Cabozantinib Carries the Risk of Drug-Drug Interactions via Inhibition of UDPglucuronosyltransferase (UGT) 1A9

Page: [912 - 919] Pages: 8

  • * (Excluding Mailing and Handling)

Abstract

Background: Cabozantinib is a multiple receptor tyrosine kinases inhibitor (TKI) approved to treat progressive, metastatic medullary thyroid cancer, advanced renal cell carcinoma, and hepatocellular carcinoma. Drugdrug interactions (DDIs) for cabozantinib have been identified involving the role of cytochromes P450. Although the previous study reported that cabozantinib showed a slight inhibition of UDP-glucuronosyltransferase (UGT) 1A1 at the highest concentration tested, there are no reports on the potential for UGTs-mediated-DDIs. Hence, the current study aims to address this knowledge gap.

Objective: This study aimed to investigate the inhibitory effect of cabozantinib on human UGTs and to quantitatively evaluate the DDI potential via UGT inhibition.

Methods: The inhibitory effects of cabozantinib on UGTs were determined by measuring the formation rates for 4- methylumbelliferone (4-MU) glucuronide and trifluoperazine N-glucuronide using recombinant human UGT isoforms in the absence or presence of cabozantinib. Inhibition kinetic studies were conducted to determine the type of inhibition of cabozantinib on UGTs and the corresponding inhibition constant (Ki) value. In vitro-in vivo extrapolation (IVIVE) was further employed to predict the potential risk of DDI in vivo.

Results: Cabozantinib displayed potent inhibition of UGT1A1, 1A3, 1A4, 1A6, 1A7, 1A8, 1A9, 1A10, 2B7, and 2B15. Cabozantinib exhibited noncompetitive inhibition towards UGT1A1 and 1A3 and inhibition towards UGT1A7 and 1A9. The Ki,u values (mean ± standard deviation) were calculated to be 2.15±0.11 μM, 0.83±0.05 μM, 0.75±0.04 μM and 0.18 ± 0.10 μM for UGT1A1, 1A3, 1A7 and 1A9, respectively. Co-administration of cabozantinib at the clinically approved dose of 60 mg/day or 140 mg/day may result in approximately a 26% to 60% increase in the systemic exposure of drugs predominantly cleared by UGT1A9, implying a high risk of DDIs.

Conclusion: Cabozantinib has the potential to cause DDIs via the inhibition of UGT1A9; therefore, additional attention should be paid to the safety of the combined use of cabozantinib and drugs metabolized by UGT1A9.

Graphical Abstract

[1]
[2]
Fallahi, P.; Ferrari, S.; Bari, F.; Materazzi, G.; Benvenga, S.; Miccoli, P.; Antonelli, A. Cabozantinib in thyroid cancer. Recent Patents Anticancer Drug Discov., 2015, 10(3), 259-269.
[http://dx.doi.org/10.2174/1574892810666150708110816] [PMID: 26152149]
[3]
Rathi, N.; Maughan, B.L.; Agarwal, N.; Swami, U. Mini-Review: Cabozantinib in the treatment of advanced renal cell carcinoma and hepato-cellular carcinoma. Cancer Manag. Res., 2020, 12, 3741-3749.
[http://dx.doi.org/10.2147/CMAR.S202973] [PMID: 32547210]
[4]
Goyal, L.; Zheng, H.; Yurgelun, M.B.; Abrams, T.A.; Allen, J.N.; Cleary, J.M.; Knowles, M.; Regan, E.; Reardon, A.; Khachatryan, A.; Jain, R.K.; Nardi, V.; Borger, D.R.; Duda, D.G.; Zhu, A.X. A phase 2 and biomarker study of cabozantinib in patients with advanced cholangiocar-cinoma. Cancer, 2017, 123(11), 1979-1988.
[http://dx.doi.org/10.1002/cncr.30571] [PMID: 28192597]
[5]
Kurzrock, R.; Sherman, S.I.; Ball, D.W.; Forastiere, A.A.; Cohen, R.B.; Mehra, R.; Pfister, D.G.; Cohen, E.E.W.; Janisch, L.; Nauling, F.; Hong, D.S.; Ng, C.S.; Ye, L.; Gagel, R.F.; Frye, J.; Müller, T.; Ratain, M.J.; Salgia, R. Activity of XL184 (Cabozantinib), an oral tyrosine ki-nase inhibitor, in patients with medullary thyroid cancer. J. Clin. Oncol., 2011, 29(19), 2660-2666.
[http://dx.doi.org/10.1200/JCO.2010.32.4145] [PMID: 21606412]
[6]
USFDA, Approved drugs. 2021. Available from: https://www.fda.gov/ drugs/resources-information-approved-drugs/fda-approves-nivolumabplus- cabozantinib-advanced-renal-cell-carcinoma
[7]
Ergun, Y.; Yildirim Ozdemir, N.; Toptas, S.; Kurtipek, A.; Eren, T.; Yazici, O.; Sendur, M.A.; Akinci, B.; Ucar, G.; Oksuzoglu, B.; Uncu, D. Drug-drug interactions in patients using tyrosine kinase inhibitors: A multicenter retrospective study. J. BUON, 2019, 24(4), 1719-1726.
[PMID: 31646831]
[8]
Foxx-Lupo, W.T.; Sing, S.; Alwan, L.; Tykodi, S.S. A drug interaction between cabozantinib and warfarin in a patient with renal cell carcino-ma. Clin. Genitourin. Cancer, 2016, 14(1), e119-e121.
[http://dx.doi.org/10.1016/j.clgc.2015.09.015] [PMID: 26549824]
[9]
Santini, D.; Citarella, F.; Vincenzi, B.; Russano, M.; Tonini, G.; Stellato, M. Cabozantinib and apixaban: An hitherto unreported interaction. Exp. Hematol. Oncol., 2019, 8(1), 22.
[http://dx.doi.org/10.1186/s40164-019-0146-9] [PMID: 31528502]
[10]
Nguyen, L.; Holland, J.; Miles, D.; Engel, C.; Benrimoh, N.; O’Reilly, T.; Lacy, S. Pharmacokinetic (PK) drug interaction studies of cabozantinib: Effect of CYP3A inducer rifampin and inhibitor ketoconazole on cabozantinib plasma PK and effect of cabozantinib on CYP2C8 probe substrate rosiglitazone plasma PK. J. Clin. Pharmacol., 2015, 55(9), 1012-1023.
[http://dx.doi.org/10.1002/jcph.510] [PMID: 25854986]
[11]
Guillemette, C.; Lévesque, É.; Rouleau, M. Pharmacogenomics of human uridine diphospho-glucuronosyltransferases and clinical implica-tions. Clin. Pharmacol. Ther., 2014, 96(3), 324-339.
[http://dx.doi.org/10.1038/clpt.2014.126] [PMID: 24922307]
[12]
Bock, K.W. Roles of human UDP-glucuronosyltransferases in clearance and homeostasis of endogenous substrates, and functional implica-tions. Biochem. Pharmacol., 2015, 96(2), 77-82.
[http://dx.doi.org/10.1016/j.bcp.2015.04.020] [PMID: 25937523]
[13]
Shah, R.R.; Morganroth, J.; Shah, D.R. Hepatotoxicity of tyrosine kinase inhibitors: Clinical and regulatory perspectives. Drug Saf., 2013, 36(7), 491-503.
[http://dx.doi.org/10.1007/s40264-013-0048-4] [PMID: 23620168]
[14]
Li, W.; Xing, Y.; Liu, Y. Inhibition of SN-38 glucuronidation by gefitinib and its metabolite. Cancer Chemother. Pharmacol., 2015, 75(6), 1253-1260.
[http://dx.doi.org/10.1007/s00280-015-2753-4] [PMID: 25917289]
[15]
Ai, L.; Zhu, L.; Yang, L.; Ge, G.; Cao, Y.; Liu, Y.; Fang, Z.; Zhang, Y. Selectivity for inhibition of nilotinib on the catalytic activity of human UDP-glucuronosyltransferases. Xenobiotica, 2014, 44(4), 320-325.
[http://dx.doi.org/10.3109/00498254.2013.840750] [PMID: 24066723]
[16]
Cheng, X.; Lv, X.; Qu, H.; Li, D.; Hu, M.; Guo, W.; Ge, G.; Dong, R. Comparison of the inhibition potentials of icotinib and erlotinib against human UDP-glucuronosyltransferase 1A1. Acta Pharm. Sin. B, 2017, 7(6), 657-664.
[http://dx.doi.org/10.1016/j.apsb.2017.07.004] [PMID: 29159025]
[17]
Liu, Y.; Ramírez, J.; House, L.; Ratain, M.J. Comparison of the drug-drug interactions potential of erlotinib and gefitinib via inhibition of UDP-glucuronosyltransferases. Drug Metab. Dispos., 2010, 38(1), 32-39.
[http://dx.doi.org/10.1124/dmd.109.029660] [PMID: 19850672]
[18]
Miners, J.O.; Chau, N.; Rowland, A.; Burns, K.; McKinnon, R.A.; Mackenzie, P.I.; Tucker, G.T.; Knights, K.M.; Kichenadasse, G. Inhibition of human UDP-glucuronosyltransferase enzymes by lapatinib, pazopanib, regorafenib and sorafenib: Implications for hyperbilirubinemia. Biochem. Pharmacol., 2017, 129, 85-95.
[http://dx.doi.org/10.1016/j.bcp.2017.01.002] [PMID: 28065859]
[19]
Zhang, N.; Liu, Y.; Jeong, H. Drug-drug interaction potentials of tyrosine kinase inhibitors via inhibition of UDP-glucuronosyltransferases. Sci. Rep., 2015, 5(1), 17778.
[http://dx.doi.org/10.1038/srep17778] [PMID: 26642944]
[20]
Qosa, H.; Avaritt, B.R.; Hartman, N.R.; Volpe, D.A. In vitro UGT1A1 inhibition by tyrosine kinase inhibitors and association with drug-induced hyperbilirubinemia. Cancer Chemother. Pharmacol., 2018, 82(5), 795-802.
[http://dx.doi.org/10.1007/s00280-018-3665-x] [PMID: 30105461]
[21]
Uchaipichat, V.; Mackenzie, P.I.; Guo, X.H.; Gardner-Stephen, D.; Galetin, A.; Houston, J.B.; Miners, J.O. Human udp-glucuronosyltransferases: isoform selectivity and kinetics of 4-methylumbelliferone and 1-naphthol glucuronidation, effects of organic sol-vents, and inhibition by diclofenac and probenecid. Drug Metab. Dispos., 2004, 32(4), 413-423.
[http://dx.doi.org/10.1124/dmd.32.4.413] [PMID: 15039294]
[22]
Wang, Z.; Wang, X.; Jia, Y.; Yin, H.; Feng, Y.; Jiang, L.; Cao, J.; Liu, Y. Inhibition of human UDP‐glucuronosyltransferase enzymes by midostaurin and ruxolitinib: implications for drug–drug interactions. Biopharm. Drug Dispos., 2020, 41(6), 231-238.
[http://dx.doi.org/10.1002/bdd.2241] [PMID: 32436276]
[23]
Uchaipichat, V.; Mackenzie, P.I.; Elliot, D.J.; Miners, J.O. Selectivity of substrate (trifluoperazine) and inhibitor (amitriptyline, androsterone, canrenoic acid, hecogenin, phenylbutazone, quinidine, quinine, and sulfinpyrazone) “probes” for human udp-glucuronosyl-] transferases. Drug Metab. Dispos., 2006, 34(3), 449-456.
[http://dx.doi.org/10.1124/dmd.105.007369] [PMID: 16381668]
[24]
Austin, R.P.; Barton, P.; Cockroft, S.L.; Wenlock, M.C.; Riley, R.J. The influence of nonspecific microsomal binding on apparent intrinsic clearance, and its prediction from physicochemical properties. Drug Metab. Dispos., 2002, 30(12), 1497-1503.
[http://dx.doi.org/10.1124/dmd.30.12.1497] [PMID: 12433825]
[25]
Ito, K.; Brown, H.S.; Houston, J.B. Database analyses for the prediction of in vivo drug-drug interactions from in vitro data. Br. J. Clin. Pharmacol., 2004, 57(4), 473-486.
[http://dx.doi.org/10.1111/j.1365-2125.2003.02041.x] [PMID: 15025746]
[26]
USFDA. In vitro metabolism-and transporter-mediated drug-drug interaction studies guidance for industry. Interact. Stud., 2017, 47.
[27]
Miles, D.; Jumbe, N.L.; Lacy, S.; Nguyen, L. Population pharmacokinetic model of cabozantinib in patients with medullary thyroid carcino-ma and its application to an exposure-response analysis. Clin. Pharmacokinet., 2016, 55(1), 93-105.
[http://dx.doi.org/10.1007/s40262-015-0295-x] [PMID: 26149244]
[28]
Obach, R.S.; Walsky, R.L.; Venkatakrishnan, K. Mechanism-based inactivation of human cytochrome p450 enzymes and the prediction of drug-drug interactions. Drug Metab. Dispos., 2007, 35(2), 246-255.
[http://dx.doi.org/10.1124/dmd.106.012633] [PMID: 17093004]
[29]
Miners, J.O.; Mackenzie, P.I.; Knights, K.M. The prediction of drug-glucuronidation parameters in humans: UDP-glucuronosyltransferase enzyme-selective substrate and inhibitor probes for reaction phenotyping and in vitro–in vivo extrapolation of drug clearance and drug-drug interaction potential. Drug Metab. Rev., 2010, 42(1), 196-208.
[http://dx.doi.org/10.3109/03602530903210716] [PMID: 19795925]
[30]
Kiang, T.; Ensom, M.; Chang, T. UDP-glucuronosyltransferases and clinical drug-drug interactions. Pharmacol. Ther., 2005, 106(1), 97-132.
[http://dx.doi.org/10.1016/j.pharmthera.2004.10.013] [PMID: 15781124]
[31]
Zheng, Z.; Park, J.Y.; Guillemette, C.; Schantz, S.P.; Lazarus, P. Tobacco carcinogen-detoxifying enzyme UGT1A7 and its association with orolaryngeal cancer risk. J. Natl. Cancer Inst., 2001, 93(18), 1411-1418.
[http://dx.doi.org/10.1093/jnci/93.18.1411] [PMID: 11562393]
[32]
Huang, S.M.; Temple, R.; Throckmorton, D.C.; Lesko, L.J. Drug interaction studies: study design, data analysis, and implications for dosing and labeling. Clin. Pharmacol. Ther., 2007, 81(2), 298-304.
[33]
Tourancheau, A.; Rouleau, M.; Guauque-Olarte, S.; Villeneuve, L.; Gilbert, I.; Droit, A.; Guillemette, C. Quantitative profiling of the UGT transcriptome in human drug-metabolizing tissues. Pharmacogenomics J., 2018, 18(2), 251-261.
[http://dx.doi.org/10.1038/tpj.2017.5] [PMID: 28440341]
[34]
Ramírez, J.; Iyer, L.; Journault, K.; Bélanger, P.; Innocenti, F.; Ratain, M.J.; Guillemette, C. In vitro characterization of hepatic flavopiridol metabolism using human liver microsomes and recombinant UGT enzymes. Pharm. Res., 2002, 19(5), 588-594.
[http://dx.doi.org/10.1023/A:1015341726183] [PMID: 12069159]
[35]
Mikstacki, A.; Zakerska-Banaszak, O.; Skrzypczak-Zielinska, M.; Tamowicz, B.; Prendecki, M.; Dorszewska, J.; Molinska-Glura, M.; Waszak, M.; Slomski, R. The effect of UGT1A9, CYP2B6 and CYP2C9 genes polymorphism on individual differences in propofol pharma-cokinetics among Polish patients undergoing general anaesthesia. J. Appl. Genet., 2017, 58(2), 213-220.
[http://dx.doi.org/10.1007/s13353-016-0373-2] [PMID: 27826892]
[36]
Peer, C.J.; Sissung, T.M.; Kim, A.; Jain, L.; Woo, S.; Gardner, E.R.; Kirkland, C.T.; Troutman, S.M.; English, B.C.; Richardson, E.D.; Feder-spiel, J.; Venzon, D.; Dahut, W.; Kohn, E.; Kummar, S.; Yarchoan, R.; Giaccone, G.; Widemann, B.; Figg, W.D. Sorafenib is an inhibitor of UGT1A1 but is metabolized by UGT1A9: Implications of genetic variants on pharmacokinetics and hyperbilirubinemia. Clin. Cancer Res., 2012, 18(7), 2099-2107.
[http://dx.doi.org/10.1158/1078-0432.CCR-11-2484] [PMID: 22307138]
[37]
Court, M.H.; Duan, S.X.; von Moltke, L.L.; Greenblatt, D.J.; Patten, C.J.; Miners, J.O.; Mackenzie, P.I. Interindividual variability in aceta-minophen glucuronidation by human liver microsomes: Identification of relevant acetaminophen UDP-glucuronosyltransferase isoforms. J. Pharmacol. Exp. Ther., 2001, 299(3), 998-1006.
[PMID: 11714888]
[38]
Ridruejo, E.; Cacchione, R.; Villamil, A.G.; Marciano, S.; Gadano, A.C.; Mandó, O.G. Imatinib-induced fatal acute liver failure. World J. Gastroenterol., 2007, 13(48), 6608-111.
[http://dx.doi.org/10.3748/wjg.v13.i48.6608] [PMID: 18161937]
[39]
Weise, A.M.; Liu, C.Y.; Shields, A.F. Fatal liver failure in a patient on acetaminophen treated with sunitinib malate and levothyroxine. Ann. Pharmacother., 2009, 43(4), 761-766.
[http://dx.doi.org/10.1345/aph.1L528] [PMID: 19336648]
[40]
Liu, Y.; Ramírez, J.; Ratain, M.J. Inhibition of paracetamol glucuronidation by tyrosine kinase inhibitors. Br. J. Clin. Pharmacol., 2011, 71(6), 917-920.
[http://dx.doi.org/10.1111/j.1365-2125.2011.03911.x] [PMID: 21235620]
[41]
Stingl, J.C.; Bartels, H.; Viviani, R.; Lehmann, M.L.; Brockmöller, J. Relevance of UDP-glucuronosyltransferase polymorphisms for drug dosing: A quantitative systematic review. Pharmacol. Ther., 2014, 141(1), 92-116.
[http://dx.doi.org/10.1016/j.pharmthera.2013.09.002] [PMID: 24076267]
[42]
Erichsen, T.J.; Aehlen, A.; Ehmer, U.; Lankisch, T.O.; Manns, M.P.; Strassburg, C.P. 535 Fxr-mediated regulation of the human hepatic bile acid Udp-glucuronosyltransferase (Ugt) 1a3 gene in cholestasis. J. Hepatol., 2008, 48, S201.
[http://dx.doi.org/10.1016/S0168-8278(08)60537-1]
[43]
Ritter, J.K. Intestinal UGTs as potential modifiers of pharmacokinetics and biological responses to drugs and xenobiotics. Expert Opin. Drug Metab. Toxicol., 2007, 3(1), 93-107.
[http://dx.doi.org/10.1517/17425255.3.1.93] [PMID: 17269897]
[44]
Couto, N.; Al-Majdoub, Z.M.; Achour, B.; Wright, P.C.; Rostami-Hodjegan, A.; Barber, J. Quantification of proteins involved in drug metabo-lism and disposition in the human liver using label-free global proteomics. Mol. Pharm., 2019, 16(2), 632-647.
[http://dx.doi.org/10.1021/acs.molpharmaceut.8b00941] [PMID: 30608694]
[45]
Tripathi, S.P.; Bhadauriya, A.; Patil, A.; Sangamwar, A.T. Substrate selectivity of human intestinal UDP-glucuronosyltransferases (UGTs): in silico and in vitro insights. Drug Metab. Rev., 2013, 45(2), 231-252.
[http://dx.doi.org/10.3109/03602532.2013.767345] [PMID: 23461702]
[46]
Lacy, S.A.; Miles, D.R.; Nguyen, L.T. Clinical pharmacokinetics and pharmacodynamics of cabozantinib. Clin. Pharmacokinet., 2017, 56(5), 477-491.
[http://dx.doi.org/10.1007/s40262-016-0461-9] [PMID: 27734291]
[47]
Lacy, S.; Hsu, B.; Miles, D.; Aftab, D.; Wang, R.; Nguyen, L. Metabolism and disposition of cabozantinib in healthy male volunteers and pharmacologic characterization of its major metabolites. Drug Metab. Dispos., 2015, 43(8), 1190-1207.
[http://dx.doi.org/10.1124/dmd.115.063610] [PMID: 26015560]
[48]
Nguyen, L.; Holland, J.; Mamelok, R.; Laberge, M.K.; Grenier, J.; Swearingen, D.; Armas, D.; Lacy, S. Evaluation of the effect of food and gastric pH on the single-dose pharmacokinetics of cabozantinib in healthy adult subjects. J. Clin. Pharmacol., 2015, 55(11), 1293-1302.
[http://dx.doi.org/10.1002/jcph.526] [PMID: 25907407]
[49]
Nguyen, L.; Holland, J.; Ramies, D.; Mamelok, R.; Benrimoh, N.; Ciric, S.; Marbury, T.; Preston, R.A.; Heuman, D.M.; Gavis, E.; Lacy, S. Effect of renal and hepatic impairment on the pharmacokinetics of cabozantinib. J. Clin. Pharmacol., 2016, 56(9), 1130-1140.
[http://dx.doi.org/10.1002/jcph.714] [PMID: 26865195]