Residual Right-to-Left-Shunt Following Transcatheter Patent Foramen Ovale Closure: The Role of Antithrombotic Treatment

Page: [3305 - 3312] Pages: 8

  • * (Excluding Mailing and Handling)

Abstract

Background: Transcatheter closure of patent foramen ovale (PFO) is a highly effective therapy for patients with left circulation thromboembolism, not attributable to other conditions.

Objectives: This retrospective cohort study investigates the impact of baseline foramen ovale anatomy on the severity of the postclosure shunt.

Methods: Patients with PFO, who underwent percutaneous closure, were followed up for at least 5 years postimplantation. Patients were classified into two groups based on the presence of high-risk features of the baseline PFO anatomy. At the follow-up follow-up, residual right-to-left shunt was assessed for the high and non-highrisk anatomy groups, via transcranial Doppler at rest and after performing the Valsalva maneuver, with the injection of agitated saline.

Results: 38 patients were examined after a mean follow-up period of 9 ± 3 years after implantation. After retrospective evaluation of the baseline transthoracic and transesophageal echo studies, 14 patients with high-risk PFO anatomy were identified. The degree of the residual right-to-left shunt, as assessed by the number of microbubbles was higher in the high-risk PFO anatomy group compared to the non-high-risk group, both at rest [1.50 (IQR: 0.00-3.25) vs. 0.00 (IQR: 0.00-0.00), p < 0.001] and post-Valsalva maneuver [7.50 (IQR: 1.50- 10.25) vs. 0.00 (IQR: 0.00-3.75), p = 0.003]. Furthermore, in the high-risk group, more microbubbles were detected at rest (p = 0.008) and post-Valsalva (p = 0.002) in subjects without antiplatelet treatment compared to subjects on prolonged antiplatelet therapy.

Conclusion: Baseline PFO anatomy affects the severity of the residual right-to-left shunt. Prolonged antiplatelet therapy may benefit patients with high-risk anatomical features.

[1]
Ozcan Ozdemir A, Tamayo A, Munoz C, Dias B, David Spence J. Cryptogenic stroke and patent foramen ovale: Clinical clues to paradoxical embolism. J Neurol Sci 2008; 275(1-2): 121-7.
[http://dx.doi.org/10.1016/j.jns.2008.08.018] [PMID: 18822432]
[2]
Pristipino C, Bedogni F, Cremonesi A. Patent foramen ovale and cryptogenic stroke. N Engl J Med 2013; 369(1): 89-90.
[PMID: 23822785]
[3]
Sørensen HT, Horvath-Puho E, Pedersen L, Baron JA, Prandoni P. Venous thromboembolism and subsequent hospitalisation due to acute arterial cardiovascular events: A 20-year cohort study. Lancet 2007; 370(9601): 1773-9.
[http://dx.doi.org/10.1016/S0140-6736(07)61745-0] [PMID: 18037081]
[4]
Carroll JD, Saver JL, Thaler DE, et al. Closure of patent foramen ovale versus medical therapy after cryptogenic stroke. N Engl J Med 2013; 368(12): 1092-100.
[http://dx.doi.org/10.1056/NEJMoa1301440] [PMID: 23514286]
[5]
Dao CN, Tobis JM. PFO and paradoxical embolism producing events other than stroke. Catheter Cardiovasc Interv 2011; 77(6): 903-9.
[http://dx.doi.org/10.1002/ccd.22884] [PMID: 21207422]
[6]
Papa M, Gaspardone A, Fracasso G, et al. Usefulness of transcatheter patent foramen ovale closure in migraineurs with moderate to large right-to-left shunt and instrumental evidence of cerebrovascular damage. Am J Cardiol 2009; 104(3): 434-9.
[http://dx.doi.org/10.1016/j.amjcard.2009.03.061] [PMID: 19616680]
[7]
Giblett JP, Williams LK, Kyranis S, Shapiro LM, Calvert PA. Patent foramen ovale closure: State of the art. Interv Cardiol 2020; 15: e15.
[http://dx.doi.org/10.15420/icr.2019.27] [PMID: 33318751]
[8]
Pepi M, Evangelista A, Nihoyannopoulos P, et al. Recommendations for echocardiography use in the diagnosis and management of cardiac sources of embolism: European Association of Echocardiography (EAE) (a registered branch of the ESC). Eur J Echocardiogr 2010; 11(6): 461-76.
[http://dx.doi.org/10.1093/ejechocard/jeq045] [PMID: 20702884]
[9]
Mojadidi MK, Bogush N, Caceres JD, Msaouel P, Tobis JM. Diagnostic accuracy of transesophageal echocardiogram for the detection of patent foramen ovale: A meta-analysis. Echocardiography 2014; 31(6): 752-8.
[http://dx.doi.org/10.1111/echo.12462] [PMID: 24372693]
[10]
Droste DW, Reisener M, Kemény V, et al. Contrast transcranial doppler ultrasound in the detection of right-to-left shunts. reproducibility, comparison of 2 agents, and distribution of microemboli. Stroke 1999; 30(5): 1014-8.
[http://dx.doi.org/10.1161/01.STR.30.5.1014] [PMID: 10229737]
[11]
Lee PH, Song JK, Kim JS, et al. Cryptogenic stroke and high-risk patent foramen ovale. J Am Coll Cardiol 2018; 71(20): 2335-42.
[http://dx.doi.org/10.1016/j.jacc.2018.02.046] [PMID: 29544871]
[12]
Ioannidis SG, Mitsias PD. Patent foramen ovale in cryptogenic ischemic stroke: Direct cause, risk factor, or incidental finding? Front Neurol 2020; 11: 567.
[http://dx.doi.org/10.3389/fneur.2020.00567] [PMID: 32670184]
[13]
Hara H, Virmani R, Ladich E, et al. Patent foramen ovale: Current pathology, pathophysiology, and clinical status. J Am Coll Cardiol 2005; 46(9): 1768-76.
[http://dx.doi.org/10.1016/j.jacc.2005.08.038] [PMID: 16256883]
[14]
Mas JL, Arquizan C, Lamy C, et al. Recurrent cerebrovascular events associated with patent foramen ovale, atrial septal aneurysm, or both. N Engl J Med 2001; 345(24): 1740-6.
[http://dx.doi.org/10.1056/NEJMoa011503] [PMID: 11742048]
[15]
Nakayama R, Takaya Y, Akagi T, et al. Identification of high-risk patent foramen ovale associated with cryptogenic stroke: Development of a scoring system. J Am Soc Echocardiogr 2019; 32(7): 811-6.
[http://dx.doi.org/10.1016/j.echo.2019.03.021] [PMID: 31130417]
[16]
Mas JL, Derumeaux G, Guillon B, et al. Patent foramen ovale closure or anticoagulation vs. antiplatelets after stroke. N Engl J Med 2017; 377(11): 1011-21.
[http://dx.doi.org/10.1056/NEJMoa1705915] [PMID: 28902593]
[17]
Hakeem A, Cilingiroglu M, Katramados A, et al. Transcatheter closure of patent foramen ovale for secondary prevention of ischemic stroke: Quantitative synthesis of pooled randomized trial data. Catheter Cardiovasc Interv 2018; 92(6): 1153-60.
[http://dx.doi.org/10.1002/ccd.27487] [PMID: 29332308]
[18]
Riaz H, Khan MS, Schenone AL, Waheed AA, Khan AR, Krasuski RA. Transcatheter closure of patent foramen ovale following cryptogenic stroke: An updated meta-analysis of randomized controlled trials. Am Heart J 2018; 199: 44-50.
[http://dx.doi.org/10.1016/j.ahj.2018.01.008] [PMID: 29754665]
[19]
Deng W, Yin S, McMullin D, et al. Residual shunt after patent foramen ovale closure and long-term stroke recurrence. Ann Intern Med 2020; 172(11): 717-25.
[http://dx.doi.org/10.7326/M19-3583] [PMID: 32422058]
[20]
Taggart NW, Reeder GS, Lennon RJ, et al. Long-term follow-up after PFO device closure. Catheter Cardiovasc Interv 2017; 89(1): 124-33.
[http://dx.doi.org/10.1002/ccd.26518] [PMID: 27027873]
[21]
Lao AY, Sharma VK, Tsivgoulis G, et al. detection of right-to-left shunts: Comparison between the international consensus and spencer logarithmic scale criteria. J Neuroimaging 2008; 18(4): 402-6.
[http://dx.doi.org/10.1111/j.1552-6569.2007.00218.x] [PMID: 18333839]
[22]
Elmariah S, Furlan AJ, Reisman M, et al. Predictors of recurrent events in patients with cryptogenic stroke and patent foramen ovale within the closure I (evaluation of the starflex septal closure system in patients with a stroke and/or transient ischemic attack due to presumed paradoxical embolism through a patent foramen ovale) trial. JACC Cardiovasc Interv 2014; 7(8): 913-20.
[http://dx.doi.org/10.1016/j.jcin.2014.01.170] [PMID: 25147037]
[23]
von Bardeleben RS, Richter C, Otto J, et al. Long term follow up after percutaneous closure of pfo in 357 patients with paradoxical embolism: Difference in occlusion systems and influence of atrial septum aneurysm. Int J Cardiol 2009; 134(1): 33-41.
[http://dx.doi.org/10.1016/j.ijcard.2008.02.031] [PMID: 18715659]
[24]
Shah AH, Osten M, Benson L, et al. Incidence and outcomes of positive bubble contrast study results after transcatheter closure of a patent foramen ovale. JACC Cardiovasc Interv 2018; 11(11): 1095-104.
[http://dx.doi.org/10.1016/j.jcin.2018.03.008] [PMID: 29880106]
[25]
Marchese N, Pacilli MA, Inchingolo V, Fanelli R, Loperfido F, Vigna C. Residual shunt after percutaneous closure of patent foramen ovale with amplatzer occluder devices - influence of anatomic features: A transcranial doppler and intracardiac echocardiography study. EuroIntervention 2013; 9(3): 382-8.
[http://dx.doi.org/10.4244/EIJV9I3A61] [PMID: 23872652]
[26]
Turc G, Lee JY, Brochet E, Kim JS, Song JK, Mas JL. Atrial septal aneurysm, shunt size, and recurrent stroke risk in patients with patent foramen ovale. J Am Coll Cardiol 2020; 75(18): 2312-20.
[http://dx.doi.org/10.1016/j.jacc.2020.02.068] [PMID: 32381162]
[27]
Schuchlenz HW, Saurer G, Weihs W, Rehak P. Persisting eustachian valve in adults: Relation to patent foramen ovale and cerebrovascular events. J Am Soc Echocardiogr 2004; 17(3): 231-3.
[http://dx.doi.org/10.1016/j.echo.2003.12.003] [PMID: 14981420]
[28]
Vizzari G, Pizzino F, Zwicke D, et al. Patent foramen ovale: Anatomical complexity and long-tunnel morphology related issues. Am J Cardiovasc Dis 2021; 11(3): 316-29.
[PMID: 34322302]
[29]
Mojadidi MK, Roberts SC, Winoker JS, et al. Accuracy of transcranial doppler for the diagnosis of intracardiac right-to-left shunt: A bivariate meta-analysis of prospective studies. JACC Cardiovasc Imaging 2014; 7(3): 236-50.
[http://dx.doi.org/10.1016/j.jcmg.2013.12.011] [PMID: 24560213]
[30]
Park S, Oh JK, Song JK, et al. Transcranial doppler as a screening tool for high‐risk patent foramen ovale in cryptogenic stroke. J Neuroimaging 2021; 31(1): 165-70.
[http://dx.doi.org/10.1111/jon.12783] [PMID: 32896963]
[31]
Katsanos AH, Psaltopoulou T, Sergentanis TN, et al. Transcranial doppler versus transthoracic echocardiography for the detection of patent foramen ovale in patients with cryptogenic cerebral ischemia: A systematic review and diagnostic test accuracy meta-analysis. Ann Neurol 2016; 79(4): 625-35.
[http://dx.doi.org/10.1002/ana.24609] [PMID: 26833864]
[32]
Rodrigues AC, Picard MH, Carbone A, et al. Importance of adequately performed valsalva maneuver to detect patent foramen ovale during transesophageal echocardiography. J Am Soc Echocardiogr 2013; 26(11): 1337-43.
[http://dx.doi.org/10.1016/j.echo.2013.07.016] [PMID: 23993693]
[33]
Zhao E, Zhang Y, Kang C, et al. Influence of the valsalva maneuver on cardiac hemodynamics and right to left shunt in patients with patent foramen ovale. Sci Rep 2017; 7(1): 44280.
[http://dx.doi.org/10.1038/srep44280] [PMID: 28266661]
[34]
Søndergaard L, Kasner SE, Rhodes JF, et al. Patent foramen ovale closure or antiplatelet therapy for cryptogenic stroke. N Engl J Med 2017; 377(11): 1033-42.
[http://dx.doi.org/10.1056/NEJMoa1707404] [PMID: 28902580]
[35]
Pristipino C, Sievert H, D’Ascenzo F, et al. European position paper on the management of patients with patent fora-men ovale. General approach and left circulation thromboembolism. EuroIntervention 2019; 14(13): 1389-402.
[http://dx.doi.org/10.4244/EIJ-D-18-00622] [PMID: 30141306]
[36]
Krumsdorf U, Ostermayer S, Billinger K, et al. Incidence and clinical course of thrombus formation on atrial septal defect and patient foramen ovale closure devices in 1,000 consecutive patients. J Am Coll Cardiol 2004; 43(2): 302-9.
[http://dx.doi.org/10.1016/j.jacc.2003.10.030] [PMID: 14736453]
[37]
Geisler T, Jorbenadze R, Popov AF, et al. Thrombogenicity and antithrombotic strategies in structural heart interventions and nonaortic cardiac device therapy current evidence and practice. Thromb Haemost 2019; 119(10): 1590-605.
[http://dx.doi.org/10.1055/s-0039-1694751] [PMID: 31421642]