How to Choose Suitable Reference Electrode and Aqueous Electrolyte to Avoid Error in Electrochemical Measurements?

Page: [204 - 212] Pages: 9

  • * (Excluding Mailing and Handling)

Abstract

Objective: To reduce the experimental error, three commonly used reference electrodes (Hg/HgO, Hg/Hg2Cl2 (SCE), and Ag/AgCl) are investigated to select the appropriate electrode in different aqueous electrolytes.

Methods: Besides, the correct electrochemical test method is proposed according to the stability of the reference electrode. After measuring the potential difference of reference electrode in various aqueous electrolytes, it is found that Hg/HgO electrode is suitable for alkaline electrolytes, with minimum deviation in 6 M KOH solution, SCE should be used in acidic electrolytes, with minimum deviation in H2SO4 solution less than 1 M, and both SCE and Ag/AgCl electrode can be used in neutral electrolytes.

Results: Due to the liquid junction potential, the result of using the double salt bridge is more accurate than that of using the single salt bridge.

Conclusion: The stability of various reference electrodes in electrolytes is discrepant. Therefore, calibration is emphasized since the potential of the reference electrode drifts and even becomes invalid after prolonged use.

Graphical Abstract

[1]
Lee, W.H.; Nong, H.N.; Choi, C.H.; Chae, K.H.; Hwang, Y.J.; Min, B.K.; Strasser, P.; Oh, H.S. Carbon-Supported IrCoO nanoparticles as an efficient and stable OER electrocatalyst for practicable CO2 electrolysis. Appl. Catal. B, 2020, 269, 118820.
[http://dx.doi.org/10.1016/j.apcatb.2020.118820]
[2]
Tu, Z.; Wang, C. Boosting the oxygen reduction reaction of a nonprecious metal Fe–Nx/C electrocatalyst by integrating tube-terminated edges into the basal plane of Fe- and N-codoped carbon bubbles. J. Alloys Compd., 2020, 843, 155809.
[http://dx.doi.org/10.1016/j.jallcom.2020.155809]
[3]
An, J.; Zhang, H.; Qi, L.; Li, G.; Li, Y. Self-expanding ion-transport channels on anodes for fast-charging lithium-ion batteries. Angew. Chem. Int. Ed., 2021, 61.
[http://dx.doi.org/10.1002/anie.202113313]
[4]
Qin, Y.; Zuo, P.; Chen, X.; Yuan, W.; Huang, R.; Yang, X.; Du, J.; Lu, L.; Han, X.; Ouyang, M. An ultra-fast charging strategy for lithium-ion battery at low temperature without lithium plating. J. Energy Chem., 2022, 72, 442-452.
[http://dx.doi.org/10.1016/j.jechem.2022.05.010]
[5]
Ali, M.A.; Wang, X.; Chen, Y.; Jiao, Y.; Mahal, N.K.; Moru, S.; Castellano, M.J.; Schnable, J.C.; Schnable, P.S.; Dong, L. Continuous monitoring of soil nitrate using a miniature sensor with Poly(3-octyl-thiophene) and molybdenum disulfide nanocomposite. ACS Appl. Mater. Interfaces, 2019, 11(32), 29195-29206.
[http://dx.doi.org/10.1021/acsami.9b07120] [PMID: 31318522]
[6]
Lee, I.; Kim, S.E.; Lee, J.; Woo, D.H.; Lee, S.; Pyo, H.; Song, C.S.; Lee, J. A self-calibrating electrochemical aptasensing platform: Correcting external interference errors for the reliable and stable detection of avian influenza viruses. Biosens. Bioelectron., 2020, 152, 112010.
[http://dx.doi.org/10.1016/j.bios.2020.112010]
[7]
Galhardo, K.S.; Dadamos, T.R.L.; Bettencourt da Silva, R.J.N.; Machado, S.A.S. Development and validation of an advanced electrochemical sensor for the fast and cheap determination of hydrochlorothiazide in urine samples using the Monte-Carlo method for uncertainty evaluation. Talanta, 2020, 215, 120883.
[http://dx.doi.org/10.1016/j.talanta.2020.120883]
[8]
Cheng, Z.; Carobbio, A.L.C.; Soggiu, L.; Migliorini, M.; Guastini, L.; Mora, F.; Fragale, M.; Ascoli, A.; Africano, S.; Caldwell, D.G.; Canevari, F.R.M.; Parrinello, G.; Peretti, G.; Mattos, L.S. SmartProbe: A bioimpedance sensing system for head and neck cancer tissue detection. Physiol. Meas., 2020, 41(5), 054003.
[http://dx.doi.org/10.1088/1361-6579/ab8cb4]
[9]
Pontius, K.; Semenova, D.; Silina, Y.E.; Gernaey, K.V.; Junicke, H. Automated electrochemical glucose biosensor platform as an efficient tool toward on-line fermentation monitoring: Novel application approaches and insights. Front. Bioeng. Biotechnol., 2020, 8, 436.
[http://dx.doi.org/10.3389/fbioe.2020.00436]
[10]
Wang, C.; Li, Z.; Pan, Z.; Li, D. Development and characterization of a highly sensitive fluorometric transducer for ultra low aqueous ammonia nitrogen measurements in aquaculture. Comput. Electron. Agric., 2018, 150, 364-373.
[http://dx.doi.org/10.1016/j.compag.2018.05.011]
[11]
Gao, W.; Zdrachek, E.; Xie, X.; Bakker, E. A solid-state reference electrode based on a self-referencing pulstrode. Angew. Chem. Int. Ed., 2020, 59(6), 2294-2298.
[http://dx.doi.org/10.1002/anie.201912651]
[12]
Yin, J.; Zhang, W.; Zhang, Z.; Jin, H.; Gao, W.; Jian, J.; Jin, Q. Batch microfabrication and testing of a novel silicon-base miniaturized reference electrode with an ion-exchanging nanochannel array for nitrite determination. RSC Advances, 2019, 9(34), 19699-19706.
[http://dx.doi.org/10.1039/C9RA01987A]
[13]
Raccichini, R.; Amores, M.; Hinds, G. Critical review of the use of reference electrodes in Li-ion batteries: A diagnostic perspective. Batteries, 2019, 5(1), 12.
[http://dx.doi.org/10.3390/batteries5010012]
[14]
Tian, Y.; Zhang, P.; Zhao, K.; Du, Z.; Zhao, T. Application of Ag/AgCl sensor for chloride monitoring of mortar under dry-wet cycles. Sensors, 2020, 20(5), 1394.
[http://dx.doi.org/10.3390/s20051394]
[15]
Dawkins, R.C.; Wen, D.; Hart, J.N.; Vepsäläinen, M. A screen-printed Ag/AgCl reference electrode with long-term stability for electroanalytical applications. Electrochim. Acta, 2021, 393, 139043.
[http://dx.doi.org/10.1016/j.electacta.2021.139043]
[16]
Auer, A.; Kunze-Liebhäuser, J. A universal quasi-reference electrode for in situ EC-STM. Electrochem. Commun., 2019, 98, 15-18.
[http://dx.doi.org/10.1016/j.elecom.2018.11.015]
[17]
Duran-Chaves, M.; Sanabria-Chinchilla, J. From Ideality to Simplicity: A robust and affordable hydrogen reference electrode. J. Chem. Educ., 2020, 97(4), 1208-1212.
[http://dx.doi.org/10.1021/acs.jchemed.9b00664]
[18]
Jerkiewicz, G. Standard and reversible hydrogen electrodes: Theory, design, operation, and applications. ACS Catal., 2020, 10(15), 8409-8417.
[http://dx.doi.org/10.1021/acscatal.0c02046]
[19]
Duan, Z.; Henkelman, G. Theoretical resolution of the exceptional oxygen reduction activity of Au(100) in alkaline media. ACS Catal., 2019, 9(6), 5567-5573.
[http://dx.doi.org/10.1021/acscatal.9b00955]
[20]
Chaddha, A.S.; Singh, N.K.; Malviya, M.; Sharma, A. Birnessiteclay mineral couple in the rock varnish: A nature’s electrocatalyst. Sustain. Energy Fuels, 2022, 6(10), 2553-2569.
[http://dx.doi.org/10.1039/D2SE00185C]
[21]
Ji, J.; Zhang, L.L.; Ji, H.; Li, Y.; Zhao, X.; Bai, X.; Fan, X.; Zhang, F.; Ruoff, R.S. Nanoporous Ni(OH)2 thin film on 3D Ultrathin-graphite foam for asymmetric supercapacitor. ACS Nano, 2013, 7(7), 6237-6243.
[http://dx.doi.org/10.1021/nn4021955]
[22]
Jiang, C.; Zhao, B.; Cheng, J.; Li, J.; Zhang, H.; Tang, Z.; Yang, J. Hydrothermal synthesis of Ni(OH)2 nanoflakes on 3D graphene foam for high-performance supercapacitors. Electrochim. Acta, 2015, 173, 399-407.
[http://dx.doi.org/10.1016/j.electacta.2015.05.081]
[23]
Niu, S.; Li, S.; Du, Y.; Han, X.; Xu, P. How to reliably report the overpotential of an electrocatalyst. ACS Energy Lett., 2020, 5(4), 1083-1087.
[http://dx.doi.org/10.1021/acsenergylett.0c00321]
[24]
Xia, D.H.; Deng, C.M.; Macdonald, D.; Jamali, S.; Mills, D.; Luo, J.L.; Strebl, M.G.; Amiri, M.; Jin, W.; Song, S.; Hu, W. Electrochemical measurements used for assessment of corrosion and protection of metallic materials in the field: A critical review. J. Mater. Sci. Technol., 2022, 112, 151-183.
[http://dx.doi.org/10.1016/j.jmst.2021.11.004]
[25]
Gaberšček, M. Understanding Li-based battery materials via electrochemical impedance spectroscopy. Nat. Commun., 2021, 12(1), 6513.
[http://dx.doi.org/10.1038/s41467-021-26894-5]
[26]
He, Z.; Asare-Yeboah, K.; Zhang, Z.; Bi, S. Manipulate organic crystal morphology and charge transport. Org. Electron., 2022, 103, 106448.
[http://dx.doi.org/10.1016/j.orgel.2022.106448]
[27]
Bi, S.; Jin, W.; Han, X.; Cao, X.; He, Z.; Asare-Yeboah, K.; Jiang, C. Ultra-fast-responsivity with sharp contrast integrated flexible piezo electrochromic based tactile sensing display. Nano Energy, 2022, 102, 107629.
[http://dx.doi.org/10.1016/j.nanoen.2022.107629]
[28]
Bulbul, G.; Chaves, G.; Olivier, J.; Ozel, R.; Pourmand, N. Nanopipettes as monitoring probes for the single living cell: State of the art and future directions in molecular biology. Cells, 2018, 7(6), 55.
[http://dx.doi.org/10.3390/cells7060055]
[29]
Bird, L.J.; Kundu, B.B.; Tschirhart, T.; Corts, A.D.; Su, L.; Gralnick, J.A.; Ajo-Franklin, C.M.; Glaven, S.M. Engineering wired life: Synthetic biology for electroactive bacteria. ACS Synth. Biol., 2021, 10(11), 2808-2823.
[http://dx.doi.org/10.1021/acssynbio.1c00335]
[30]
Zhao, X.; Shen, W.; Dang, Q.; Liao, F.; Zhu, W.; Shi, H.; Shao, M. Sulfhydryl-functionalized carbon dots modified ball cactus-like Au composites facilitating the electrocatalytic ethanol oxidation through adsorption effect. J. Appl. Electrochem., 2020, 50(9), 925-933.
[http://dx.doi.org/10.1007/s10800-020-01445-w]
[31]
Zhu, J.; Liu, Z.; Zhai, M.; Ni, Y. Ni1-xCoxSe nanostructures deposited on nickel foam by a facile potentiostatic route for enhanced OER performance. J. Phys. Chem. Solids, 2021, 148, 109658.
[http://dx.doi.org/10.1016/j.jpcs.2020.109658]
[32]
Kutyła, D.; Salcı, A.; Kwiecińska, A.; Kołczyk-Siedlecka, K.; Kowalik, R.; Żabiński, P.; Solmaz, R. Catalytic activity of electrodeposited ternary Co–Ni–Rh thin films for water splitting process. Int. J. Hydrogen Energy, 2020, 45(60), 34805-34817.
[http://dx.doi.org/10.1016/j.ijhydene.2020.05.196]
[33]
Mousavi, M.P.S.; Bühlmann, P. Reference electrodes with salt bridges contained in nanoporous glass: An underappreciated source of error. Anal. Chem., 2013, 85(19), 8895-8901.
[http://dx.doi.org/10.1021/ac402170u]
[34]
Zhang, Y.; Wang, C.; Dong, X.; Jiang, H.; Hu, T.; Meng, C.; Huang, C. Alkali etching metal silicates derived from bamboo leaves with enhanced electrochemical properties for solid-state hybrid supercapacitors. Chem. Eng. J., 2021, 417, 127964.
[http://dx.doi.org/10.1016/j.cej.2020.127964]
[35]
Feng, K.; Ye, Z.; Guo, J.; Lin, Y.; Zhang, Y.; Ma, Q.; Shao, Y.; Chen, K. Study on the binder-free asymmetric supercapacitors with nano-IrO2-ZnO/Ti as anode and RuO2–MoO3/Ti as cathode in H2SO4 electrolyte. J. Alloys Compd., 2020, 819, 153385.
[http://dx.doi.org/10.1016/j.jallcom.2019.153385]
[36]
Zhao, J.; Qu, J.; Qu, X.; Gao, S.; Wang, D.; Yin, H. Cathode electrolysis for the comprehensive recycling of spent lithium-ion batteries. Green Chem., 2022, 24(16), 6179-6188.
[http://dx.doi.org/10.1039/D2GC02118H]
[37]
Gürsu, H.; Gençten, M.; Şahin, Y. Cyclic voltammetric preparation of graphene-coated electrodes for positive electrode materials of vanadium redox flow battery. Ionics, 2018, 24(11), 3641-3654.
[http://dx.doi.org/10.1007/s11581-018-2547-x]
[38]
Sharma, K.; Pareek, K.; Rohan, R.; Kumar, P. Flexible supercapacitor based on three‐dimensional cellulose/graphite/polyaniline composite. Int. J. Energy Res., 2019, 43(1), 604-611.
[http://dx.doi.org/10.1002/er.4277]
[39]
Kocyigit, N.; Gencten, M.; Sahin, M.; Sahin, Y. Chrome and cobalt‐based novel electrolyte systems for redox flow batteries. Int. J. Energy Res., 2020, 44(10), 8014-8023.
[http://dx.doi.org/10.1002/er.5546]
[40]
Lu, W.; Yang, Y.; Zhang, T.; Ma, L.; Luo, X.; Huang, C.; Ning, J.; Zhong, Y.; Hu, Y. Synergistic effects of Fe and Mn dual-doping in Co3S4 ultrathin nanosheets for high-performance hybrid supercapacitors. J. Colloid Interface Sci., 2021, 590, 226-237.
[http://dx.doi.org/10.1016/j.jcis.2021.01.050]
[41]
Kadhim, M.J. Estimation of the diffusion coefficient and hydrodynamic radius (stokes radius) for inorganic ions in solution depending on molar conductivity as electro-analytical technique-a review. Chem. Rev., 2020, 2, 182-188.
[http://dx.doi.org/10.33945/SAMI/JCR.2020.3.5]
[42]
Van Vy, U.; Que, L.X. Study on fabrication of MnO2/CNTs composite by electrolysis in neutral solution and its applicability as cathode materials in Mg-ion batteries. Vietnam J. Chem., 2021, 59, 494-499.
[http://dx.doi.org/10.1002/vjch.202000212]
[43]
Liu, Z.; Pang, G.; Dong, S.; Zhang, Y.; Mi, C.; Zhang, X. An aqueous rechargeable sodium−magnesium mixed ion battery based on NaTi2(PO4)3–MnO2 system. Electrochim. Acta, 2019, 311, 1-7.
[http://dx.doi.org/10.1016/j.electacta.2019.04.130]
[44]
Ma, Y.; Wu, M.; Jin, X.; Shu, R.; Hu, C.; Xu, T.; Li, J.; Meng, X.; Cao, X. (NH4)2V7O16 microbricks as a novel anode for aqueous lithium-ion battery with good cyclability. Chemistry, 2021, 27(48), 12341-12351.
[http://dx.doi.org/10.1002/chem.202101431]
[45]
Zhou, W.; Zheng, Y.; Zartashia, M.; Shan, Y.; Noor, H.; Lou, H.; Hou, X. Aqueous dual-electrolyte full-cell system for improving energy density of sodium-ion batteries. ACS Appl. Mater. Interfaces, 2022, 14(30), 34835-34843.
[http://dx.doi.org/10.1021/acsami.2c06304]
[46]
Troudt, B.K.; Rousseau, C.R.; Dong, X.I.N.; Anderson, E.L.; Bühlmann, P. Recent progress in the development of improved reference electrodes for electrochemistry. Anal. Sci., 2021, 38(1), 71-83.
[http://dx.doi.org/10.2116/analsci.21SAR11]
[47]
Schüler, D.; Sermet-Gaudelus, I.; Wilschanski, M.; Ballmann, M.; Dechaux, M.; Edelman, A.; Hug, M.; Leal, T.; Lebacq, J.; Lebecque, P.; Lenoir, G.; Stanke, F.; Wallemacq, P.; Tümmler, B.; Knowles, M.R. Basic protocol for transepithelial nasal potential difference measurements. J. Cyst. Fibros., 2004, 3(Suppl. 2), 151-155.
[http://dx.doi.org/10.1016/j.jcf.2004.05.032]