A Review on Chemical Synthesis of Leaf Alcohol

Page: [1512 - 1529] Pages: 18

  • * (Excluding Mailing and Handling)

Abstract

Leaf alcohol is a flavor and fragrance compound and has been shown to possess an intense characteristic grassy-green odor of freshly cut green grass and leaves, which is widely used as an added flavor in fragrances, food flavors and tobacco flavors to provide a fresh grassy note. However, the market has been unable to meet this surge in demand, resulting in a frequent shortage of leaf alcohol. At present, there are two processes used in industrial production: the process for the hydrogenation of 3-hexyn-1-ol and the process for the ring opening reaction of 6-methyl-3,6-dihydro-2H-pyran. The reason for the shortage is that there are certain difficulties and shortcomings in the current methods of synthesizing leaf alcohol. The disadvantages of the process for the hydrogenation of 3-hexyn-1-ol are the production security and dependability, the prime cost of catalyst and equipment. The disadvantages of the process for the ring opening reaction of 6-methyl-3,6-dihydro-2H-pyran are the product quality, production dependability, and the prime cost of the equipment. To solve this contradiction between supply and demand, many research groups are investigating chemical synthetic methods that could be applied in industrial production easily and economically. Since the discovery of leaf alcohol, much has happened in the synthesis of leaf alcohol. Many developments became market realities, so after all these years, it seemed appropriate to sum up the current trends in the synthesis of leaf alcohol. In this review, we bring a collection of various synthetic approaches leading to leaf alcohol.

Graphical Abstract

[1]
Genovese, A.; Ugliano, M.; Pessina, R.; Gambuti, A.; Piombino, P.; Moio, L. Comparison of the aroma compounds in apricot (Prunus armeniaca, L. cv. Pellecchiella) and apple (Malus pumila. L. cv. Annurca) raw distillates. Ital. J. Food Sci., 2004, 16(2), 185-196.
[2]
Pino, J.A.; Marbot, R.; Vázquez, C. Characterization of volatiles in strawberry guava (Psidium cattleianum Sabine) fruit. J. Agric. Food Chem., 2001, 49(12), 5883-5887.
[http://dx.doi.org/10.1021/jf010414r] [PMID: 11743779]
[3]
Jordán, M.J.; Margaría, C.A.; Shaw, P.E.; Goodner, K.L. Volatile components and aroma active compounds in aqueous essence and fresh pink guava fruit puree (Psidium guajava L.) by GC-MS and multidimensional GC/GC-O. J. Agric. Food Chem., 2003, 51(5), 1421-1426.
[http://dx.doi.org/10.1021/jf020765l] [PMID: 12590492]
[4]
Jirovetz, L.; Smith, D.; Buchbauer, G. Aroma compound analysis of Eruca sativa (Brassicaceae) SPME headspace leaf samples using GC, GC-MS, and olfactometry. J. Agric. Food Chem., 2002, 50(16), 4643-4646.
[http://dx.doi.org/10.1021/jf020129n] [PMID: 12137490]
[5]
Klesk, K.; Qian, M.; Martin, R.R. Aroma extract dilution analysis of cv. Meeker (Rubus idaeus L.) red raspberries from Oregon and Washington. J. Agric. Food Chem., 2004, 52(16), 5155-5161.
[http://dx.doi.org/10.1021/jf0498721] [PMID: 15291490]
[6]
Forney, C.F.; Jordan, M.A. Induction of volatile compounds in broccoli by postharvest hot-water dips. J. Agric. Food Chem., 1998, 46(12), 5295-5301.
[http://dx.doi.org/10.1021/jf980443a]
[7]
Reynolds, A.G.; Edwards, C.G.; Wardle, D.A.; Webster, D.; Dever, M. 1994 Shoot density affects ‘Riesling’ grapevines II. Wine composition and sensory response. J. Am. Soc. Hortic. Sci., 1994, 119(5), 881-892.
[http://dx.doi.org/10.21273/JASHS.119.5.881]
[8]
Murata, A.; Engelhardt, U.H.; Fleischmann, P.; Yamada, K.; Yoshida, N.; Juchelka, D.; Hilkert, A.; Ohnishi, T.; Watanabe, N.; Winterhalter, P. Purification and gas chromatography-combustion-isotope ratio mass spectrometry of aroma compounds from green tea products and comparison to bulk analysis. J. Agric. Food Chem., 2013, 61(47), 11321-11325.
[http://dx.doi.org/10.1021/jf403605a] [PMID: 24206364]
[9]
Curtius, T.; Franzen, H. About the chemical components of green plants. About the leaf aldehyde. Justus Liebigs Ann. Chem., 1912, 390(1), 89-121.
[http://dx.doi.org/10.1002/jlac.19123900106]
[10]
Takei, S.; Sakato, Y.; Ohno, M.; Kuroiwa, Y. Leaf alcohol (the first report): Distribution of green leaf alcohol in the plant word. Nippon Nogeikagaku Kaishi, 1938, 14, 709-716.
[http://dx.doi.org/10.1271/nogeikagaku1924.14.6_709]
[11]
Walbaum, H. Communication from the laboratory of Schimmel & Co. in Miltitz near Leipzig Contribution to the knowledge of Japanese peppermint oil. J. Prakt. Chem., 1917, 96(2), 245-245.
[http://dx.doi.org/10.1002/prac.19180960123]
[12]
Bohnsack, H. Contribution to the knowledge of essential oils: About d-3-methyl-pentanol-(1) and hexen-(3)-ol-(1) in geranium oil-rénion and a synthesis of the inactive 3-methyl-pentanol-(1) and of the inactive 3-methyl-pentanoic acid -(1). Ber. Dtsch. Chem. Ges. B, 1941, 74(9), 1575-1583.
[http://dx.doi.org/10.1002/cber.19410740918]
[13]
Bohnsack, H. Contribution to the knowledge of essential oils: Part II: About the occurrence of hexen-(3)-ols-(l) in natural raspberry fruit oil. Ber. Dtsch. Chem. Ges. B, 1942, 75(1), 72-74.
[http://dx.doi.org/10.1002/cber.19420750109]
[14]
Bohnsack, H. Contribution to knowledge of essential oils: III. Communication: About oxygen-containing components of citronella oil Java. Ber. Dtsch. Chem. Ges. B, 1943, 76(6), 564-572.
[http://dx.doi.org/10.1002/cber.19430760605]
[15]
Takei, S.; Ōno, M.; Sinosaki, K. Leaves alcohol, IV. Communication:*) The trans and cis problem in leaf alcohol, the natural hexen-(3)-ol-(1). Ber. Dtsch. Chem. Ges. B, 1940, 73(9), 950-955.
[http://dx.doi.org/10.1002/cber.19400730905]
[16]
Stoll, M.; Rouvé, A. Synthesis of cis-βγ-hexénol (natural hexénol). Helv. Chim. Acta, 1938, 21(1), 1542-1547.
[http://dx.doi.org/10.1002/hlca.193802101191]
[17]
Ruzicka, L.; Schinz, H.; Susz, B.P. Violet fragrances. (14th communication1) on the stereoisomerism of hexen-(3)-ol-(1), nonadien-(2,6)-ol-(1) and nonadien-(2,6)-ol-(1). Helv. Chim. Acta, 1944, 27(1), 1561-1569.
[http://dx.doi.org/10.1002/hlca.194402701198]
[18]
Grédy, B. Preparation of some cis- and trans-ethylenic alcohols and several of their derivatives. Comparison of their physical properties. Bull. Soc. Chim. Fr., 1936, 3, 1093-1101.
[19]
Ruzicka, L.; Schinz, H. Violet fragrances. V1). Synthesis of violet leaf aldehyde, nonadiene-(2,6)-ol-(1) or a stereoisomer thereof. Helv. Chim. Acta, 1934, 17(1), 1602-1608.
[http://dx.doi.org/10.1002/hlca.193401701204]
[20]
Takei, S.; Imaki, T.; Tada, Y. On the knowledge of natural and synthetic βγ-hexenol. Ber. Dtsch. Chem. Ges. B, 1935, 68(5), 953-956.
[http://dx.doi.org/10.1002/cber.19350680542]
[21]
Boxer, S.E.; Linstead, R.P. Investigations of the olefinic acids. Part V. The influence of bases on the condensation of aldehydes and malonic acid, and a note on the Knoevenagel reaction. J. Chem. Soc., 1931, 0(0), 740-751.
[http://dx.doi.org/10.1039/JR9310000740]
[22]
Linstead, R.P.; Noble, E.G.; Boorman, E.J. 142. Investigations of the olefinic acids. Part VII. The preparation of?? acids. J. Chem. Soc., 1933, 557-561.
[http://dx.doi.org/10.1039/jr9330000557]
[23]
Lane, J.F.; Fentress, J.; Sherwood, L.T., Jr Allylic rearrangement in the reaction of cuprous cyanide with butenyl halides. J. Am. Chem. Soc., 1944, 66(4), 545-548.
[http://dx.doi.org/10.1021/ja01232a014]
[24]
Campbell, K.N.; Eby, L.T. The reduction of multiple carbon-carbon conds. III. further studies on the preparation of olefins from acetylene. J. Am. Chem. Soc., 1941, 63(10), 2683-2685.
[http://dx.doi.org/10.1021/ja01855a050]
[25]
Greenlee, K.W.; Fernelius, W.C. The hydrogenation of disubstituted acetylenes. J. Am. Chem. Soc., 1942, 64(10), 2505-2505.
[http://dx.doi.org/10.1021/ja01262a509]
[26]
Campbell, K.N.; Campbell, B.K. The addition of hydrogen to multiple carbon-carbon bonds. Chem. Rev., 1942, 31(1), 77-175.
[http://dx.doi.org/10.1021/cr60098a003]
[27]
Crombie, L.; Harper, S.H. Leaf alcohol and the stereochemistry of the cis- and the trans-n-hex-3-en-1-ols and -n-pent-3-en-1-ols. J. Chem. Soc., 1950, 873-877.
[http://dx.doi.org/10.1039/JR9500000873]
[28]
Harper, S.H.; Smith, R.J.D. Sterochemical studies of olefinic compounds. Part IV. The configuration of “leaf alcohol” and a further synthesis of cis-jasmone. J. Chem. Soc., 1955, 0(0), 1512-1516.
[http://dx.doi.org/10.1039/JR9550001512]
[29]
Obata, Y.; Morito, T. Syntheses of trans-β-γ-Hexenol. Nippon Nogeikagaku Kaishi, 1951, 25(4), 210-212.
[http://dx.doi.org/10.1271/nogeikagaku1924.25.210]
[30]
Crombie, L.; Harper, S.H.; Stedman, R.E.; Thompson, D. Experiments on the synthesis of the pyrethrins. Part VI. New syntheses of the cinerolones. J. Chem. Soc., 1951, 2445-2449.
[http://dx.doi.org/10.1039/jr9510002445]
[31]
Crombie, L.; Harper, S.H. Experiments on the synthesis of the pyrethrins. Part VIII. Stereochemistry of jasmone and identity of dihydropyrethrone. J. Chem. Soc., 1952, 869-875.
[http://dx.doi.org/10.1039/jr9520000869]
[32]
Sondheimer, F. Studies of compounds related to natural perfumes. Part I. Concerning cis- and trans-hex-3-en-1-ol. J. Chem. Soc., 1950, 877-882.
[http://dx.doi.org/10.1039/jr9500000877]
[33]
Gilad, Y.; Segré, D.; Skorecki, K.; Nachman, M.W.; Lancet, D.; Sharon, D. Dichotomy of single-nucleotide polymorphism haplotypes in olfactory receptor genes and pseudogenes. Nat. Genet., 2000, 26(2), 221-224.
[http://dx.doi.org/10.1038/79957] [PMID: 11017082]
[34]
Jaeger, S.R.; McRae, J.F.; Salzman, Y.; Williams, L.; Newcomb, R.D. A preliminary investigation into a genetic basis for cis-3-hexen-1-ol odour perception: A genome-wide association approach. Food Qual. Prefer., 2010, 21(1), 121-131.
[http://dx.doi.org/10.1016/j.foodqual.2009.08.011]
[35]
Sankichi, T.; Ōno, M.; Sinosaki, K. Blätteralkohol. IV. Mitteil: Das transund cis-Problem bei Blätteralkohol, dem natürlichen Hexen-3-ol-1. Nippon Nogeikagaku Kaishi, 1940, 16(8), 772-780.
[36]
Jutz, C. About unsaturated aldehydes and ketones, III. Synthesis of the violet leaf aldehyde, trans,cis-nonadiene-(2.6)-al-(1). Chem. Ber., 1959, 92(9), 1983-1989.
[http://dx.doi.org/10.1002/cber.19590920902]
[37]
Sondheimer, F. Synthesis of the violet leaf perfume, 2(trans),6(cis)-nonadienal. J. Am. Chem. Soc., 1952, 74(16), 4040-4043.
[http://dx.doi.org/10.1021/ja01136a020]
[38]
Wu, S.H.; Tao, F.G.; Gan, Y.D.; Xu, L.X. The application of carbene reactive intermediates in organic synthesis. I. New route for the synthesis of leaf alcohol. Youji Huaxue, 1986, 6(5), 360-362.
[39]
Rao, A.V.R.; Reddy, E.R. Stereoselective synthesis of hydroxy octadecatrienoic acids. The self defensive substances in rice plant. Tetrahedron Lett., 1986, 27(20), 2279-2282.
[http://dx.doi.org/10.1016/S0040-4039(00)84508-6]
[40]
Rao, A.V.R.; Reddy, E.R.; Purandare, A.V.; Varaprasad, C.V.N.S. Stereoselective synthesis of unsaturated C-18 hydroxy fatty acids the self defensive substances. Tetrahedron, 1987, 43(19), 4385-4394.
[http://dx.doi.org/10.1016/S0040-4020(01)90314-X]
[41]
Kerr, J.M.; Suckling, C.J.; Bamfield, P. Selective hydrogenation by a novel palladium(II) complex. Tetrahedron Lett., 1988, 29(43), 5545-5548.
[http://dx.doi.org/10.1016/S0040-4039(00)80809-6]
[42]
Aerssens, M.H.P.J.; Brandsma, L. Regio-and stereo-specific reduction of conjugated and non-conjugated triple bonds by activated zinc powder. J. Chem. Soc. Chem. Commun., 1984, (12), 735-736.
[http://dx.doi.org/10.1039/c39840000735]
[43]
Aerssens, M.H.P.J.; Heiden, R.; Heus, M.; Brandsma, L. A quick procedure for the partial reduction of triple bonds. Synth. Commun., 1990, 20(22), 3421-3425.
[http://dx.doi.org/10.1080/00397919008051583]
[44]
Kini, A.D.; Nadkarni, D.V.; Fry, J.L. Selective reduction of alkynes to Z-alkenes using hydrosilane functions immobilized on silica gel. Tetrahedron Lett., 1994, 35(10), 1507-1510.
[http://dx.doi.org/10.1016/S0040-4039(00)76744-X]
[45]
van Laren, M.W.; Elsevier, C.J. Selective homogeneous palladium(0)-catalyzed hydrogenation of alkynes to (Z)-alkenes. Angew. Chem. Int. Ed., 1999, 38(24), 3715-3717.
[http://dx.doi.org/10.1002/(SICI)1521-3773(19991216)38:24<3715:AID-ANIE3715>3.0.CO;2-O] [PMID: 10649335]
[46]
Spee, M.P.R.; Boersma, J.; Meijer, M.D.; Slagt, M.Q.; van Koten, G.; Geus, J.W. Selective liquid-phase semihydrogenation of functionalized acetylenes and propargylic alcohols with silica-supported bimetallic palladium-copper catalysts. J. Org. Chem., 2001, 66(5), 1647-1656.
[http://dx.doi.org/10.1021/jo001246p] [PMID: 11262109]
[47]
Roelofs, J.C.A.A.; Berben, P.H. First example of high loaded polymer-stabilized nanoclusters immobilized on hydrotalcite: Effects in alkyne hydrogenation. Chem. Commun. (Camb.), 2004, (8), 970-971.
[http://dx.doi.org/10.1039/b400737a] [PMID: 15069499]
[48]
Alonso, F.; Osante, I.; Yus, M. Highly stereoselective semi-hydrogenation of alkynes promoted by nickel(0) nanoparticles. Adv. Synth. Catal., 2006, 348(3), 305-308.
[http://dx.doi.org/10.1002/adsc.200505327]
[49]
Yan, S.G.; Fan, Z.L.; Tao, Y.S.; Xu, C.G.; Li, X.; Cong, W.J.; Zhang, T.; Gao, X.G. Preparation for leaf alcohol (cis-3-hexen-1-ol) from 1-butene. C.N. Patent 1,762,941, 2006.
[50]
Alonso, F.; Osante, I.; Yus, M. Highly selective hydrogenation of multiple carbon–carbon bonds promoted by nickel(0) nanoparticles. Tetrahedron, 2007, 63(1), 93-102.
[http://dx.doi.org/10.1016/j.tet.2006.10.043]
[51]
William, R.; Scott, J.; Dash, P. Bimetallic nanoparticles as catalysts in ionic liquids. Proc. MRS, 2008, 1082, 12-17.
[52]
Hauwert, P.; Maestri, G.; Sprengers, J.W.; Catellani, M.; Elsevier, C.J. Transfer semihydrogenation of alkynes catalyzed by a zero-valent palladium N-heterocyclic carbene complex. Angew. Chem. Int. Ed., 2008, 47(17), 3223-3226.
[http://dx.doi.org/10.1002/anie.200705638] [PMID: 18338417]
[53]
Donkervoort, H. The first lead-free replacement for Lindlar catalysts. Special. Chem. Mag., 2009, 29(2), 16-17.
[54]
Witte, P.T. Process for the preparation of an aqueous colloidal precious metal suspension. W.O. Patent 2009/096,783, 2009.
[55]
Hori, J.; Murata, K.; Sugai, T.; Shinohara, H.; Noyori, R.; Arai, N.; Kurono, N.; Ohkuma, T. Highly active and selective semi-hydrogenation of alkynes with the palladium nanoparticles-tetrabutylammonium borohydride catalyst system. Adv. Synth. Catal., 2009, 351(18), 3143-3149.
[http://dx.doi.org/10.1002/adsc.200900721]
[56]
Evangelisti, C.; Panziera, N.; D’Alessio, A.; Bertinetti, L.; Botavina, M.; Vitulli, G. New monodispersed palladium nanoparticles stabilized by poly-(N-vinyl-2-pyrrolidone): Preparation, structural study and catalytic properties. J. Catal., 2010, 272(2), 246-252.
[http://dx.doi.org/10.1016/j.jcat.2010.04.006]
[57]
Witte, P.T.; de Groen, M.; de Rooij, R.M.; Bakermans, P.; Donkervoort, H.G.; Berben, P.H.; Geus, J.W. Highly active and selective precious metal catalysts by use of the reduction-deposition method. Stud. Surf. Sci. Catal., 2010, 175, 135-143.
[http://dx.doi.org/10.1016/S0167-2991(10)75017-5]
[58]
Takahashi, Y.; Hashimoto, N.; Hara, T.; Shimazu, S.; Mitsudome, T.; Mizugaki, T.; Jitsukawa, K.; Kaneda, K. Highly efficient Pd/SiO2-dimethyl sulfoxide catalyst system for selective semi-hydrogenation of alkynes. Chem. Lett., 2011, 40(4), 405-407.
[http://dx.doi.org/10.1246/cl.2011.405]
[59]
Cilek, J.E.; Ikediobi, C.O.; Hallmon, C.F.; Johnson, R.; Onyeozili, E.N.; Farah, S.M.; Mazu, T.; Latinwo, L.M.; Ayuk-Takem, L.; Bernier, U.R. Semi-field evaluation of several novel alkenol analogs of 1-octen-3-ol as attractants to adult Aedes albopictus and Culex quinquefasciatus. J. Am. Mosq. Control Assoc., 2011, 27(3), 256-262.
[http://dx.doi.org/10.2987/10-6097.1] [PMID: 22017090]
[60]
Calver, C.F.; Dash, P.; Scott, R.W.J. Selective hydrogenation with Ag-Pd catalysts prepared by galvanic exchange reactions. ChemCatChem, 2011, 3(4), 695-697.
[http://dx.doi.org/10.1002/cctc.201000346]
[61]
Chan, C.W.A.; Xie, Y.; Cailuo, N.; Yu, K.M.K.; Cookson, J.; Bishop, P.; Tsang, S.C. New environmentally friendly catalysts containing Pd–interstitial carbon made from Pd–glucose precursors for ultraselective hydrogenations in the liquid phase. Chem. Commun. (Camb.), 2011, 47(28), 7971-7973.
[http://dx.doi.org/10.1039/c1cc12681d] [PMID: 21677987]
[62]
Sawa, H.; Barbaro, P.; Bianchini, C.; Liguori, F. Inorganic/polymeric hybrid catalytic materials containing metal nanoparticles therein. W.O. Patent 2012/176,341, 2012.
[63]
Marrodan, C.M.; Berti, D.; Liguori, F.; Barbaro, P. In situ generation of resin-supported Pd nanoparticles under mild catalytic conditions: A green route to highly efficient, reusable hydrogenation catalysts. Catal. Sci. Technol., 2012, 2(11), 2279-2290.
[http://dx.doi.org/10.1039/c2cy20205k]
[64]
Linares, N.; Hartmann, S.; Galarneau, A.; Barbaro, P. Continuous partial hydrogenation reactions by Pd/unconventional bimodal porous titania monolith catalysts. ACS Catal., 2012, 2(10), 2194-2198.
[http://dx.doi.org/10.1021/cs3005902]
[65]
Wang, J.; Chen, J.; Kee, C.W.; Tan, C.H. Enantiodivergent and γ-selective asymmetric allylic amination. Angew. Chem. Int. Ed., 2012, 51(10), 2382-2386.
[http://dx.doi.org/10.1002/anie.201107317] [PMID: 22287529]
[66]
Moreno-Marrodan, C.; Barbaro, P.; Catalano, M.; Taurino, A. Green production of polymer-supported PdNPs: Application to the environmentally benign catalyzed synthesis of cis-3-hexen-1-ol under flow conditions. Dalton Trans., 2012, 41(41), 12666-12669.
[http://dx.doi.org/10.1039/c2dt31626a] [PMID: 23001219]
[67]
Witte, P.T.; Berben, P.H.; Boland, S.; Boymans, E.H.; Vogt, D.; Geus, J.W.; Donkervoort, J.G. BASF nanoselectTM technology: Innovative supported Pd and Pt-based catalysts for selective hydrogenation reactions. Top. Catal., 2012, 55(7-10), 505-511.
[http://dx.doi.org/10.1007/s11244-012-9818-y]
[68]
Kiyotomi, K.; Keiji, O. Preparation of alkene derivatives by partial hydrogenation of alkyene derivatives using supported palladium catalysts. W.O. Patent 2012/121,156, 2012.
[69]
Sawa, H.; Barbaro, P.; Bianchini, C.; Liguori, F.; Sashika, M. Inorganic/polymeric hybrid catalytic materials with high activity in various solvents. W.O. Patent 2013/121,593, 2013.
[70]
Witte, P.T.; Boland, S.; Kirby, F.; van Maanen, R.; Bleeker, B.F.; de Winter, D.A.M.; Post, J.A.; Geus, J.W.; Berben, P.H. Nanoselect Pd catalysts: What causes the high selectivity of these supported colloidal catalysts in alkyne semi-hydrogenation? ChemCatChem, 2013, 5(2), 582-587.
[http://dx.doi.org/10.1002/cctc.201200460]
[71]
Conley, M.P.; Drost, R.M.; Baffert, M.; Gajan, D.; Elsevier, C.; Franks, W.T.; Oschkinat, H.; Veyre, L.; Zagdoun, A.; Rossini, A.; Lelli, M.; Lesage, A.; Casano, G.; Ouari, O.; Tordo, P.; Emsley, L.; Copéret, C.; Thieuleux, C. A well-defined Pd hybrid material for the Z-selective semihydrogenation of alkynes characterized at the molecular level by DNP SENS. Chemistry, 2013, 19(37), 12234-12238.
[http://dx.doi.org/10.1002/chem.201302484] [PMID: 23959767]
[72]
Liguori, F.; Barbaro, P.; Giordano, C.; Sawa, H. Partial hydrogenation reactions over Pd-containing hybrid inorganic/polymeric catalytic membranes. Appl. Catal. A Gen., 2013, 459, 81-88.
[http://dx.doi.org/10.1016/j.apcata.2013.03.040]
[73]
Mitsudome, T.; Takahashi, Y.; Ichikawa, S.; Mizugaki, T.; Jitsukawa, K.; Kaneda, K. Metal-ligand core-shell nanocomposite catalysts for the selective semihydrogenation of alkynes. Angew. Chem. Int. Ed., 2013, 52(5), 1481-1485.
[http://dx.doi.org/10.1002/anie.201207845] [PMID: 23239218]
[74]
Sachse, A.; Linares, N.; Barbaro, P.; Fajula, F.; Galarneau, A. Selective hydrogenation over Pd nanoparticles supported on a pore-flow-through silica monolith microreactor with hierarchical porosity. Dalton Trans., 2013, 42(5), 1378-1384.
[http://dx.doi.org/10.1039/C2DT31690K] [PMID: 23051700]
[75]
Endou, M. Production method for cis-3-hexen-1-ol via palladium-catalyzed hydrogenation of 3-hexyn-1-ol. W.O. Patent 2014/156,781, 2014.
[76]
Liguori, F.; Barbaro, P. Green semi-hydrogenation of alkynes by Pd@borate monolith catalysts under continuous flow. J. Catal., 2014, 311, 212-220.
[http://dx.doi.org/10.1016/j.jcat.2013.11.027]
[77]
Kaneda, K.; Matsuzawa, H. Method for preparation of sulfoxide group containing palladium support silica as a catalyst for semi-hydrogenation of alkynes to alkenes. J.P. Patent 2014/051,447, 2014.
[78]
Kirby, F.; Moreno-Marrodan, C.; Baán, Z.; Bleeker, B.F.; Barbaro, P.; Berben, P.H.; Witte, P.T. Nanoselect precious metal catalysts and their use in asymmetric heterogeneous catalysis. ChemCatChem, 2014, 6(10), 2904-2909.
[http://dx.doi.org/10.1002/cctc.201402310]
[79]
Liguori, F.; Barbaro, P.; Sawa, H. Continuous flow hydrogenation reactions by Pd catalysts onto hybrid ZrO2/PVA materials. Appl. Catal. A Gen., 2014, 488, 58-65.
[http://dx.doi.org/10.1016/j.apcata.2014.09.029]
[80]
Linares, N.; Moreno-Marrodan, C.; Barbaro, P. PdNP@Titanate nanotubes as effective catalyst for continuous-flow partial hydrogenation reactions. ChemCatChem, 2016, 8(5), 1001-1011.
[http://dx.doi.org/10.1002/cctc.201501126]
[81]
Galarneau, A.; Sachse, A.; Said, B.; Pelisson, C.H.; Boscaro, P.; Brun, N.; Courtheoux, L.; Olivi-Tran, N.; Coasne, B.; Fajula, F. Hierarchical porous silica monoliths: A novel class of microreactors for process intensification in catalysis and adsorption. C. R. Chim., 2016, 19(1-2), 231-247.
[http://dx.doi.org/10.1016/j.crci.2015.05.017]
[82]
Li, S.S.; Tao, L.; Wang, F.Z.R.; Liu, Y.M.; Cao, Y. Heterogeneous gold-catalyzed selective semireduction of alkynes using formic acid as hydrogen source. Adv. Synth. Catal., 2016, 358(9), 1410-1416.
[http://dx.doi.org/10.1002/adsc.201501183]
[83]
Kominami, H.; Higa, M.; Nojima, T.; Ito, T.; Nakanishi, K.; Hashimoto, K.; Imamura, K. Copper-modified titanium dioxide: A simple photocatalyst for the chemoselective and diastereoselective hydrogenation of alkynes to alkenes under additive-free conditions. ChemCatChem, 2016, 8(12), 2019-2022.
[http://dx.doi.org/10.1002/cctc.201600290]
[84]
Mitsudome, T.; Urayama, T.; Yamazaki, K.; Maehara, Y.; Yamasaki, J.; Gohara, K.; Maeno, Z.; Mizugaki, T.; Jitsukawa, K.; Kaneda, K. Design of core-Pd/chell-Ag nanocomposite catalyst for selective semi-hydrogenation of alkynes. ACS Catal., 2016, 6(2), 666-670.
[http://dx.doi.org/10.1021/acscatal.5b02518]
[85]
Albani, D.; Vilé, G.; Mitchell, S.; Witte, P.T.; Almora-Barrios, N.; Verel, R.; López, N.; Pérez-Ramírez, J. Ligand ordering determines the catalytic response of hybrid palladium nanoparticles in hydrogenation. Catal. Sci. Technol., 2016, 6(6), 1621-1631.
[http://dx.doi.org/10.1039/C5CY01921D]
[86]
Fiorio, J.L.; López, N.; Rossi, L.M. Gold-ligand-catalyzed selective hydrogenation of alkynes into cis-alkenes via H2 heterolytic activation by frustrated lewis pairs. ACS Catal., 2017, 7(4), 2973-2980.
[http://dx.doi.org/10.1021/acscatal.6b03441]
[87]
Montsch, T.; Heuchel, M.; Traa, Y.; Klemm, E.; Stubenrauch, C. Selective hydrogenation of 3-Hexyn-1-ol with Pd nanoparticles synthesized via microemulsions. Appl. Catal. A Gen., 2017, 539, 19-28.
[http://dx.doi.org/10.1016/j.apcata.2017.03.038]
[88]
Pélisson, C.H.; Nakanishi, T.; Zhu, Y.; Morisato, K.; Kamei, T.; Maeno, A.; Kaji, H.; Muroyama, S.; Tafu, M.; Kanamori, K.; Shimada, T.; Nakanishi, K. Grafted polymethylhydrosiloxane on hierarchically porous silica monoliths: A new path to monolith-supported Palladium nanoparticles for continuous flow catalysis applications. ACS Appl. Mater. Interfaces, 2017, 9(1), 406-412.
[http://dx.doi.org/10.1021/acsami.6b12653] [PMID: 27966866]
[89]
Liguori, F.; Barbaro, P.; Said, B.; Galarneau, A.; Santo, V.D.; Passaglia, E.; Feis, A. Unconventional Pd@sulfonated silica monoliths catalysts for selective partial hydrogenation reactions under continuous flow. ChemCatChem, 2017, 9(16), 3245-3258.
[http://dx.doi.org/10.1002/cctc.201700381]
[90]
Johnson, C.; Albrecht, M. Z -Selective alkyne semi-hydrogenation catalysed by piano-stool N -heterocyclic carbene iron complexes. Catal. Sci. Technol., 2018, 8(11), 2779-2783.
[http://dx.doi.org/10.1039/C8CY00681D]
[91]
Moreno-Marrodan, C.; Liguori, F.; Barbaro, P.; Sawa, H. Continuous flow catalytic partial hydrogenation of hydrocarbons and alcohols over hybrid Pd/ZrO2/PVA wall reactors. Appl. Catal. A Gen., 2018, 558, 34-43.
[http://dx.doi.org/10.1016/j.apcata.2018.03.025]
[92]
Jagtap, S.A.; Bhanage, B.M. Ligand assisted Rhodium catalyzed selective semi-hydrogenation of alkynes using syngas and molecular hydrogen. ChemistrySelect, 2018, 3(2), 713-718.
[http://dx.doi.org/10.1002/slct.201702976]
[93]
Jagtap, S.A.; Bhanage, B.M. Semi-hydrogenation of alkynes using Ru/TPPTS as a biphasic recyclable catalyst in ethylene glycol-toluene solvent system. Mol. Catal., 2018, 460, 1-6.
[http://dx.doi.org/10.1016/j.mcat.2018.09.008]
[94]
Reina, A.; Favier, I.; Pradel, C.; Gómez, M. Stable zero-valent nickel nanoparticles in glycerol: Synthesis and applications in selective hydrogenations. Adv. Synth. Catal., 2018, 360(18), 3544-3552.
[http://dx.doi.org/10.1002/adsc.201800786]
[95]
Zhao, C.Q.; Chen, Y.G.; Qiu, H.; Wei, L.; Fang, P.; Mei, T.S. Water as a hydrogenating agent: Stereodivergent Pd-catalyzed semi-hydrogenation of slkynes. Org. Lett., 2019, 21(5), 1412-1416.
[http://dx.doi.org/10.1021/acs.orglett.9b00148] [PMID: 30789277]
[96]
Fukui, M.; Omori, Y.; Kitagawa, S.; Tanaka, A.; Hashimoto, K.; Kominami, H. Visible light-induced diastereoselective semihydrogenation of alkynes to cis-alkenes over an organically modified titanium(IV) oxide photocatalyst having a metal co-catalyst. J. Catal., 2019, 374, 36-42.
[http://dx.doi.org/10.1016/j.jcat.2019.04.022]
[97]
Fukazawa, A.; Minoshima, J.; Tanaka, K.; Hashimoto, Y.; Kobori, Y.; Sato, Y.; Atobe, M. A new approach to stereoselective electrocatalytic semi-hydrogenation of alkynes to Z-alkenes using a proton-exchange membrane reactor. ACS Sustain. Chem.& Eng., 2019, 7(13), 11050-11055.
[http://dx.doi.org/10.1021/acssuschemeng.9b01882]
[98]
Lomelí-Rosales, D.A.; Delgado, J.A.; Díaz de los Bernardos, M.; Pérez-Rodríguez, S.; Gual, A.; Claver, C.; Godard, C. A general one-pot methodology for the preparation of mono- and bi-metallic nanoparticles supported on carbon nanotubes: Application in the semi-hydrogenation of alkynes and acetylene. Chemistry, 2019, 25(35), 8321-8331.
[http://dx.doi.org/10.1002/chem.201901041] [PMID: 31013371]
[99]
Paganelli, S.; Angi, A.; Pajer, N.; Piccolo, O. A smart heterogeneous catalyst for efficient, chemo- and stereoselective hydrogenation of 3-hexyn-1-ol. Catalysts, 2020, 11(1), 14.
[http://dx.doi.org/10.3390/catal11010014]
[100]
Kobayashi, T.; Tsuruta, H. Reductive cleavage of 5,6-dihydro-2H-pyran derivatives; Facile synthesis of cis-3-hexenol. Synthesis, 1980, 1980(6), 492-493.
[http://dx.doi.org/10.1055/s-1980-29070]
[101]
Zhou, J.; Lu, G.; Huang, X.; Wu, S. Stereoselective synthesis of alkenyl alcohols using dissolving metal (Ca, Na) reduction. Synth. Commun., 1991, 21(3), 435-441.
[http://dx.doi.org/10.1080/00397919108016767]
[102]
Shi, L.X. Synthesis of leaf alcohol. C.N. Patent 1,244,518, 2000.
[103]
Li, Y.L.; Ma, X.; Zhu, Q.D.; Li, J.S.; Yu, A.D.; Li, M.G.; Jiang, X.Y.; Wu, Y.Y. Method for synthesizing leaf alcohol in the presence of silane-Lewis acid catalyst system. C.N. Patent 106,631,687, 2017.
[104]
Wang, Y.; Wang, Z.; Mao, S.J.; Gong, Y.T.; Ning, H.H.; Chen, J.D. Application of single atom metal loaded catalyst in selective hydrogenation reaction. C.N. Patent 110,201,663, 2019.
[105]
Dahill, R.T., Jr Convenient synthesis of cis-3-hexen-1-ol. J. Chem. Eng. Data, 1972, 17(3), 399-399.
[http://dx.doi.org/10.1021/je60054a006]
[106]
Dahill, J. cis-3-Hydroxy-hexenoate. U.S. Patent 3,872,160, 1975.
[107]
Dahill, J. Synthesis of cis-3-hexen-1-ol. U.S. Patent 3,962,354, 1976.
[108]
Watson, S.C.; Malpaa, D.B.; Yeargin, G.S. Process for the production of unsaturated alcohols. DE Patent 2,430,287, 1975.
[109]
Snider, B.B.; Rodini, D.J. Diaklylaluminum chloride catalyzed ene reactions of aldehydes. Synthesis of ipsenol. Tetrahedron Lett., 1980, 21(19), 1815-1818.
[http://dx.doi.org/10.1016/S0040-4039(00)92787-4]
[110]
Lozanova, A.V.; Moiseenkov, A.M.; Semenovskii, A.V. Stereoselective synthesis of E-homoallylic alcohols from? -(dihydro)thienylmethanols. Bull. Acad. Sci. USSR, Div. Chem. Sci., 1981, 30(4), 619-623.
[http://dx.doi.org/10.1007/BF00949727]
[111]
Furuhata, A.; Onishi, K.; Fujita, A.; Kogami, K. Novel synthesis of (Z)-3-hexen-1-ol and cis-jasmone. Agric. Biol. Chem., 1982, 46(7), 1757-1761.
[http://dx.doi.org/10.1271/bbb1961.46.1757]
[112]
Schultz, F.W.; Ferguson, G.S.; Thompson, D.W. Transition metal-promoted alkylations of unsaturated alcohols: The ethylation of 3-butyn-1-ol and 3-buten-1-ol via titanium tetrachloride-organoaluminum Ziegler-Natta catalyst systems. J. Org. Chem., 1984, 49(10), 1736-1739.
[http://dx.doi.org/10.1021/jo00184a014]
[113]
Crombie, L. Wyvill, R.D. β-Halogeno-ether synthesis of olefinic alcohols: Stereochemistry of the ring-scission of 2-substituted 3-halogenotetrahydro-pyrans and -furans. J. Chem. Soc., Perkin Trans. 1, 1985, 14(0), 1983-1995.
[http://dx.doi.org/10.1039/P19850001983]
[114]
Kerr, J.M.; Suckling, C.J. Ring scission of cyclic β-halogeno-ethers with samarium di-iodide: A synthesis of (E)- and (Z)-enynols. Tetrahedron Lett., 1985, 29(49), 6517-6520.
[115]
Barluenga, J.; Alvarez, F.; Concellon, J.M.; Yus, M. One-pot synthesis of substituted homoallylic alcohols (3-Alkenols) and 1,1-dideuterio-3-alkenols. Synthesis, 1986, 1986(8), 654-655.
[http://dx.doi.org/10.1055/s-1986-31735]
[116]
Zhou, J. A new path for the preparation of leaf alcohol. Flavour Fragrance Cosmetics, 1997, 13(1), 11-22.
[117]
Mimoun, H. Selective reduction of carbonyl compounds by polymethylhydrosiloxane in the presence of metal hydride catalysts. J. Org. Chem., 1999, 64(22), 8432.
[http://dx.doi.org/10.1021/jo994010y] [PMID: 11674776]
[118]
Dupau, P.; Bonomo, L. 1,4-Hydrogenation of sorbol with Ru-complexes. W.O. Patent 2008/120,174, 2008.
[119]
Dupau, P.; Bonomo, L. 1,4-Hydrogenation of sorbol with Ru-complexes. C.N. Patent 101,675,018, 2008.
[120]
Jing, Q.; Okrasa, K.; Kazlauskas, R.J. Stereoselective hydrogenation of olefins using rhodium-substituted carbonic anhydrase - a new reductase. Chemistry, 2009, 15(6), 1370-1376.
[http://dx.doi.org/10.1002/chem.200801673] [PMID: 19115310]