Anti-Cancer Agents in Medicinal Chemistry

Author(s): Zhichao Song, Chunhui Wang, Fei Ding, Hao Zou and Chengkui Liu*

DOI: 10.2174/1871520623666221103110934

Ganoderic Acid A Enhances Tumor Suppression Function of Oxaliplatin via Inducing the Cytotoxicity of T Cells

Page: [832 - 838] Pages: 7

  • * (Excluding Mailing and Handling)

Abstract

Background: Various natural products have been demonstrated for their anti-tumor activities. As a natural triterpenoid, the effects of ganoderic acid A on oxaliplatin chemotherapy for cancer treatment remain unclear.

Methods: A xenograft mouse model of colon cancer was constructed using the HT-29 cells. Ganoderic acid A was intravenously administered with or without oxaliplatin. The CCK-8 method was performed to assess cell viability. Flow cytometry was used to determine cell apoptosis and subtyping of T cells. Cytotoxicity of the T cells was assayed using a lymphocyte-tumor co-culture system in vitro.

Results: Ganoderic acid A enhanced tumor suppression of oxaliplatin in the xenograft model, while single administration showed no obvious anti-tumor effect. Ganoderic acid A didn’t affect cell proliferation and apoptosis of HT-29 cells treated by oxaliplatin in vitro. Additionally, ganoderic acid A co-administered with oxaliplatin didn’t impact T cell subtyping in the xenograft model. Cytotoxicity of T cells in co-administered mice was remarkably enhanced compared with oxaliplatin-treated mice.

Conclusion: Our findings reveal that ganoderic acid A synergistically enhances tumor suppression of oxaliplatin possibly via increasing the cytotoxicity of T cells.

Graphical Abstract

[1]
deBraud, F.; Munzone, E.; Nolè, F.; De Pas, T.; Biffi, R.; Brienza, S.; Aapro, M.S. Synergistic activity of oxaliplatin and 5-fluorouracil in patients with metastatic colorectal cancer with progressive disease while on or after 5-fluorouracil. Am. J. Clin. Oncol., 1998, 21(3), 279-283.
[http://dx.doi.org/10.1097/00000421-199806000-00015] [PMID: 9626798]
[2]
Branca, J.J.V.; Carrino, D.; Gulisano, M.; Ghelardini, C.; Mannelli, D.C.L.; Pacini, A. Oxaliplatin-induced neuropathy: Genetic and epigenetic profile to better understand how to ameliorate this side effect. Front. Mol. Biosci., 2021, 8, 643824.
[http://dx.doi.org/10.3389/fmolb.2021.643824] [PMID: 34026827]
[3]
Feng, M.; Zhao, Z.; Yang, M.; Ji, J.; Zhu, D. T-cell-based immunotherapy in colorectal cancer. Cancer Lett., 2021, 498, 201-209.
[http://dx.doi.org/10.1016/j.canlet.2020.10.040] [PMID: 33129958]
[4]
Yu, J.; Jin, J.; Li, Y. The physiological functions of IKK-selective substrate identification and their critical roles in diseases. STEMedicine, 2020, 1(4), e49.
[http://dx.doi.org/10.37175/stemedicine.v1i4.49]
[5]
Vanneman, M.; Dranoff, G. Combining immunotherapy and targeted therapies in cancer treatment. Nat. Rev. Cancer, 2012, 12(4), 237-251.
[http://dx.doi.org/10.1038/nrc3237] [PMID: 22437869]
[6]
Ma, J.Q.; Zhang, Y.J.; Tian, Z.K. Anti-oxidant, anti-inflammatory and anti-fibrosis effects of ganoderic acid A on carbon tetrachloride induced nephrotoxicity by regulating the Trx/TrxR and JAK/ROCK pathway. Chem. Biol. Interact., 2021, 344, 109529.
[http://dx.doi.org/10.1016/j.cbi.2021.109529] [PMID: 34029542]
[7]
Das, A.; Alshareef, M.; Henderson, F., Jr; Santos, M.J.L.; Vandergrift, W.A., III; Lindhorst, S.M.; Varma, A.K.; Infinger, L.; Patel, S.J.; Cachia, D. Ganoderic acid A/DM-induced NDRG2 over-expression suppresses high-grade meningioma growth. Clin. Transl. Oncol., 2020, 22(7), 1138-1145.
[http://dx.doi.org/10.1007/s12094-019-02240-6] [PMID: 31732915]
[8]
Lu, X.; Xu, C.; Yang, R.; Zhang, G. Ganoderic acid A alleviates OVA-induced asthma in mice. Inflammation, 2021, 44(5), 1908-1915.
[http://dx.doi.org/10.1007/s10753-021-01468-1] [PMID: 34037898]
[9]
Radwan, F.F.Y.; Hossain, A.; God, J.M.; Leaphart, N.; Elvington, M.; Nagarkatti, M.; Tomlinson, S.; Haque, A. Reduction of myeloid-derived suppressor cells and lymphoma growth by a natural triterpenoid. J. Cell. Biochem., 2015, 116(1), 102-114.
[http://dx.doi.org/10.1002/jcb.24946] [PMID: 25142864]
[10]
Cheng, Y.; Xie, P. Ganoderic acid A holds promising cytotoxicity on human glioblastoma mediated by incurring apoptosis and autophagy and inactivating PI3K/AKT signaling pathway. J. Biochem. Mol. Toxicol., 2019, 33(11), e22392.
[http://dx.doi.org/10.1002/jbt.22392] [PMID: 31503386]
[11]
Gill, B.S. Navgeet; Kumar, S. Antioxidant potential of ganoderic acid in Notch-1 protein in neuroblastoma. Mol. Cell. Biochem., 2019, 456(1-2), 1-14.
[http://dx.doi.org/10.1007/s11010-018-3485-7] [PMID: 30511344]
[12]
Yang, Y.; Zhou, H.; Liu, W.; Wu, J.; Yue, X.; Wang, J.; Quan, L.; Liu, H.; Guo, L.; Wang, Z.; Lian, X.; Zhang, Q. Ganoderic acid A exerts antitumor activity against MDA MB 231 human breast cancer cells by inhibiting the Janus kinase 2/signal transducer and activator of transcription 3 signaling pathway. Oncol. Lett., 2018, 16(5), 6515-6521.
[http://dx.doi.org/10.3892/ol.2018.9475] [PMID: 30405790]
[13]
Piunti, A.; Hashizume, R.; Morgan, M.A.; Bartom, E.T.; Horbinski, C.M.; Marshall, S.A.; Rendleman, E.J.; Ma, Q.; Takahashi, Y.; Woodfin, A.R.; Misharin, A.V.; Abshiru, N.A.; Lulla, R.R.; Saratsis, A.M.; Kelleher, N.L.; James, C.D.; Shilatifard, A. Therapeutic targeting of polycomb and BET bromodomain proteins in diffuse intrinsic pontine gliomas. Nat. Med., 2017, 23(4), 493-500.
[http://dx.doi.org/10.1038/nm.4296] [PMID: 28263307]
[14]
Marmiroli, P.; Riva, B.; Pozzi, E.; Ballarini, E.; Lim, D.; Chiorazzi, A.; Meregalli, C.; Distasi, C.; Renn, C.L.; Semperboni, S.; Morosi, L.; Ruffinatti, F.A.; Zucchetti, M.; Dorsey, S.G.; Cavaletti, G.; Genazzani, A.; Carozzi, V.A. Susceptibility of different mouse strains to oxaliplatin peripheral neurotoxicity: Phenotypic and genotypic insights. PLoS One, 2017, 12(10), e0186250.
[http://dx.doi.org/10.1371/journal.pone.0186250] [PMID: 29020118]
[15]
Ren, L. Protective effect of ganoderic acid against the streptozotocin induced diabetes, inflammation, hyperlipidemia and microbiota imbalance in diabetic rats. Saudi J. Biol. Sci., 2019, 26(8), 1961-1972.
[http://dx.doi.org/10.1016/j.sjbs.2019.07.005] [PMID: 31889779]
[16]
Liu, R.M.; Li, Y.B.; Zhong, J.J. Cytotoxic and pro-apoptotic effects of novel ganoderic acid derivatives on human cervical cancer cells in vitro. Eur. J. Pharmacol., 2012, 681(1-3), 23-33.
[http://dx.doi.org/10.1016/j.ejphar.2012.02.007] [PMID: 22366428]
[17]
Fidelle, M.; Yonekura, S.; Picard, M.; Cogdill, A.; Hollebecque, A.; Roberti, M.P.; Zitvogel, L. Resolving the paradox of colon cancer through the integration of genetics, immunology, and the microbiota. Front. Immunol., 2020, 11, 600886.
[http://dx.doi.org/10.3389/fimmu.2020.600886] [PMID: 33381121]
[18]
Jardim, D.L.; Rodrigues, C.A.; Novis, Y.A.S.; Rocha, V.G.; Hoff, P.M. Oxaliplatin-related thrombocytopenia. Ann. Oncol., 2012, 23(8), 1937-1942.
[http://dx.doi.org/10.1093/annonc/mds074] [PMID: 22534771]
[19]
McQuade, R.M.; Carbone, S.E.; Stojanovska, V.; Rahman, A.; Gwynne, R.M.; Robinson, A.M.; Goodman, C.A.; Bornstein, J.C.; Nurgali, K. Role of oxidative stress in oxaliplatin‐induced enteric neuropathy and colonic dysmotility in mice. Br. J. Pharmacol., 2016, 173(24), 3502-3521.
[http://dx.doi.org/10.1111/bph.13646] [PMID: 27714760]
[20]
Mauri, G.; Gori, V.; Bonazzina, E.; Amatu, A.; Tosi, F.; Bencardino, K.; Ruggieri, L.; Patelli, G.; Arena, S.; Bardelli, A.; Siena, S.; Sartore-Bianchi, A. Oxaliplatin retreatment in metastatic colorectal cancer: Systematic review and future research opportunities. Cancer Treat. Rev., 2020, 91, 102112.
[http://dx.doi.org/10.1016/j.ctrv.2020.102112] [PMID: 33091698]
[21]
Yu, T.; An, Q.; Cao, X.L.; Yang, H.; Cui, J.; Li, Z.J.; Xiao, G. GOLPH3 inhibition reverses oxaliplatin resistance of colon cancer cells via suppression of PI3K/AKT/mTOR pathway. Life Sci., 2020, 260, 118294.
[http://dx.doi.org/10.1016/j.lfs.2020.118294] [PMID: 32818544]
[22]
Kozovska, Z.; Gabrisova, V.; Kucerova, L. Colon cancer: Cancer stem cells markers, drug resistance and treatment. Biomed. Pharmacother., 2014, 68(8), 911-916.
[http://dx.doi.org/10.1016/j.biopha.2014.10.019] [PMID: 25458789]
[23]
Yu, Z.; Jia, W.; Liu, C.; Wang, H.; Yang, H.; He, G.; Chen, R.; Du, G. Ganoderic acid A protects neural cells against NO stress injury in vitro via stimulating β adrenergic receptors. Acta Pharmacol. Sin., 2020, 41(4), 516-522.
[http://dx.doi.org/10.1038/s41401-020-0356-z] [PMID: 32047262]
[24]
Rocca, Y.S.; Roberti, M.P.; Arriaga, J.M.; Amat, M.; Bruno, L.; Pampena, M.B.; Huertas, E.; Loria, F.S.; Pairola, A.; Bianchini, M.; Mordoh, J.; Levy, E.M. Altered phenotype in peripheral blood and tumor-associated NK cells from colorectal cancer patients. Innate Immun., 2013, 19(1), 76-85.
[http://dx.doi.org/10.1177/1753425912453187] [PMID: 22781631]
[25]
Peng, Y.P.; Zhu, Y.; Zhang, J.J.; Xu, Z.K.; Qian, Z.Y.; Dai, C.C.; Jiang, K.R.; Wu, J.L.; Gao, W.T.; Li, Q.; Du, Q.; Miao, Y. Comprehensive analysis of the percentage of surface receptors and cytotoxic granules positive natural killer cells in patients with pancreatic cancer, gastric cancer, and colorectal cancer. J. Transl. Med., 2013, 11(1), 262.
[http://dx.doi.org/10.1186/1479-5876-11-262] [PMID: 24138752]
[26]
Ling, K.L.; Pratap, S.E.; Bates, G.J.; Singh, B.; Mortensen, N.J.; George, B.D.; Warren, B.F.; Piris, J.; Roncador, G.; Fox, S.B.; Banham, A.H.; Cerundolo, V. Increased frequency of regulatory T cells in peripheral blood and tumour infiltrating lymphocytes in colorectal cancer patients. Cancer Immun., 2007, 7, 7.
[PMID: 17388261]
[27]
Luckheeram, R.V.; Zhou, R.; Verma, A.D.; Xia, B. CD4⁺T cells: Differentiation and functions. Clin. Dev. Immunol., 2012, 2012, 1-12.
[http://dx.doi.org/10.1155/2012/925135] [PMID: 22474485]
[28]
Fathi, M. Pustokhina, I.; Kuznetsov, S.V.; Khayrullin, M.; Hojjat-Farsangi, M.; Karpisheh, V.; Jalili, A.; Jadidi-Niaragh, F. T‐cell immunoglobulin and ITIM domain, as a potential immune checkpoint target for immunotherapy of colorectal cancer. IUBMB Life, 2021, 73(5), 726-738.
[http://dx.doi.org/10.1002/iub.2461] [PMID: 33686787]
[29]
Que, Z.; Zou, F.; Zhang, A.; Zheng, Y.; Bi, L.; Zhong, J.; Tian, J.; Liu, J. Ganoderic acid Me induces the apoptosis of competent T cells and increases the proportion of Treg cells through enhancing the expression and activation of indoleamine 2,3-dioxygenase in mouse lewis lung cancer cells. Int. Immunopharmacol., 2014, 23(1), 192-204.
[http://dx.doi.org/10.1016/j.intimp.2014.08.001] [PMID: 25138378]