.1016/j.reactfunctpolym.2018.02.014]
[46]
Sarojini, G.; Venkateshbabu, S.; Rajasimman, M. Facile synthesis and characterization of polypyrrole - iron oxide – seaweed (PPy-Fe3O4-SW) nanocomposite and its exploration for adsorptive removal of Pb(II) from heavy metal bearing water. Chemosphere, 2021, 278, 130400.
[http://dx.doi.org/10.1016/j.chemosphere.2021.130400] [PMID: 33819882]
[47]
Kmal, R.Q.; Aljeboree, A.M.; Jasim, L.S.; Radia, N.D.; Alkaim, A.F. Removal of toxic congo red dye from aqueous solution using a graphene oxide/poly (Acrylamide-Acrylic acid) hydrogel: Characterization, kinetics and thermodynamics studies. J. Chem. Health Risks, 2022, 12(0), 1.
[48]
Lu, T.; Wang, L.; He, Y.; Chen, J.; Wang, R.M. Loess surface grafted functional copolymer for removing basic fuchsin. RSC Advances, 2017, 7(30), 18379-18383.
[http://dx.doi.org/10.1039/C7RA00610A]
[49]
Morsi, R.E.; Al-Sabagh, A.M.; Moustafa, Y.M.; ElKholy, S.G.; Sayed, M.S. Polythiophene modified chitosan/magnetite nanocomposites for heavy metals and selective mercury removal. Egypt. J. Pet., 2018, 27, 1077-1085.
[50]
Wang, Y.; Wu, D.; Wei, Q.; Wei, D.; Yan, T.; Yan, L.; Hu, L.; Du, B. Rapid removal of Pb(II) from aqueous solution using branched polyethylenimine enhanced magnetic carboxymethyl chitosan optimized with response surface methodology. Sci. Rep., 2017, 7(1), 10264.
[http://dx.doi.org/10.1038/s41598-017-09700-5] [PMID: 28860492]
[51]
Seraj, S.; Mirzayi, B.; Nematollahzadeh, A. Engineered maghemite nanoparticles with polyrhodanine for efficient removal of Cr(VI) from water. Environ. Nanotechnol. Monit. Manag., 2018, 10, 94-103.
[http://dx.doi.org/10.1016/j.enmm.2018.05.009]
[52]
Morillo Martín, D.; Faccini, M.; García, M.A.; Amantia, D. Highly efficient removal of heavy metal ions from polluted water using ion-selective polyacrylonitrile nanofibers. J. Environ. Chem. Eng., 2018, 6(1), 236-245.
[http://dx.doi.org/10.1016/j.jece.2017.11.073]
[53]
Yaagoob, I.Y.; Mazumder, M.A.J.; Al-Muallem, H.A.; Ali, S.A. A resin containing motifs of maleic acid and glycine: a super-adsorbent for adsorptive removal of basic dye pararosaniline hydrochloride and Cd(II) from water. J. Environ. Health Sci. Eng., 2021, 19(2), 1333-1346.
[http://dx.doi.org/10.1007/s40201-021-00690-1] [PMID: 34900270]
[54]
Wang, X.; Li, Y.; Dai, T.; He, X.; Chen, M.; Liu, C.; Liang, R.; Chen, J. Preparation of pectin/poly(m-phenylenediamine) microsphere and its application for Pb2+ removal. Carbohydr. Polym., 2021, 260, 117811.
[http://dx.doi.org/10.1016/j.carbpol.2021.117811] [PMID: 33712156]
[55]
Jafar Mazumder, M.A.; Raja, P.H.; Isloor, A.M.; Usman, M.; Chowdhury, S.H.; Ali, S.A. Inamuddin; Al-Ahmed, A. Assessment of sulfonated homo and co-polyimides incorporated polysulfone ultrafiltration blend membranes for effective removal of heavy metals and proteins. Sci. Rep., 2020, 10(1), 7049.
[http://dx.doi.org/10.1038/s41598-020-63736-8] [PMID: 32341422]